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1 Objects in contact

When an object touches another object, this is a limit on its motion.
What is the freespace boundary, analytically?

reference point

of object
\ % A

B

| \

Let us limit ourselves to translations only. We get a sketch by

determining for each point P of B which part of space it ‘denies’ to
the reference point of A:

|/ \

This involves placing the ‘stamp’ —.A at P, producing a boundary
of forbidden area (—.A)®P.



2 Collision avoidance and wave propagation

Performing this construction for all points of B gives:
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This is reminiscent of Huygens wave propagation, with B as a front
of sources, and —.A as propagator; the new wave front is (—A)®B.

Note that this is a process on boundaries, producing a new bound-
ary (—A)®B from two boundaries \A and B. Note also that the
resulting boundary is not necessarily differentiable (if we take ‘out-
side only’) or single-valued (if we take the ‘wave front’).

We thus have a need for an analytical description of such bound-
aries and their combination.



3 Oriented tangent space

Assume regular boundary in Euclidean m-space with pseudoscalar

I,: at every point p a tangent space I of grade m — 1. Associate
a normal vector n by:

n=-II1

Orient I such that n is the inward pointing normal. I characterizes
the tangent space at p, which we denote by G'(I[p]).



4 Spanning the oriented tangent space

Second order differential structure: differentiate n to some direction
b, defining

n(b) = (b-d)n.
Since n(-) is linear, we can extend it as an outermorphism to all of
G'(I[p]). Then n(I) denotes the total change of n on I.

We define the directed Gaussian curvature as:

k=nDI" atp.

This relates the spaces with pseudoscalars I[p] and n(I)[p].



5 Inversion of derivative

The function n(-) is invertible to a set of vectors based at p:
n~' :G'(I[p]) - ¢'I[p)): n'(m)={a|n(a) =m}.

Such set-valued functions should be added using the Minkowski
sum :
AdB={a+blac Abec B}.



6 Boundary as geometric object

Boundary thus characterized by p (whose differentials give I or n),
and an ‘inside sign’ to orient I or n. Not a single geometric object!

Familiar technique: homogeneous embedding of E™ into (m + 1)-
dimensional space with pseudoscalar 1,1 = egl,,, according to:

p=¢€ +P
(bold for elements in G(I,,), math for elements of G(1,,11).)

I,,-plane

n—e’(p-n)

Then the tangent I at p is represented by the homogeneous blade:
pAI=(eg+p) AL
Its dual is our representation R(n)[p] of the normal vector n at p:

Rm)[p]= (pADI,}, =p-(en)=n—e(p-n).

where €? is the reciprocal of eg, so e’ - ¢y = 1.

7



7 Invertibility of boundary representation

The boundary representation commutes with differentiation:
R(a) = (a- 8,)R(n) =p- (e'a) = R(a) = R((a- 8,)n).
By linearity we can extend it to any multivector in the ‘differential
space at p’ G(n A n(I))[p]:
R(A)p]=A—€'(p-A)=p-("A), AcGmAn()p]
[t satisfies:
p-R(A)=p-(p-("A)) = (pAp) - ("A) =0,

so p is perpendicular to the representation of any vector in the
representation of the differential space. If k& # 0, this space is m-
dimensional.

From these m conditions we can retrieve p, and hence p. These rep-
resentative vectors can be constructed by differentiation of R(n),
so the boundary representation is invertible (if & # 0):

D= R(Im)IT_nleg,

which is simply the dual in G(I,;,41).



8 Example: spherical boundaries

Sphere (radius p, center c) defined by implicit scalar function:

¢p:(p_c)2_p2:0-
Then n is computed as:

Opd(P) p—c
=4+ P 4 i
YT o) 1ol

We orient the inward normal for a hole or a blob; this can be

achieved by a sign for p: positive is a blob, negative is a hole:
C—p
P

So p[n] = ¢ — pn. The representation is now:

R(n)=n—¢e’(c-n—p)

n—

This satisfies (eg + ¢) - R(n) = p, so resides in plane perpendicular
to (ep + c), at distance p (see figure on next slide).

