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Abstract

In this presentation, we will discuss the problem of finding multiplicative inverses of
multivectors in non-degenerate Clifford algebras. We will start by considering well known
examples of Clifford algebras such as complex numbers, quaternions and split complex
numbers and notice a pattern which we get in the formulas for their inverses. This
motivates the formulas for inverse of multivector in other Clifford algebras. We discuss
known formulas for inverses in Cℓp,q with p + q ≤ 6 and their proofs using interesting
techniques such as matrix representations and quaternion typification. We also discuss
some special cases of inverses of paravectors, dual of a paravector and sum of a paravector
and its dual which have a formula for their inverse independent of the values p and q.
We will look at some isomorphisms between different Clifford algebras and use formula
for inverse in a smaller dimension Clifford algebra to find inverses of multivectors in
larger dimension Clifford algebras. We will also see why inverses of grade 4 elements
are particularly important and existence of certain ’trouble causing’ subalgebras which
do not allow for the possibility of the formula of inverse of a multivector being a single
product in Cℓp,q with p+ q ≥ 6.

1 Recall the Clifford algebra

Let p, q ∈ Z≥0 and n := p+ q. By Cℓp,q, we mean the usual thing, the (non-degenerate)
Clifford algebra which is the R linear space

SpanR{eA|A ⊆ {1, 2, . . . , n}}

where e{i1,i2,...,il} := ei1i2,...,il := ei1ei2 · · · eil for 1 ≤ i1 < i2 < . . . < il ≤ n and e{} := 1,
the multiplicative identity. We call e{i1i2,...,ik} as basis elements of length k and 1 as
basis element of length 0. The generators {e1, e2, . . . , en} obey eiej + ejei = 2ηij1 where



η = [ηij]n×n is the diagonal matrix diag(1, . . . , 1,−1, . . . ,−1) with the first p entries as
+1, the last q entries as −1. A general element U of Cℓp,q will be expressed in the form:

U = u+
∑

1≤i≤n

uiei+
∑

1≤i1<i2≤n

ui1i2eei1ei2+. . .+
∑

1≤ii<i2<...<in−1≤n

ui1i2...in−1ei1i2...in−1+u12...ne12...n

where u, ui, . . . , u12...n ∈ R.

It is clear that Cℓp,q as a R-vector space has dimension 2n. Let k ∈ {0, 1, 2, . . . , n}. Cℓkp,q
denotes the subspace of Cℓp,q spanned by basis elements of length k and is called grade
k subspace of Cℓp,q. The elements of Cℓkp,q are called elements of grade k. Note that
Cℓ0p,q ∼= R, thus we will call elements of Cℓ0p,q as real numbers. We denote projection of
U ∈ Cℓp,q onto a subspace of grade k by ⟨U⟩k.

Let I := e12...n be the pseudoscalar in Cℓp,q. Let U ∈ Cℓp,q. By the dual of U , we mean
the multivector IU .

2 The problem

The problem is simple to state: Let p, q ∈ Z≥0. In general, every non-zero element
U ∈ Cℓp,q is not invertible (i.e., does it does not have a multiplicative inverse). Find out
a way to check if a given U ∈ Cℓp,q is invertible or not and if an element U ∈ Cℓp,q is
invertible, find its inverse.

3 Inspiration for the solution

We start by looking at some well known examples of Clifford algebras which have been
studied independently.

1) Cℓ0,1 is isomorphic to complex numbers which is a field. Thus, every non-zero element
z = a + bi is invertible and its inverse is z

zz
where z = a− bi denotes the complex con-

jugate of z. As z = 0 ⇐⇒ zz = 0, the criteria for checking if an element is invertible
is same as checking if zz ̸= 0.

2) Cℓ0,2 is isomorphic to real Hamilton quaternions which is a division ring. Thus, ev-
ery non-zero element q = a + bi + cj + dk is invertible and its inverse is q

qq
where

q = a− bi− cj − dk denotes the quaternion conjugate of q. As q = 0 ⇐⇒ qq = 0, the
criteria for checking if an element is invertible is same as checking if qq ̸= 0.

