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Summary of the Abstract

Rational conformal motions can be described by polynomials over the even sub-algebra of
a geometric algebra having a real norm polynomial. These polynomials are called spinor
polynomials and factorizing them corresponds to splitting the rational motion they de-
scribe into sub-motions of lower degree. Generic spinor polynomials have a finite amount
of factorizations. Examples of polynomials with an infinte amount of factorizations are
very rare. In this abstract we investigate one such special case of a spinor polynomial
namely the conformal Villarceau motion. We aim to give an intuitive introduction to
its construction, calculate its factorizations and interpret them geometrically.

1 Introduction

In 2019 a peculiar conformal motion was proposed by L. Dorst [2] with interesting
properties:

• All trajectories of points are circles

• The trajectory of two points intersects if and only if their trajectories are identical

• When correctly grouped the trajectories form a family of nested tori and corre-
spond to their Villarceau circles

• The set of all unique trajectories forms the well known Hopf-fibration of R3
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Figure 1: Hopf fibration via Villarceau circles on a family of torus surfaces.

Due to the property of it generating families of Villarceau circles we will refer to this
motion as a conformal Villarceau motion. Its trajectories for a selected set of points can
be seen in Figure 1.
This motion has been independently discovered by three of the authors during prepara-
tions for [8]. It stood out as motion worthy of more scrutiny since it presented interesting
factorization properties. Although its degree is only two, we can find a two-parametric
set of factorizations. Until now only one other motion with this many factorizations is
known. The rigid body transformation translating along a circular path.
In this text we will investigate the factorizations of the Villarceau motion and try to
develop an intuition for them. In Section 2 we introduce spinor polynomials, their
factorization properties and characterize linear spinor polynomials. In Section 3 we
investigate the Villarceau motion and its factorization.

2 Preliminaries

We will be using the conformal geometric algebra in three dimensions choosing the basis
{e1, e2, e3, e+e−} ∈ R4,1. We refer to this algebra as CGA and its even sub-algebra as
CGA+.

2.1 Factorization of Spinor Polynomials

Let us consider polynomials C =
∑n

i=0 cit
i in the indeterminate t and coefficients ci ∈

CGA+. We define the right evaluation of a polynomial C at a value h as

C(h) =
n∑

i=0

cih
i.

Let C̃ denote the polynomial constructed by conjugation of all coefficients of C.
We define the action of C on an element x ∈ CGA as

x 7→ CxC̃.

If x is a point, then its image is a rational curve in Cartesian coordinates. Hence one
refers to it as a rational conformal motion.
For an element y ∈ CGA+ to describe a conformal transformation it has to fulfill the
condition yỹ = ỹy ∈ R. This condition defines the Study variety S of conformal kine-
matics. The vanishing condition of the real part of yỹ = ỹy defines the so called null
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Figure 2: Elementary conformal motions: conformal rotation, translation (transversion),
and scaling

quadric N [6]. Points in the intersection of S and N describe displacements that can
be thought of as being singular, such as a scaling with scaling factor zero.
A necessary condition for a polynomial to describe a conformal motion is that CC̃, C̃C ∈
R[t] and CC̃, C̃C are not the zero polynomial. In other words, C is contained in S but
not fully in N . If these conditions are fulfilled and its degree is positive we call C a
spinor polynomial [8].
Factorizing spinor polynomials corresponds to splitting a conformal motion into smaller
sub-motions. For applications such as kinematics and discrete differential geometry
factorizations into linear factors are most important [3, 4, 5]. A lot is already known
about such factorizations [7, 8]:

• For generic polynomials C the number of factorizations depends on the number of
real zeros of CC̃. The exact number ranges between n! for no real roots and (2n)!

2n

for the maximum 2n roots of CC̃.

• There exist polynomials with no factorizations into linear factors.

• There exist polynomials with an infinite amount of factorizations into linear factors.

• The linear polynomial t− h is a right factor if and only if h is a right zero.

Linear factors at − b describe the most basic of transformations. They correspond to
conformal rotations, translations and scalings [1]. By choosing a parametrization of
at− b where, a is invertible we can define h := a−1b. We then can classify these simple
transformations in the following way:

hh̃ > 0 A conformal image of a euclidean rotation around a fixed axis and variable angle.

hh̃ = 0 A conformal image of a euclidean translation along a fixed axis and variable
distance.

hh̃ < 0 A conformal image of a uniform scaling from a fixed center with variable scaling
factor.

Figure 2 illustrates these simple motions and their conformal counterparts. The surfaces
are generated by the trajectories of points on a circle in the direction of the arrows.
In the top row euclidean rotation, translation and scaling are shown. The lower row
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shows their conformal counterparts. The orange dots highlight the singularities of the
transformations. These correspond to the intersections of the motion polynomial with
the null quadric.

3 The Conformal Villarceau Motion

Let us now construct and study the conformal Villarceau motion. Since we know that we
are aiming for a motion tracing the Villarceau circles on a torus we want to combine two
rotors. One that rotates around one axis and another simultaneously rotating around
a circle perpendicular to and centered at the first axis of rotation. We choose e3 to be
our rotation axis. Simple motions in conformal kinematics can be constructed as the
wedge product of any combination of two spheres, planes or points [1]. The trajectory
of a point x under the simple transform given by a ∧ b is then given by x ∧ a ∧ b. It is
the object of minimal dimension hitting the constituents perpendicularly. Through this
intuition we construct the rotation around the e3 axis by wedging two perpendicular
planes.

