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Summary of the Abstract

The four-dimensional Dirac–Hestenes equation is equivalent to the four-dimensional
Dirac equation. One of the advantages to investigate the Dirac–Hestenes equation is
that solutions of this equation are real. We present the multidimensional Dirac–Hestenes
equation in the geometric algebra formalism. Since the matrix representation of the com-
plexified geometric algebra C⊗ Cl1,n depends on a parity of n, we explore even and odd
cases separately. We present a lemma about the unique decomposition of an element of
the left ideal into the product of the idempotent and an element of the auxiliary real sub-
algebra of the geometric algebra. We use this subalgebra and properties of the idempotent
to present the multidimensional Dirac–Hestenes equation. We present that we might ob-
tain a solution of the multidimensional Dirac–Hestenes equation using a solution of the
multidimensional Dirac equation and conversely in the case n = 2d − 1. We also get
that the multidimensional Dirac–Hestenes equation has gauge invariance.

1 Geometric algebra formalism

One of the ways to explore problems in modern mathematical physics is to use the
geometric algebra [1, 2, 3]. We consider the real geometric algebra Cl1,n. The generators
e0, e1, . . . , en satisfy the following anticommutation relations:

eµeν + eνeµ = 2ηµνe, µ, ν ∈ {0, 1, . . . , n},

where e is the identity element and η is the diagonal matrix in which the first element
is 1 and the remaining elements lying on the main diagonal are −1.
The basis of the considered geometric algebra Cl1,n consists of all possible ordered prod-
ucts of the generators:

eµ1eµ2 · · · eµk = eµ1µ2...µk , 0 ≤ µ1 < µ2 < · · · < µk ≤ n.



Hence, the basis decomposition of the element U ∈ Cl1,n is:

U =
∑
A

uAe
A, uA ∈ R, (1)

where A is an ordered multi-index of length from 0 to n+1, A = µ1µ2 . . . µk. We denote
the length of a multi-index A by |A| = k. If a multi-index has even length, it would be
called an even multi-index otherwise an odd multi-index. Note, the dimension of Cl1,n
is 2n+1.
Let Cl

(0)
1,n be an even subspace of Cl1,n that is a linear span of the basis elements with

even multi-indices:

Cl
(0)
1,n = {U ∈ Cl1,n |U =

∑
|A|=2k

uAe
A}, dimCl

(0)
1,n = 2n.

We also consider the complexified geometric algebra C⊗Cl1,n. The basis decomposition
of U ∈ C⊗Cl1,n is similar to decomposition (1) but the constants uA are complex scalars
in this case.
Let us introduce the operation of Hermitian conjugation acting on U ∈ C⊗ Cl1,n [4]:

U † = e0U∗e0, U ∈ C⊗ Cl1,n,

where the star denotes the superposition of the reversion and the complex conjugation:

U∗ =
∑
A

(−1)
|A|(|A|−1)

2 ūAe
A, uA ∈ C.

We consider the Hermitian idempotent t

t2 = t, t† = t,

and the corresponding left ideal L(t) generated by t

L(t) = {U ∈ C⊗ Cl1,n |Ut = U}.

If a left ideal L(t) does not contain another left ideal except itself and L(0), it is called a
minimal left ideal. The corresponding idempotent t is called the primitive idempotent.
We consider the Dirac equation in the geometric algebra formalism. It is convenient to
investigate n-dimension Dirac spinor as an element of the left ideal L(t) [5, 6]:

φ(x) : R1,n → L(t).

Actually, there is a difference between cases n = 2d − 1 and n = 2m. If we consider
the first case, then a spinor should belong to the minimal left ideal. In another case, a
spinor could belong not only to the minimal left ideal. We discuss this fact below.
We denote the mass of a particle bym. For convenience, we assume that Planck constant,
the charge of a particle, and the speed of light are equal to 1. The electromagnetic
vector-potential a(x) depends on a point x of the pseudo–Euclidean space R1,n. That is,
a(x) = (a0(x), . . . , an(x)) : R1,n → Rn+1. The multidimensional Dirac equation in the
geometric algebra formalism is:

n∑
µ=0

ieµ(∂µ + iaµ(x))φ(x) = mφ(x), (2)



where ∂µ = ∂/∂xµ and i is the imaginary unit.
It is known that the classical four-dimension Dirac equation is equivalent to the Dirac–
Hestenes equation [7]. It means that we can obtain a solution of the Dirac–Hestenes
equation using a solution of the Dirac equation and conversely. The Dirac–Hestenes
equation gives a deeper understanding of a geometry in different tasks since the con-
sidered wave function turns out to be completely real. Further, we present the multidi-
mensional Dirac–Hestenes equation in the case n = 2d − 1. Also, it is a fact that the
multidimensional Dirac equation has gauge invariance. We get the same fact for the
multidimensional Dirac–Hestenes equation.

