
Snappets: A VR user interface for animation with bendable vectors
HAMISH TODD
Current animation software is extremely complicated and difficult for new-
comers, having hundreds of buttons and menus to manipulate varied data
structures. This project aims to create a virtual reality computer program,
Snappets, with an intuitive graphical user interface while also offering the
customizability of modern procedural animation. The design involves giving
users direct control, with their hands, over structures in Projective Geomet-
ric Algebra; this creates a visualization of mathematically sophisticated tools
including Poisson brackets, exterior algebra, geometric flags, and the Dual
Quaternion exponential and logarithm. This has the potential to introduce
even young children, not just to animation, but also to linear algebra.

ACM Reference Format:
Hamish Todd. 2024. Snappets: A VR user interface for animation with bend-
able vectors. 1, 1 (March 2024), 4 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

1 INTRODUCTION
“Coding” consists primarily of working with symbols; this is cur-
rently true even in animation, where the data being worked with is
usually quite visualizable. There is an almost-universal division of
labour within computer animation based on this: there are animators
(prefer visual interface) and animation programmers (comfortable
with symbolic interface). Some systems, such as Unreal’s blueprints,
attempt to create less-symbolic programming for the benefit of an-
imators, but these still require the data to be manipulated in the
same way that ordinary code does, for example by splitting quater-
nions into “x”, “y”, “z”, “w” scalars. This is despite quaternions being,
ultimately, just rotations, so in some sense any child able to use a
knife and fork, or lego technic, already has some experience, and
internal picture, of them.
Inspired by the thinking of Kay and Papert [Kestenbaum 2005],

the Snappets project starts from the premise that the user interface
to animation and geometry should, as far as possible, capitalize on
the intuitions that users have already developed for 3D euclidean
space. To this end, it exposes mathematical objects visually, with the
hope that a newcomer can learn to use them in a matter of minutes.

2 PROJECTIVE GEOMETRIC ALGEBRA
This project is based on the premise that versors of Projective Geo-
metric Algebra, Cl(3,0,1), are fundamentally connected with the way
humans (including laypersons) interact with the world - moreso
than for any other mathematical object, including matrices, vectors,
and in a pinch, even scalars.

Author’s address: Hamish Todd, hamish.todd1@gmail.com.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM XXXX-XXXX/2024/3-ART
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Fig. 1. The interface of a computer animation program, showing visual
elements but also a huge amount of buttons (a tiny minority of the whole)

A good introduction to PGA is provided by [Sudgylacmoe [n. d.]],
but briefly: PGA versors comprise planes, lines, points, rotations,
translations, screw motions (handedness-preserving rigid motions),
rotoreflections, and transflections (handedness-reversing rigid mo-
tions). Every geometric object in PGA (the points, lines and planes
in 3D space) is simultaneously a transformation - a plane is a planar
reflection, a point is a point reflection, and a line is a 180 rotation.
Planar reflections are atomic within PGA, and everything else can
be seen as a composition of them; a rotation is a composition of two
reflections; a point reflection (which is the same thing as a point) is a
composition of three reflections; a translation is also two reflections,
etc.

The versors of PGA can be divided into two 8-float types, which
are the core math data structures that Snappets uses under the
hood: even versors (grade 0, 2 and 4) and odd versors (grades 1 and
3), essentially 2k-reflections, and 2k+1 reflections up to normaliza-
tion. Another almost-equivalent term is “handedness-preserving”
or “proper” isometry, or “Dual Quaternion” for even versors, and
“handedness-reversing” or “improper” isometry, or “Flector” for odd
versors. This is memory-efficient and a useful way to break prob-
lems down: to the author’s knowledge there is no use, in computer
graphics, for a sum of an odd versor and an even versor.
With regards to animation, the most obviously important PGA

objects are even versors - these allow objects to be moved around
(“rigidly”) in a virtual environment. Transflections and rotoreflec-
tions (there is no such thing as a “screw-flection” in 3D) are relevant
too, because it is common for objects to be mirror- symmetric - an
example might be a bird flapping its wings. Planes and points are
both also very useful: it is common to want to constrain an ani-
mated object by projecting its position (a point) onto a the floor (a
plane). Planes, lines and points (blades) are useful for programming
constraints and inverse kinematics.

, Vol. 1, No. 1, Article . Publication date: March 2024.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 • Dr. Hamish Todd

Fig. 2. Creating even versors with a single gesture

3 VERSOR VISUALIZATION AND SPECIFICATION FROM
GESTURAL INPUT

To create an even versor in Snappets is a single-handed gesture: a
particular button is pressed; the user moves their hand through the
air; and the screw motion/rotation/translation is made which their
hand has undergone. The most likely outcome is a screw motion;
screw motions are in fact so likely that thresholding is added to
make it so that a screw motion that is approximately a rotation is
turned into a rotation, same with a translation. To find the “nearest”
rotation and translation, the invariant decomposition [Roelfs and
Keninck 2021] is employed.

