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“A snail shell 
traces out a 
conformal 
motion”

Constructing conformal 
motions
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→ Imagine a very fine square grid 
on a piece of paper. It is possi-
ble to smoothly transform (or 
‘warp’) this grid in such a way 
that the grid-lines are still local-
ly perpendicular to each other at 
their crossing points, but the lines 
themselves are no longer straight. 
This is called a conformal trans-
formation. If you draw a picture 
on the original square grid, and 
then let it undergo such a trans-
formation, the image looks like a 
warped but recognisable version 
of the original, see Figure 1. Such 
‘shape-preserving warps’ can be 
easily extended to 3D space. 3D 
conformal transformations are 
used in computer graphics to 
make acceptably different avatars 
from prototype shapes or to blend 
surfaces smoothly, and have also 
been applied to produce organic 
architectural surfaces. In some 
applications, we want to gradual-
ly deform an object, generating a 
conformal motion. This requires pa-
rameterising the transformation, 
which is often done by ‘factorising 
it’ into a standardised sequence 
of easily parameterisable basic 
transformations. As an example, 
any rigid body motion (which is 
a special case of conformal mo-
tion) can be parameterised as a 
rotation around an axis through 
the origin (giving an object the 
desired orientation), followed by 
a translation (to put the object in 
its place). This seems natural but 
is actually awkward; although the 
starting and ending point of the 
motion might be correct, the mo-

tion itself is not generally realistic 
or useful. (When moving a camera, 
one does not first point it correctly 
and then slide it without turning; 
that would make for an awkward 
pan.) Moreover, twice doing ‘half ’ 
the motion (as characterised by 
halving the parameter values) 
leads to a different result. A more 
natural factorisation is achieved by 
performing the rotation through a 
general axis (not through the ori-
gin), done simultaneously with a 
translation along that same axis. 
Now the motion can be easily in-
terpolated: 1/n-th of the motion 
(characterised by 1/n-th of the pa-
rameter values) done n times gives 
the same result. This generates a 
step-wise screw motion from ini-
tial to final position. 

For general conformal mo-
tions, only factorisations of the 
first type were known (involving 
translations, rotations, scalings 
and transversions). They could 
not be converted into ‘simultane-
ously executable simple motions’ 
because of the complicated com-
mutation rules between those four 
basic operations: when you swap 
their order, the result is totally 
different. 

A new factorisation
In our work [1], we have found 
a way to factorise 3D conformal 
motions using only two basic 
operations. Moreover, these two 
operations have a straightforward 
geometry: they are both circular 
motions governed by a pair of 
points. One can picture these 
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← Figure 1
The suggested correspondence in 
geometry between a human skull 
(a) and a chimpanzee skull (b), from 
the D’Arcy Thompson’s classic work 
On Growth and Form (Cambridge 
University Press 1917), is a conformal 
transformation.

point pairs as being the two poles 
of a sphere (Figure 2). We can clas-
sify the point pairs into three basic 
kinds, determined by the square 
of the diameter of the sphere, as 
indicated in the figure. Each point 
pair determines the motion for any 
point x: it moves on a circular or-
bit that either passes through the 
sphere’s poles (real point pair); 
lies tangential to the point pair 
(tangent vector); or crosses the 
surface of the sphere at right an-
gles (imaginary point pair). When 
we choose two point pairs (from 
these three fundamental choices) 
with the right mutual location, 
perpendicular orientation and 
specific relative size, their two 
motions commute and therefore 
can be done simultaneously, ‘a 
bit of one, then a bit of the other’. 
The composite motion then moves 
any object (such as a point x) on 
a spatial net of orthogonal circles, 
determined fully by the two point 
pairs. If you would move a little 
triangle with your point x, its 
angles would be preserved: that 
is what it means to move confor-
mally. It is very satisfying, and 
simplifying, that any conformal 
motion in 3D can be represented 
simply by defining two orthogonal 
point pairs.

In Figures 3 and 4, we give 
some examples of the motions 
we can generate. First off, in 2D, a 
combination of a real and an im-
aginary point pair reproduces the 
path of a charged particle moving 
between two charges in the pres-
ence of a perpendicular magnetic 
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↑ Figure 2
The three types of point pairs (denote 
by the black arrows), defined as the 
poles of a sphere (magenta), form our 
alphabet to describe general motions. 
The diameter d of the sphere (real-
valued, zero, or imaginary) determines 
how the point pair determines the 
motion of a point x. Steps on the 
orbit denote the varying speed of 
movement.

← Figure 3
A 2D conformal motion in a plane 
generated by a real and imaginary 
point pair. 

↓ Figure 4
Snail shells grow conformally, as 
illustrated by the conformal motion of 
a circle and a small sphere.

field (Figure 3). Finally, as a snail 
grows, it maintains its local shape 
(as defined by local angles), so a 
snail shell traces out a conformal 
motion (Figure 4); the combina-
tion of a real point pair that scales 
and an imaginary point pair that 
rotates can generate a motion in 
which a point and a circle naturally 
form a snail shell shape.

Geometric algebra
These results were obtained with 
geometric algebra [2], which is 
essentially a method to compute 
directly with geometric primitives. 
In the particular geometric algebra 
used, the primitive objects are 3D 
spheres and their intersections. 
A certain product of two spheres 
is a new element representing 
their intersection, and so is a cir-
cle; multiplying by a sphere again 
gives a point pair (the intersec-
tion of 3 spheres). This 3D con-
formal geometric algebra lives in 
a space of 4 positive dimensions 
and 1 negative dimension (this is 
the Minkowski space 4,1). In this 
space, the geometric perpendic-
ularity we need (as mentioned 
earlier) is equivalent to algebraic 
orthogonality (zero dot product). 
Arithmetic operations that one is 
used to performing on numbers 
can be interpreted meaningfully 
for the geometric primitives. For 
instance, the square root of the 
ratio of two circles C1 and C2 is 
a conformal transformation that 
moves C1 to C2, and the logarithm 
of that transformation gives the 
point pairs of that motion. Be-
cause some point pairs square to 
a negative number, they can gener-
ate rotations. Moreover, the same 
motion can be applied to any ob-
ject in the algebra. 

By this new approach, we have 
a tool that allows direct control 
over a class of conformal shapes 
that is intriguingly organic in 
their motions, yet very simple 
to generate. These can form new 
primitives for computer graphics, 
architecture and manufacturing. 
All this is a particular spin-off of 
our general work in geometric al-
gebra. The tight relationship be-
tween algebra and geometry ena-
bles graphical computer interfaces 
that turn interactive manipulation 
of objects into the corresponding 
computations, and vice versa. The 
algebraic structure then allows the 
compiler, rather than the program-
mer, to generate efficient and er-
ror-free software. Ω
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…field (Figure 3). In 3D, a well-chosen combination of two imaginary point pairs 

generates the motion of a point to form a knot (on a Dupin cycloid, which is a 

conformally transformed torus, Figure below). We could apply the same spinor to 

a circle and generate a knot of moving circles. Finally… 
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