2 Decomposition of an element of the left ideal

First, we remind several facts for the special case n = 3. The following decomposition
of an element of the minimal left ideal L(t) is well-known [6]:

Lemma 1 Let L(t) be the minimal left ideal, generated by the idempotent t:

t =
1

4
(e+ e0)(e+ ie12) ∈ C⊗ Cl1,3 .

Then there is a unique decomposition:

∀φ(x) ∈ L(t) ∃!Ψ(x) ∈ Cl
(0)
1,3 : φ(x) = Ψ(x)t.

Using Lemma 1, it is possible to obtain the solution Ψ(x) of the Dirac–Hestenes equation
via the solution ψ(x) of the Dirac equation and conversely [2, 7]. The Dirac–Hestenes
equation has the form:

3∑
µ=0

eµ(∂µΨ(x) + Ψ(x)aµ(x)e
12)e0 = mΨ(x)e12, Ψ(x) ∈ Cl

(0)
1,3 .

In this section, we introduce Lemma 3 that is a generalization of Lemma 1 for the
multidimensional case. Since the matrix representation of the complexified geometric
algebra differs for the cases n = 2d− 1 and n = 2d, we investigate them separately.
The real dimensions of the minimal left ideal L(t) and the even real subalgebra Cl

(0)
1,3

are the same and equal to 8. However, the equality of the dimensions does not hold for
n > 4 since:

dimL(t) = 2[
n+2
2

]+1, dimCl
(0)
1,n = 2n,[

n+ 2

2

]
+ 1 < n, ∀n > 4.

It follows for n > 4 that there cannot be an element of the even real subalgebra in
the similar statement to Lemma 1. Therefore, it is necessary to introduce another real
subalgebra to which Ψ(x) belongs. The subalgebra must have smaller dimension than

the even real subalgebra Cl
(0)
1,n.



2.1 Case n = 2d− 1

One of the ways to fix the primitive Hermitian idempotent t ∈ C⊗ Cl1,2d−1 is [4]:

t =
1

2
(e+ e0)

d−1∏
µ=1

1

2
(e+ ie2µ−1e2µ). (3)

In this subsection, we consider the minimal left ideal L(t) generated by (3).
One of the main advantages of using geometric algebra is that it is easier to interpret
geometrically results when considering the Dirac equation. We use the variable I for
reducing the Dirac equation to the form where all values are real:

I = −e12, it = It = tI. (4)

To introduce the Dirac–Hestenes equation where the wave function Ψ(x) should consist
only basis elements with even indices, we also use another variable E:

E = e0, t = Et = tE. (5)

For an explicit description of the minimal left ideal L(t), it is convenient to consider an
additional algebra Q which is generated by the generators with odd indices:

Q = Cl(e1, e3, e5, e7, . . . , e2d−1) ⊂ C⊗ Cl1,2d−1 .

Explicit form of this basis will be presented in a talk. Since the Dirac–Hestenes equation
contains variables E and I, we have to consider the following real subalgebra Q′:

Q′ = Cl(e0, e1, e2, e3, e5, e7, . . . , e2d−1) ⊂ Cl1,2d−1 . (6)

It means that its generators are e0, e2, and the generators with odd indices. Note that
for n = 3 we get the algebra Q′ = Cl1,3.
In Lemma 3 for the multidimensional case, which is generalization of Lemma 1, the even
subalgebra Q′(0) is used instead of the even subalgebra Cl

(0)
1,3. Lemma 2 is used to prove

the uniqueness of the decomposition in Lemma 3 and to construct multidimensional
Dirac–Hestenes equation.

Lemma 2 Let Q′ be Cl(e0, e1, e2, e3, e5, e7, . . . , e2d−1) and t have form (3). If Y ∈ Q′(0)

and Y t = 0, then Y = 0.

We could not change Q′(0) into Cl
(0)
1,2d−1 in Lemma 2. Let us present an example for the

case d = 3. If Y = e12 − e34 ∈ Cl
(0)
1,5, then we get Y t = −it+ it = 0.