3) Cℓ1,0 is isomorphic to split complex numbers which unlike the above two examples,
doesn’t have inverse of all non-zero elements. But, the criteria to check if an element
U = a + bη is invertible or not is to check if N(U) = a2 − b2 = UU equals zero or not

where U = a− bη . If N(U) ̸= 0, then U
N(U)

is the inverse of U .

We see a general trend in the above examples of Clifford algebras. Given a Clifford
algebra Cℓp,q we have come up with a function which takes as input a multivector U
and outputs a real number. Let us denote this ’norm’ function as N(U). These norm



functions have a common thing in their structure, namely, they are a product of U with
some other terms (which depend on U) which we denote by f(U). f(U) consists of
products (and possibly sums) of ’conjugates’ of U . Now, if for some U , N(U) ̸= 0, then
f(U)
N(U)

is inverse of as N(U) = U ·f(U). It turns out that such formula exist for all Clifford

algebras (See Theorem 3 in [1]).

So, idea is simple: start with an element U ∈ Cℓp,q. Multiply U with its suitably chosen
’conjugates’ chosen in a manner such that the product is be a real number. This function
of U which consists of sums and products of conjugates of U will be called a norm function
for Cℓp,q. If for some multivector, the norm function evaluates to a non-zero real number,
then that multivector is invertible.

4 Flow of the presentation.

1) First, we will introduce faithful representations of Cℓp,q and the notion of trace and
determinant for Cℓp,q, which are defined as trace and determinant of the corresponding
matrices representing Clifford algebra elements. The notion of determinant of Cℓp,q will
replace the notion of ’norm’ introduced in previous section and will make precise the
discussion there. It also removes some ambiguities which are unclear from the discussion
in the previous section such as the possibility of existence of one sided inverses.

2)Next, we will give the algebra Cℓp,q different gradings. It is well known that Cℓp,q is
a superalgebra i.e., it is a Z2 graded algebra if we identify Cℓp,q as Cℓ+p,q ⊕ Cℓ−p,q where
Cℓ+p,q := Cℓ0p,q⊕Cℓ2p,q⊕Cℓ4p,q⊕· · · , the even subalgebra and Cℓ−p,q := Cℓ1p,q⊕Cℓ3p,q⊕Cℓ5p,q⊕· · · .
Relabeling Cℓ+p,q as R0 and Cℓ−p,q as R1, we can represent the Z2 grading as

RkRl ⊆ Rk+l

where k, l ∈ Z2. The ’product’ RkRl of the sets Rk and Rl is defined to be the set of
products of the form ab where a ∈ Rk and b ∈ Rl.
The Z2 grading discussed above is not the only grading one can give to Cℓp,q. Cℓp,q is also
a Z2×Z2 graded algebra with respect to commutator and anti-commutator. This is the
idea of quaternion typification presented in [4]. It might seem out of the blue that Cℓp,q
is a Z2 × Z2 grading but it is a direct consequence of the multiplication in Cℓp,q. Let

0̄ := Cℓ0p,q ⊕ Cℓ4p,q ⊕ Cℓ8p,q ⊕ · · · ,

1̄ := Cℓ1p,q ⊕ Cℓ5p,q ⊕ Cℓ9p,q ⊕ · · · ,

2̄ := Cℓ2p,q ⊕ Cℓ6p,q ⊕ Cℓ10p,q ⊕ · · ·

3̄ := Cℓ3p,q ⊕ Cℓ7p,q ⊕ Cℓ11p,q ⊕ · · · .

and
{Ā, B̄} := {ab+ ba | a ∈ Ā, b ∈ B̄},

[Ā, B̄] := {ab− ba | a ∈ Ā, b ∈ B̄} for A,B ∈ {0, 1, 2, 3}.

