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Overview Chap 8

If internal parametersK are (partially) known, euclidian properties
of the scene can be measured in the image.

K can be computed from absolute conicω

ω can be estimated from lines/points in the image with known
geometric properties in the scene

(geometric properties as in coplanarity/orthogonality)

Finally. . . some clear applications (see Fig. 8.21)



Basics

The mapping
from points on a plane to the image plane is a homography:x = Hxπ.
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extra:→ P has 11 dof,pH has nine dof, thusP can not be computed
from planar points only.



Basics

(Points on) A lineL in the scene maps to (points on) a linel in the
image.
(Points on) A linel in the image maps to (points on) a planeπ in the
scene:xπ ∈ PTl .
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Basics

Plücker lines anyone?



Basics

A conic C in the image maps to a coneQcone in the scene, with:
Qcone = PTCP
← proof:

xTCx = 0

x = PX

gives
XT PTCP︸︷︷︸

Qcone

X = 0



Smooth surfaces, general

“contour-generator“Γ results in ”profile“γ on image-plane.

Γ is defined by smooth surface and camera centerC
lines tangent toγ map to planes tangent toΓ
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Smooth surfaces, quadrics

A general quadric in the scene maps to a conic in the image.

← spheres map to circles:

General quadrics are 3-space projective transformations of spheres.

Intersection and tangency is preserved, thus “contour-generator“
remains a plane conic.

More on this, anyone?



Two cameras with equal centers
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Images taken by cameras with the same center are related by a
homography:x′ = P′X = (K′R′)(KR)−1PX = (K′R′)(KR)−1x = Hx
... we already new this:
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Two cameras with equal centers

Zooming

K again:

K =


f mx s x0
0 f my y0
0 0 1

 =
[

f bmI x̃0
0T 1

]

GivenK andK′ with f ′/ f = k:

K′K−1 =

[
kI (1 − k)x̃0
0T 1

]
→ K′ = K

[
kI 0
0T 1

]
... Uh, yes, figures

Does this hold fors , 0



Two cameras with equal centers

Rotating.
x = K[I|0]X→ X = K−1x

x′ = K[R|0]X = KRK−1x

H = KRK−1 is and example of an infinite homography (?)



Two cameras with equal centers

Two example applications.
Synthetic views:



Two cameras with equal centers

Mosaicing:
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Two cameras without equal centers

Motion parallax.



K andω

Calibration (i.e. determiningK) relates image pointsx to the ray’s
directiond : d = K−1x.
If K is known (i.e. the camera is calibrated) angles between rays can
bejcomputed:

cos(θ) =
dT

1 d2√
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K andω

Now finally something important: the image of the absolute conicω
is related to the calibrationK.

Points onπ∞, sayX∞ = (dT, 0)T map toKRd:

x = PX∞ = KR[I|t](dT, 0)T = KRd.

Notice: points onπ∞ ≡ direction.

Notice-2:π∞ is really a plane and thus there is aH = KR that maps
it to the image plane.

Notice-3H does not depend ont (dC) (think of a stary night)



K andω

The absolute conicΘ∞ = I onπ∞.

MappingΘ∞ usingH = KR to the image plane gives usω:

ω = H−TIH−1 = (KR)−TI(KR)−1 = K−TRR−1K−1 = (KKT)−1.

Using Cholesky decompositionK can be recovered fromω.

Angles between rays can now be expressed inω:

cos(θ) =
xT

1ωx2√
xT

1ωx1

√
xT

2ωx2

.

So, knowingω resutls in a calibrated camera!!



Estimatingω

Let’s define linear constraints onω so we can estimate it

If x1 andx2 resulted from perpendicular rays then:

xT
1ωx2 = 0

Through the pole-polar relationship we get for imagepointx and
imagelinel resulting from a ray perpendicular to a scene plane:

l = ωx→ [l]×ωx = 0

Compute the imaged circular points of a mapped scene plane using
an estimatedH: H(1,±i, 0). These lie onω:

hT
1ωh2 = 0 and hT

1ωh1 = hT
2ωh2



Estimatingω

We know how to estimate homographies.
Three homographies provide 6 linear constraints.
Solve by stacking constraints and apply the DLT algorithm



Estimatingω

So how do we determine perpendicular points/lines in images:

vanishing points/lines
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Estimatingω

Especially in man-made environments there are a lot of parallel and
perpendicular lines.
Using the fact that we *know* that lines are parallel/perpendicular
in the plane helps us find vanishing points/constraints onω.



Estimatingω

Vanishing points are just like regular image point:

cos(θ) =
vT

1ωv2√
vT

1ωv1

√
vT

2ωv2

.

Also for vanishing points related to perpendicular lines in the scene
define a linear constraint onω:

vT
1ωv2 = 0



Estimatingω

Vanishing lines correpond to planes intersectingπ∞.
They can be found by joining vanishing points resulting from rays
on a the plane.
Or, by using equally spaced parallel scene lines.



Estimatingω

ω can also be constrained by constraining certain internal camera
parameters:

Zero skew, results in
ω12 = ω21 = 0.

This can also be seen as:x andy axes are orthogonal.

zero skew and square pixels, results in

ω11 = ω22.

This can also be seen as: diagonal lines x = y and x = -y are
orthogonal.



Measuring height

The computation ofK does not have to be explicit for measuring
euclidian entities.

See image 8.20 (p221)

The ratio of parallel vertical scene lines can be determined using the
vanishing line of the ground plane.

In image 8.21 (p223) this is used to compute the length of two
terrorists.



Almost done

Calibrating conic, anyone...

...coffee?