Inversion: R(m) = R(m) = m — ¢’(c - m), so that R(I,,) =
R(n) AR(-I) =1, — e’(c- I, + pI). Its dual is:
R, eg = ey — e’(c Al)eg — pe’II ey = ey + ¢ — pn,

so this retrieves p[n] = ¢ — pn.




9 The representation graphically

(b) a circular blob
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10 Towards an isometric representation

The representation R(+) is not isometric:
R(a)-R(b)=a-b+(-e")(p-a)(p-b)#a-b="R(a-b),

unless ey 1s a null vector!

So, make ey and e’ the null vectors on a null cone in the Minkowsk:
space Clp,11,1. Define the pseudoscalar for this space:

L1 = (eg A e, = EL,.
A vector p is represented as:
p'=eg+p—e'p’/2

and eg represents the point at the origin, and —e’ the point at
infinity. This is the generalized homogeneous model of Eulidean
space recently proposed by [Li et al.].

Blades now represent spheres of E™ (due to definition of p’). A

flat in E™ is represented as a blade containing € (i.e. a sphere
through infinity).
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11 Isometric representation

The tangent I at p is represented as:
e Ap' AL
Its dual is our new boundary representation R'(n)[p]:

R'(n)[p]= (" Ap ADIE = p- (e"n) = R(n)[p],

so it is numerically the same as the previous, but algebraically much
nicer, for it preserves the geometric product:

R'(a)R(b) = R/(ab).

It is of course as invertible as R(n)[p] was, now through the dual

in G(EL,):

e"ANp=-R I, 'E,

which yields p.
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12 Boundary propagation

Propagation combines two boundaries A and B to produce a bound-
ary ABB according to the following rules (which can be taken as
the definition of propagation, or derived from basic principles).

e The resulting position vector after combining a point p4 on A
and a point pp on B is the position p4 + pxs:

PA4éB = PA T PB

e The points p4 and pg must have the same inward pointing
normal (to A and B, respectively), and this is also the in-
ward pointing normal at the resulting position in the resulting
boundary. Symbolically:

n458PAss] = nalPa] = ns(psl.
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13 Swallowtails

Propagation of a concavity A by a large enough sphere B leads to
swallowtails:
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At the ‘cusps’, what is the nature of the irregularity? First order?
Second order? Zero ‘velocity’ along boundary?
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14 Propagation in the embedded representation

Our boundary representation R(n)[p| provides direct implementa-
tion of the definition of propagation:

Let p4[n] be defined as:
pan] ={x € A | nyx| =n},

(set-valued!) and similarly for pgl|-].
Then the propagation result of two boundaries

R(n)[p4 =n—e’(pan] - n)
and
R(n)[ps] = n — e’(pg[n] - n)
R(n)[pass] = n— e’ (Pags-n)
— n — ¢’ ((pa[n] ® psn)) - n)

= n—e¢'((p4[n] n) ® (psn] - n))

= Rn)[p4] + R(n)[ps] — n.
So basically, the € components add up (we use the @ since there
may be several values of p[n] for a given n in each boundary, if the

boundaries are non-convex).
Note: requires reparametrization to same n!
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15 Example: circular propagation of parabola
In the spatial domain, a ‘swallowtail’ develops in the wave front:

fo
.

Propagation by a circle is equivalent to raising of the e’-component
by p, since for a circle R(n) = n + pe'.

cut of cone of fo —

(here the cone is shown in a cut by the plane ny = —1, where it is
the Legendre transform).

16



16 Close-up: ‘irregularities’ regularized
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Note that the ‘swallowtail’ of the boundary corresponds to a con-
cavity in R(n): the representation is well-behaved!

The ‘cusps’ are represented by nflection points: second order sign
changes, no discontinuities!
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17 Analysis of propagation

We can derive a differential property of the propagation operation:

The propagated boundary C = ADB obeys the ‘wvelocity

)

law’:

n;'(m) = ny'(m) ® ng'(m),

where the quantities are to be evaluated at the corre-
sponing points of A, B and A®B. The result is 0 for
m not in the common range of n4[p4)(-) and ng[psl(-).