Then
{Ā, Ā} ⊆ 0̄ for A ∈ {0, 1, 2, 3} (A1)



{0̄, Ā} ⊆ Ā for A ∈ {0, 1, 2, 3} (A2)

{1̄, 2̄} ⊆ 3̄ (A3)

{2̄, 3̄} ⊆ 1̄ (A4)

{3̄, 1̄} ⊆ 2̄ (A5)

and
[Ā, Ā] ⊆ 2̄ for A ∈ {0, 1, 2, 3} (C1)

[2̄, Ā] ⊆ Ā for A ∈ {0, 1, 2, 3} (C2)

[3̄, 0̄] ⊆ 1̄ (C3)

[0̄, 1̄] ⊆ 3̄ (C4)

[1̄, 3̄] ⊆ 0̄ (C5)

If we denote 0̄ by R(0,0), 1̄ by R(0,1), 2̄ by R(1,0) and 3̄ by R(1,1), then one can express the
equations A1,A2,A3,A4,A5 as

RkRl ⊆ Rk+l

where k, l ∈ Z2 × Z2 and the ’product’ RkRl of the sets Rk and Rl is defined to be the
set of anti-commutators ab+ ba where a ∈ Rk and b ∈ Rl.
If we denote 2̄ by R(0,0), 3̄ by R(0,1), 0̄ by R(1,0) and 1̄ by R(1,1), then one can express the
equations C1,C2,C3,C4,C5 as

RkRl ⊆ Rk+l

where k, l ∈ Z2 × Z2 and the ’product’ RkRl of the sets Rk and Rl is defined to be the
set of commutators ab − ba where a ∈ Rk and b ∈ Rl. Thus making Cℓp,q a Z2 × Z2

graded algebra with respect to the commutator and anti-commutator.
This is very insightful and helps us comment about grades of products of multivectors.
As our approach to finding inverses of multivectors is by eliminating elements of all
non-zero grades by multiplying the element with its conjugates until only real numbers
remain, the idea of quaternion typification helps tremendously.

3) Next we will generalise the well known operations of conjugation in Clifford algebras,
namely, the grade involution and the grade reversion (see section 2 in [2]). Let p+q := n.
We define m := 1 + ⌊log2(n)⌋ operations of conjugation, (.)△j ; j ∈ {1, 2, . . . ,m} by

U△j =
∑

0≤k≤n

(−1)C
k
2j−1 ⟨U⟩k

where Cy
x is the binomial coefficient x!

y!(x−y)!
. Note that △1 is same as grade involu-

tion̂ and △2 is same as grade reversion˜ . Table 1 below shows how △j’s and their
superpositions act on elements of fixed grades:
The table has been truncated to include only first 16 grades and first 4 operations of
conjugation defined above. The action of these operations is periodic on the grades i.e.,
after a point the pattern of +s and −s repeats in the rows of the table. It turns out
that one can express any operation of conjugation as a linear combination of these m
operations of conjugations.
We will see that these operations of conjugates have nice properties and allow us to



grade k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
id + + + + + + + + + + + + + + + +

△1 =̂ + − + − + − + − + − + − + − + −
△2 =˜ + + − − + + − − + + − − + + − −
△1△2 + − − + + − − + + − − + + − − +
△3 + + + + − − − − + + + + − − − −

△1△3 + − + − − + − + + − + − − + − +
△2△3 + + − − − − + + + + − − − − + +

△1△2△3 + − − + − + + − + − − + − + + −
△4 + + + + + + + + − − − − − − − −

△1△4 + − + − + − + − − + − + − + − +
△2△4 + + − − + + − − − − + + − − + +

△1△2△4 + − − + + − − + − + + − − + + −
△3△4 + + + + − − − − − − − − + + + +

△1△3△4 + − + − − + − + − + − + + − + −
△2△3△4 + + − − − − + + − − + + + + − −

△1△2△3△4 + − − + − + + − − + + − + − − +

Table 1: + and − signs denote the sign of element of a grade after the operation of
conjugation is applied.

express the determinant of a Clifford algebra element as products of its conjugates. This
gives us nice explicit formulas for inverse of a multivector without invoking the faithful
representation we used do define determinant for Clifford algebra elements. We will
prove the formulas for inverses of multivectors presented in section 5 for n ≤ 5. The
proofs requires us to combine the idea of quaternion typification and the nice properties
of operations of conjugations.