Fig. 3. Creating a 3D mesh and then changing its transform

Note that with rotations in place, one obtains lines “for free”, since
a line in PGA is the same object as a 180 degree rotation around the
line.

The user can also create rotoreflections - this may not seem espe-
cially useful, until one becomes aware that points and planes are
special cases of rotoreflections (a line is a special case of a rotation).
To make one, the user grabs with both hands: the plane-point-arrow
combination seen in figure 4 is created (possibly replacing an even
versor). Instead of being defined using an initial and final hand po-
sition, the odd versor is instead calculated as the transformation
that takes the user’s left hand to their right hand (by definition a
handedness-reversing transformation).

Fig. 4. Creating a rotoreflection

Fig. 5. Left: making a pure planar reflection (eg a plane); Right: making a
pure point reflection (eg a point). Both are special cases of rotoreflections;
a planar reflection has 0 grade-3 part, a point reflection has 0 grade-1 part

Rotoreflections themselves have some uses - however, the user is
more likely to be interested in making points and planes - which are
the special cases of rotoreflections where the rotation is by an angle
of 180 degrees (for a point reflections/points) or 0 degrees (a planar
reflection/plane). Again Snappets has thresholding to make these
cases easier for a user to create, since in general the transformation
taking a person’s left hand to their right is a rotoreflection with
probability 1.
Two more important special cases of odd versors are transflec-

tions, which appear when the rotation is by 0 degrees but the hands
are separated from one another by a translation; and points-at-
infinity, which is the special case of a transflection where the trans-
lation is by an infinite distance. A reflection followed by a translation
by an infinite distance may seem again a fairly unlikely transfor-
mation to want to consider, but points at infinity are of interest for
other reasons: for example, the derivatives with respect to time of
ordinary points, moving around in space, is a point at infinity.

, Vol. 1, No. 1, Article . Publication date: March 2024.

Snappets: A VR user interface for animation with bendable vectors • 3

Fig. 6. Left: creating a transflections, eg a reflection followed by a transla-
tion; Right: a point at infinity (red, in the distance)

4 SNAPPING
An animated character is a set of rigid bodies (“bones”) with rela-
tionships that are chosen by an animator and stored in memory
using some representation. For example, they might choose that a
hand’s transformation is the arm’s transformation followed by a
translation (so the hand stays on the end of the arm); or they might
enforce that a character’s eyeballs always rotates to face where a
particular object is currently placed.

The goal with snappets is to allow the user to choose any of these,
i.e. to establish “declarative” relationships between bones. To enable
them to do this, following Bret Victor [Victor [n. d.]], “snapping” is
used; a specific example is shown in figure 7. Abstractly it means
that when two versors are visible, and the user performs a gesture
that creates another versor, they can press a button that will “snap”
the versor so that it gains a geometric relationship (chosen from
table 1) with the original two, a relationship that will be maintained
thereafter.

Fig. 7. An example of snapping: 1) two points A and B are visible 2) the user
makes a gesture to create an even versor 3) after pressing the “snap” button,
the even versor has been snapped to being the line joining the two points
(it could also have been the translation taking one point to the other, but
this one was closer) 4) when one of the points is moved, the line is moved,
since it will now always be the join of the points - that is, a relationship has
been “declared” using the PGA regressive product.

5 CONCLUSION
Aside from the fact that the program is based on snapping, the name
“snappets” comes from the fact that the program is intended to be
used to make puppet shows, eg live performances. These can be
more engaging than “canned” animations such as Pixar movies, even
in spite of the huge budgets of the latter. Performing with snap-
pets also offers an advantages in comparison with ordinary puppet
shows, and animation software, that it may well be engaging for

audiences to watch animated characters being created - much of In-
stagram consists of watching people making things with their hands.
Characters could be made in Snappets faster than traditional pup-
pets, and more understandably than ordinary animated characters
(because the controls are less complicated).