Proof: Introduce three tangent vectors a, b and c, to
measure the derivative on each of the surfaces, and use the
chain rule to rewrite them in terms of derivatives of p[n]:

ac€ny, (m), beng (m), c€n; (m).
Then these tangents add as position vectors:
¢ = (m - Bu)peln] = (m - 8,) (pAln] + psn]) = a + b,
and, over all possibilities of choosing a and b given c:

n;'(m) =ny'(m) ® ng' (m).
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18 Directed Gaussian radii of curvature are additive

The interaction of the local differential geometries can produce in-
volved results, especially for surfaces with torsion. Yet there is an
simple property when we ‘lump’ over all tangent directions at p:

In a propagation operation, Gaussian curvatures add
reciprocally:

Kiss = KA +Kg'
(locally, at every triple of corresponding points).
Proof: We extend n to an outermorphism over all of 1.
We know that ns(I) = (—=1)""!'k4I. Then ni'(I) =
ny(I>)I7!/det(n) = (=1)""'I/k 4 (where T4 is the ad-
joint of ny), and similarly for B and A®B, and the result
follows from the velocity law. O

PAéB = PA T PB
nAéB:nAan

PAsB = PA T PB
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19 Versor representation

The equation for the representation R(n) can be written in an
interesting alternative form:

Rm)[p] = n—e(p-m) = (1 - ’p/2)n (1+e°p/2)
_ o P/2 ¢"P/2

Thus R(n)[p| can be constructed from a vector n via the general
versor equation U(x) = UxU ! using the translational versor in

Cem-l—l,l: .
T, =¢€° P12 —1—¢'p/2,

which is a rotation over infinity.

For the representation p’ of a point at p in (411 [Li et al.] had:
P=e+p—ep/2=TheT,",

and now we find for a boundary:

R(n)[p] = Tpm nT_[l}l]-

p
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20 Object boundaries are versors

R(n)[p] = Ty n Ty,

p[n]’
So in this view, an object boundary (as represented by R(n)) is an
n-dependent translation p[n| applied to the unit normal vector n.
Since the latter is the representation of a point object at the origin
as a (trivial) function of its orientation, this provides the view:

Any object boundary can be represented as a defor-

mation by orientation-dependent translation of a point
object at the origin.

Non-convex objects may have a particular normal n at different
points p, so in general the function p[n] is set-valued. Drawing this
for I rather than n gives the boundary decomposed into caustics:
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21 Boundary translation as versor

When the boundary translates over t, the point p[n] should become

p > p+t
and differentiation gives:
n — n
Both achieved by:
Tyn'Ty' = Tpuen Ty

= TTpn T, 'Ty !

= (I}Tp) n (TtTp>_1
Thus the new versor for construction of the representation of the
translated boundary is the boundary versor T}, pre-multiplied by

T
Therefore:

Ti represents boundary translation.
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22 Boundary rotation as versor

Rotation around c over rotor R:
p - Rp—cR*'+c,
and by differentiation
n — RnR.
Both achieved by:
Tyn'Ty' = (T.RT.T,R)RoR™ (T.RT T,R™Y)
= (TeRT-)TynT, H(TRT )™,

so the total result is the application of a new versor to n which is
T, left-multiplied by:

T.RT . =R —¢€’(c-R) = Rcr.
Therefore:

R.r represents boundary rotation.
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23 Propagation as (direction-dependent) versor

The versor of the wave propagation result ADB is the geometric
product of the versors of A and B of wave front and propagator:

TPA@B[“] - TpA[n] Ty szs [n] T

Bn] — Aln]

(where, for set-valued T', all combinations of products should be
performed).

Proof: For single -valued p|n], this is for each n a trans-
lation:

Tos Tou = (1—€¢"pa[n]/2) (1 - "pan]/2)
= (1-€"(ps[n] + pam])/2).