4) We will also look at why suddenly for n = 6, the formula of norm is a linear combina-
tion. It turns out that there exists a (trouble causing) subalgebra S := SpanR{1, e1256, e2345, e1346}
(discovered by A. Acus and A. Dargys using Mathematica in [5]) which has the property
that product of any two elements of S with non-zero grade 4 part is another element of
S with non-zero grade 4 part and this one cannot eliminate grade 4 part of a multivector
by just multiplying it with its conjugates, one needs to carry a sum.

5) We will use the analogue of Faddeev–LeVerrier algorithm in Clifford algebras intro-
duced in [2] to show that there always exists a norm function, namely, the determinant
which is in the form Uf(U) where f(U) is a linear combination of products of conjugates
of U (check Theorem 3 in [1]). This is what we had proposed in section 3 of this abstract.
The algorithm also gives a recursive method to find determinant of a Clifford algebra
element and in general all characteristic polynomial coefficients of a multivector.

6) We will also see some isomorphism theorems between different Clifford algebras and
see how they can simplify our job significantly by allowing us to use formulas for inverses
for a Clifford algebra of smaller dimension for Clifford algebra of larger dimension. In
particular, we will use the isomorphism between even subalgebra of a Clifford algebra



and another Clifford algebra (check [3]).

7) Till now, explicit formulas for inverses of multivectors are known only for Cℓp,q with
n ≤ 6. The problem for finding a explicit formula for inverses in Cℓp,q with n ≥ 7 stands
open. However, there are a few cases where one can get a explicit formula for inverse of
special multivectors like paravectors (sum of scalar and a vector) and sum of a paravector
and its dual which are independent of n. We will discuss why getting explicit formulas
for inverses of grade higher grade elements is hard and likely depends on n. Inverses
of grade 4, 8, 12, . . . are particularly important because square of any multivector is an
element of 0̄ = Cℓ0p,q ⊕ Cℓ4p,q ⊕ Cℓ8p,q ⊕ · · · .

5 Formulas for inverses of multivectors in small dimensions

Let ,̂ ,̃ △ denote the operations of conjugation △1, △2, △3 respectively. There exist
the following norm functions N : Cℓp,q → R:

N(U) = UÛ, n = 1;

N(U) = U
̂̃
U, n = 2;

N(U) = UŨÛ
̂̃
U, n = 3;

N(U) = UŨ(Û
̂̃
U)△, n = 4;

N(U) = UŨ(Û
̂̃
U)△(UŨ(Û

̂̃
U)△)△, n = 5,

N(U) = U

(
1

3
Ũ Û

̂̃
U(Û

̂̃
UUŨ)△ +

2

3
Ũ((Û

̂̃
U)△((Û

̂̃
U)△(UŨ)△)△)△

)
, n = 6.

The formulas are not unique. There are multiple ways to express the norm functions in
terms of the multivector and its conjugates, see Theorem 3 in [2] for details. The norm
function for n = 6 case was first presented in [5], we have put their result in our notation
(see Lemma 5 in [2]). These norm functions directly give the formulas for inverses of
multivectors:

U−1 =
Û

N(U)
, n = 1;

U−1 =
̂̃
U

N(U)
, n = 2;

U−1 =
Ũ Û

̂̃
U

N(U)
, n = 3;

U−1 =
Ũ(Û

̂̃
U)△(UŨ(Û

̂̃
U)△)△

N(U)
, n = 5,

U−1 =

(
1
3
Ũ Û

̂̃
U(Û

̂̃
UUŨ)△ + 2

3
Ũ((Û

̂̃
U)△((Û

̂̃
U)△(UŨ)△)△)△

)
N(U)

, n = 6.



A striking thing is that the formulas for inverse of a multivector in some Cℓp,q do not
depend on the individual values of p and q but on their sum n i.e., the the formulas for
inverses of multivectors are independent of the signature of the Clifford algebra under
consideration.

6 Applications for formulas of inverses

Explicit formulas for inverses of multivectors give us explicit solutions to linear equations
in a Clifford algebra setting which are widely used in image and signal processing, control
theory, etc for example the Sylvester equation in which one looks for multivectors X
satisfying AX+XB = C for given A,B,C ∈ Cℓp,q. The recursive method obtained from
Faddeev–LeVerrier algorithm to compute determinant of a multivector can be employed
in symbolic computation involving Clifford algebra.
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