B− := e1 ∧ e2 = e12

Now we construct a rotation around a circle to complete the torus on which our Vil-
larceau circles should lie. We choose the unit circle in the e1, e2 plane as our axis of
rotation. This rotor can be constructed by wedging the e1, e2 plane e3 with the unit
sphere at the origin e+.

B+ := e3 ∧ e+ = e3+

The Villarceau motion is now given by the application of both rotors.

C = e−B−
φ
2 e−B+

φ
2

Because B− and B+ have norm −1 we can write C as

C = (cos(φ
2
)−B− sin(φ

2
))(cos(φ

2
)−B+ sin(φ

2
)).

Using the substitution t = cot(φ
2
) and ignoring any real factors, since they do not change

the location of the image, we finally obtain the motion polynomial

C = (t−B−)(t−B+) = t2 − t(e12 + e3+) + e123+. (1)

By construction we already have a factorization into linear factors. We now want to find
other factorizations of this polynomial. For this we will be using a general factorization
algorithm [8]. First we use polynomial division to write C = QM + R, where degR <
degM = 2. A linear right factor H2 = t − h2 of C necessarily has to be a factor of M
and thus also of the linear remainder R = r1t+ r0. Since we want a factor, that is also a
spinor polynomial, it has to fulfill the spinor polynomial condition H2H̃2, H̃2H2 ∈ R[t].
For our linear polynomial this simplifies to h2h̃2, h̃2h2, h2 + h̃2 ∈ R. In general h2 can
then be defined by r−1

1 r0. In our case we have CC̃ = C̃C = M2, where M = (t2 + 1).
From this we get

r1 = −e12 − e3+ r0 = e123+ − 1.
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We see that r1 is not invertible, so the factorizability depends on the existence of h2

fulfilling the conditions

r1h2 + r0 = 0 (t− h2 is right zero of R)

h2
2 + 1 = 0 (h2 is a zero of M)

h2h̃2, h̃2h2, h2 + h̃2 ∈ R (t− h2 is a spinor polynomial)

(2)

Using the 16 coefficients of h2 as variables we get a system of 43 algebraic equations, of
which 17 are of degree one and 26 are of degree two. Solving the 17 linear equations
results in

h2 = e12 + sxx+ syy + szz, (3)

where

sx = 2(e1+ − e23), sy = 2(e2+ + e13), sz = 2(e3+ − e12), (4)

and x2 + y2 + (z − 1
4
)2 − 1

16
= 0. (5)

Since sx, sy, sz are pairwise orthogonal, we can say that h2 lies on a sphere given by
equations (3)–(5). Let S(u, v) be a parametrization of this sphere. We can then write

h2(u, v) = m+ 1
4
S(u, v), (6)

where m = 1
2
(e12 + e3+). Through polynomial division we can find h1(u, v) so that

C = (t − h1(u, v))(t − h2(u, v)). It turns out that h1(u, v) = m − 1
4
S(u, v), meaning

that h1(u, v) and h2(u, v) lie on the same sphere and are antipodal to each other. This
implies that they commute, which can be verified by straightforward computation. By
direct computation we find that the norm of h1 and h2 is always 1. Therefore these
factors always describe conformal images of euclidean rotations.
To be able to visualize the individual factorsH1 andH2 we assume them to have different
parameters s and t giving H1 = (s − h1(u, v)), H2 = (t − h2(u, v)). Their product now
describes a two-parametric rational motion. For any point x we can now look at its
trajectory surface Dx = H1H2xH̃2H̃1. This surface fulfills the conditions:

1. All parameter lines are circles.

2. The second fundamental form of Dx is diagonal.

This shows that the trajectory surface Dx is in fact a cyclide of Dupin. The trajectory
of x under the one parametric motion C is contained as the diagonal surface curve
generated by t = s. This curve is mapped to a Villarceau circle, when confromally
transforming Dx to a torus. Therefore we follow [2] in calling this a Villarceau circle
on a Dupin cyclide. For fixed x this circle stays invariant under different choices of u
and v, the generated Dupin cyclide however does not. In Figure 3 we can see the Dupin
cyclides Dx for different values of u and v.
Lastly let us highlight some peculiarities of the conformal Villarceau motion in the
kinematic image space. The motion polynomial C parametrizes a rational curve of
degree 2 in the projective space P(CGA+) = P15(R) and intersects the null quadric N
in exactly two points n1, n2.

n1 = C(i) = e123+ − 1− i(e12 + e3+), n2 = C(−i) = e123+ − 1 + i(e12 + e3+).
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Figure 3: Different Dupin cyclides with the same Villarceau circle

Factorizability is know to be related to the connecting line between intersection points
of C and N [9]. In our case the lines of interest are the connecting line of n1 and n2 and
their conic tangents. Direct computation shows that none of the points on these lines are
invertible, explaining why the standard factorization attempts with a finite number of
factorizations failed and in the process showing the importance of non-invertible elements
in CGA+.
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