For set-valued p|-]s, we should combine all possibilities in
the product, to produce:

1 — ¢'(ps[n] & pa[n])/2.

We include this in an overload of the geometric product
notation for sets. O

Therefore:

T,

pg[n] represents propagation by B.

A boundary ‘is’ therefore a propagation operator!

The somewhat strange ‘addition law’ we found before (‘add only
the e’-components, for the same n’) is just a disguised form of the
geometric product of translational n-dependent versors.
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24

Versor representation of boundary operations

Many important operations (including wave propagation!) have a

simple representation as a versor pre-multiplier.

boundary operation

action on boundary versor

identity

- _ 0
versor remains T, =1 — e’p/2

translation over t

left-multiply by T; = 1 — €%t /2

wave propagation by a boundary T

left-multiply by Tq,) (same n!)

rotation (center ¢, spinor R)

left-multiply by R.r = R — €’(c- R)

mirror in hyperplane (support d)

left-multiply by Mg = d — €°d?/2

scaling by A

replace by (1 — e’p)\/2)

Thus versors provide a framework to study the combination of such

operations.

25




25 Rotations of boundaries

Taking central rotation, we find that a rotated boundary repre-
sented relative to the original n has versor:

1 —¢'Rp[R 'nR]JR /2.

Since p is an arbitrary function (it is capable of characterizing ar-
bitrary boundaries .A), this reparametrization can not be simplified
in general and related to the original p in any simple manner.

For small rotations, we can linearize p and study the local effects.
We set R = e71%/2 =1 —i¢/2 in first order in ¢

Rp[R RIR ™ = (1—i¢/2p (1 +i¢/2n(l —i¢/2)] (1 +id/2)
— (1-ig/2p[n—n-ig](1 +id/2)
= (1—i¢/2) (pln] —n~'(n-i¢)) (1 +i¢/2)
= p[n]+ p[n] - 1gb—g 'm-ip) (1st order in @)

Therefore the versor for the rotated boundary is, to first order in ¢:

1 —¢” (pmn] + pn]-i¢p —n '(n-ig)) /2,
and the versor product then gives the locally displaced boundary:

R(n) - '(n Ap) - (ig).

The tangent I thus shifts over a perpendicular distance (nAp)-(ip).
Note: does not involve derivatives of n!
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26 Conclusions

e Boundaries can be represented as geometric objects:

1. hyper-surfaces R(n) in G!(eyL,,) or G}(EL,), or

2. direction-dependent translation versors Ty in (11
Both decompose boundaries per tangent direction.

e The involved boundary interaction of wave propagation (or col-
lision, or milling, or growing) becomes simply:

1. addition of e’-components, or

2. versor multiplication

These perform boundary interaction per direction component:
addition/multiplication of ‘direction spectra’.

Now implementation. Note analogy with Fourier transform (con-
volution becomes spectral multiplication). Algebraically similar: is
there a ‘Fast Boundary Transform’?
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27 Analytically propagating waves

notebook.nb

Propagation of circular waves from a cardioid shape (both inwards
and outwards), computed in Mathematica by addition of their R(-)
representations, and inverse representation of the result. ‘Inside’
indicated by shading.
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28 Related work

This table is a classification of literature on orientation-based rep-
resentations of curves and surfaces. Not all can be used for bound-
aries, and few combine well with propagation and collision.

inside collision/ | convexity self- geom. algorithms

approach by explicit | propagation | waived | intersect | prop. | m-D given
class. diff. geom. - - + ~ + m -
Horn 84 - - ~ - + 3 ~
Osher 88 ~ + + - - m +
Nalwa 89 ~ - + - ~ 3(m) -
Stolfi 91 ~ - - - - m +
Ghosh 93 - + ~ ~ - 2(3) +
Liang 94 - - + - + 3 ~
Dorst 94 — + ~ + + 2 —
Schmitt 96 - + + + - 2 ~
Dorst 98 + + + + + 2 ~
Dorst 99 + + + + + m coming!
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