In terms of complexity-reduction, Snappets already has a head
start over traditional computer animation software in that it is based
in VR - when all the user has is a mouse, they cannot easily specify
a rotation and translation simultaneously, whereas in VR this is
trivial. Whether or not Snappets receives any widespread adoption,
it should be expected that any future interface for animations in-
corporating virtual reality control ought to be made with a similar
handling of screw motions.
Snappets’ depictions of versors diverge somewhat from [Roelfs

and Keninck 2021]. There, to visualize a translation, say, we are
shown two (example) parallel mirror planes that the translation can
be decomposed into. In Snappets’ visualizations, a maximum of a
single mirror plane is shown, which is for the case of rotoreflections,
transflections, and planar reflections (not point reflections or points
at infinity) where a plane is explicitly involved in the transformation.
Instead of plane-pairs, there is the arrow - this induces a larger
element of subjectivity/”gauging” than showing the planes, because
we must make a choice of where the arrow should begin - from a
mathematical standpoint this is utterly arbitrary, since all points in
space are affected by transformations. For the sake of a program for
presenting the mathematics of PGA and gauges, a fork of snappets
is planned which will use the everything-is-mirrors visualization.
Together the translations, rotations, and screw motions are the

“bendable vectors” referred to in the title. Mathematically they are
dual quaternions/even versors. I propose to use the name "bendable
vectors" because the unfortunate truth is that unless it says “vector”
somewhere, computer graphics practitioners, and math teachers,
are likely to feel like a system is completely unrecognizeable to
them. Note that the special case of dual quaternions that model
pure translations, eg when the arrow is straight, behave in most
of the ways that engineers expect “vectors” in 3D space to behave,
in the sense that their composition (geometric product) looks like
vector addition. There has been debate over whether “vectors” in
PGA should be planes or points, or indeed negative-square bivectors
since the xyz part of a quaternion is sometimes called the “vector”
part. Plausibly none of these is true - “vectors” should be identified
with translations, eg scalar-plus-null-bivector.

ACKNOWLEDGMENTS
The author is indebted to Steven De Keninck, Pontus Granström,
Lauren Davies, Alan Kay, and Jon Selig for productive and inspiring
conversations.

REFERENCES
David Kestenbaum. 2005. The challenges of IDC: what have we learned from our past?

Commun. ACM 48, 1 (2005), 35–38.
Martin Roelfs and Steven De Keninck. 2021. Graded Symmetry Groups: Plane and

Simple. arXiv:2107.03771 [math-ph]
Sudgylacmoe. [n. d.]. A Swift Introduction to Projective Geometric Algebra. Youtube.

https://www.youtube.com/watch?v=0i3ocLhbxJ4
Bret Victor. [n. d.]. Stop Drawing Dead Fish. Youtube. https://www.youtube.com/

watch?v=ZfytHvgHybA

, Vol. 1, No. 1, Article . Publication date: March 2024.

https://arxiv.org/abs/2107.03771
https://www.youtube.com/watch?v=0i3ocLhbxJ4
https://www.youtube.com/watch?v=ZfytHvgHybA
https://www.youtube.com/watch?v=ZfytHvgHybA

4 • Dr. Hamish Todd

Table 1. The operations that can be “snapped” to, which are offered to the user. One goal, for now, has been to avoid norms and scalars; this is the reason
for the somewhat awkward final row, where a scalar (distance or angle) is extracted from a 2-versor (translation or rotation) and immediately put into an
exponential function

Intuitive description Operation Restriction on a = grade(A) and b = grade(B) Output

Transform composition AB A and B both mixed grade Versor
Transform application (−1)𝑎𝑏𝐴𝐵𝐴−1 No restriction Versor

Projection (𝐴 · 𝐵)𝐵−1 No restriction Versor
Midpoint / bisector / ”equal mixture” 𝐴 + 𝐵 𝑎 and 𝑏 both even or both odd Versor

Transform between 1 + (1 + (𝐴𝐵̃)2) 0 < 𝑎 < 4; 0 < 𝑏 < 4 2-versor
Intersection/”Meet” 𝐴 ∧ 𝐵 𝑎 + 𝑏 < 4; 0 < 𝑎 < 3; 0 < 𝑏 < 3 Blade grade 𝑎 + 𝑏

Orthogonal-and-incident 𝐴 · 𝐵 |𝑎 − 𝑏 | > 1 Blade grade |𝑎 − 𝑏 |
Join point 𝐴 ∨ 𝐵 1 < 𝑎 < 4;𝑏 = 3 Blade grade 𝑎 − 1
Velocity 𝐴 × 𝑙𝑜𝑔(𝐵) B even versor, 1 < 𝑎 < 4 Blade grade 𝑎

Rotation/translation from axis and angle/distance 𝐴max(distance(B),angle(B)) 𝑎 = 2, 2-versor B 2-versor

, Vol. 1, No. 1, Article . Publication date: March 2024.

	Abstract
	1 Introduction
	2 Projective Geometric Algebra
	3 Versor visualization and specification from gestural input
	4 Snapping
	5 Conclusion
	Acknowledgments
	References