Lemma 3 Let Q′ be Cl(e0, e1, e2, e3, e5, e7, . . . , e2d−1) and L(t) be the minimal left ideal
generated by idempotent t (3). Then:

∀φ ∈ L(t) ∃!Ψ ∈ Q′(0) : φ = Ψt.

It follows from the uniqueness of the decomposition in Lemma 3 that the Dirac equation
and the Dirac–Hestenes equation are equivalent.



2.2 Case n = 2d

There are two types of a Dirac spinor for the considering case (C⊗Cl1,2d): a semi-spinor
and a double spinor [5]. The semi-spinor belongs to the minimal left ideal. The double
spinor belongs to the direct sum of two minimal left ideals.
There is an isomorphism between complexified geometric algebras and complex matrix
algebras [4, 6]:

C⊗ Cl1,2d ≃ Mat(2d,C)⊕Mat(2d,C).
We construct a primitive Hermitian idempotent t and a real algebra Q′ via the matrix
representation of C⊗ Cl1,2d−1 and C⊗ Cl1,2d+1. If φ is a semi-spinor, then we can fix t
as following:

t =
1

2
(e+ e0)

d∏
µ=1

1

2
(e+ ie2µ−1e2µ) ∈ C⊗ Cl1,2d .

It is convenient to use algebra Q′ (6) in this case. If φ is a double spinor, then we can
fix Hermitian idempotent t (3), which is not primitive in this case, and the algebra Q′

as follows:
Q′ = Cl(e0, e1, e2, e3, e5, . . . , e2d−1, e2d).

Note that properties (4) and (5) are valid for all considered cases. Lemma 3 might
be transferred to the case n = 2d if we use the Hermitian idempotents t and the real
algebras Q′ constructed in this subsection.

3 Multidimensional Dirac–Hestenes equation

We have described the way to construct Hermitian idempotents and real algebras, which
solutions of the multidimensional Dirac–Hestenes equation belong, in the previous sec-
tion. Let us present several theorems about the multidimensional Dirac–Hestenes equa-
tion in the case n = 2d− 1.

Theorem 4 Let fix the primitive Hermitian idempotent t as in formula (3) and the real
algebra Q′ be:

Q′ = Cl(e0, e1, e2, e3, e5, e7, . . . , e2d−1) ⊂ Cl1,2d−1 .

If φ(x) ∈ L(t) is a solution of multidimensional Dirac equation (2), then Ψ(x) ∈ Q′(0) :
φ(x) = Ψ(x)t is a solution of the multidimensional Dirac–Hestenes equation:∑

µ=0,1,2,3,5,7,...,2d−1

eµ(∂µΨ(x) + Ψ(x)aµ(x)I)E +

+
∑

µ=3,5,...,2d−3

(∂µ+1Ψ(x)I −Ψ(x)aµ+1(x))e
µE +mΨ(x)I = 0, (7)

where I = −e12 and E = e0.
If Ψ(x) ∈ Q′(0) is a solution of equation (7), then φ(x) ∈ L(t) : φ(x) = Ψ(x)t is a
solution of equation (2).

It is known that the four-dimensional Dirac–Hestenes equation has gauge invariance
[7, 8]. Electric and magnetic fields are invariant under transformation of an electromag-
netic potential a′µ(x) = aµ(x) − ∂µλ(x) where λ(x) : R1,2d−1 → R. In this case, the



spinor Ψ′(x) = exp (−e12λ(x))Ψ(x) is a solution of the Dirac–Hestenes equation with
the shifted potential a′µ. We get that the multidimensional Dirac–Hestenes equation also
has gauge invariance.

Theorem 5 Let Ψ(x) be a solution of multidimensional Dirac–Hestenes equation (7).
Then Ψ(x) has gauge invariance:

Ψ′(x) = Ψ(x)eIλ(x), a′µ(x) = aµ(x)− ∂µλ(x),

where λ(x) : R1,2d−1 → R.

It is convenient to consider n-dimensional Dirac spinors, which are used in supersymme-
try theory, in a real geometric algebra. Actually, even and odd cases are important for
applications. For instance, the three-dimensional Dirac equation is used to explore the
properties of graphene. We have presented the multidimensional Dirac–Hestenes equa-
tion for n = 2d − 1, where solutions belong to the real subalgebra. The corresponding
theorems for the case n = 2d will be also presented in a talk. The cases of a semi-spinor
and a double spinor will be considered in details. In addition, an example of a solution
of the Dirac equation and a corresponding solution of Dirac–Hestenes equation will be
presented in a future article.
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