A MODERN TOOL FOR TEACHING
PROJECTIVE GEOMETRIC ALGEBRA

Zachary Leger® and Stephen Mann®

Cheriton School of Computer Science
University of Waterloo
Waterloo, Canada
*zcjleger@uwaterloo.ca
bsmann@uwaterloo.ca

Outline

In this extended abstract, we detail the creation of PGABLE, a MATLAB package to
aid in the teaching of Projective Geometric Algebra (PGA). We begin by discussing
the precursor to PGABLE created in 1999, GABLE, and motivating the creation of
PGABLE. Next, we discuss the various internal aspects of GABLE that needed to be
modified to create PGABLE. We then describe the PGABLE tutorial we created to
teach PGA.

Introduction

GABLE was a prototype MATLAB package supporting a few geometric algebras written
in 1999. The main algebra used in GABLE was R*%?, although some support was
available for the homogeneous model R*!°. In addition to being a prototype geometric
algebra package, GABLE was designed to support a tutorial introduction to geometric
algebra [1]. However, being a prototype, little work has been done on GABLE since
1999.

GABLE used MATLAB’s command line interface to give users a rich mathematical
setting in which to explore geometric algebra. In addition to writing equations, GABLE
used MATLAB graphics to draw various objects, including vectors, bivectors, and trivec-
tors (Figure [1)).

In recent years, Projective Geometric Algebra (PGA) has become a popular model in
the geometric algebra community to represent 3D rigid body motions [2]. As PGA is
a 4D geometric algebra (the space R¥%!), GABLE cannot support it. The goal of this
work is to update and extend GABLE into PGABLE, a modern MATLAB package able
to support PGA. In addition, we have created a tutorial alongside this software package
to introduce users to PGA.

0.8
0.6 -
0.4
0.2

-0.2
-0.4
-0.6 -

-0.5

draw(2*el+e3); draw(e2); draw(el”e2)

(a) (b)

Figure 1: GABLE. (a) Example text input and graphics output; (b) Drawing of vectors,
bivectors, and trivectors.

GABLE Implementation Overview

In GABLE, a multivector A is stored via storing the 8 x 1 column matrix of the following
equation:

Ao
Ay
Ay
Az
Al
Agsz
Az
Aoz |

A =11, ey, e, €3, e1 Neg, €3 Neg, ez Aeq, eg A ey A eg

and we denote by Am = [Ao,Al,AQ,A3,A12,A23,A31,A123]T. For example, the basis
vectors ey, e, e3 were implemented as functions in MATLAB, with each function returning
the corresponding 8 x 1 matrix for that basis vector.

The geometric product A B of two multivectors A and B is computed by converting
A into an 8 x 8 matrix [A] that is the linear function computing “the geometric product
Ax” | and computing [A] B.m. The other products are implemented in a similar manner.
MATLAB objects were used to overload the arithmetic operators * (geometric product),
“(outer product), + (addition). The inner product was implemented as a MATLAB
function inner ().

Elements of the algebra are drawn by explicitly calling a draw() routine. Lines on
bivectors and on trivectors are used to indicate the orientation (sign) of the object.
GABLE provided a variety of routines for rotating objects, although with more modern
versions of MATLAB, rotation and scaling of objects in the graphics window can be done
using the mouse.

Extending GABLE to PGABLE

Many of the design decisions used in GABLE were kept in PGABLE: multivectors
are represented with column matrices; products of two multivectors are computed by
expanding the column of one element into a square matrix and multiplying the column
matrix of the other element by this square matrix; and the graphical representation
of basic elements (vectors, bivectors, and trivectors) remains the same. MATLAB has
evolved since 1999, and a variety of changes were made to update GABLE to current
MATLAB, mostly dealing with how objects are represented in MATLAB. In particular,
classes, which were implicitly represented in 1999, are now explicitly represented in the
MATLAB language, and static methods were introduced.

Dimensionality Increase

With the addition of ey in PGA, elements in PGA must be represented by an array of
16 doubles. We chose to use the basis

1, eg, €1, €2, €3, eg Ner, eg ANea, eg ANes, ex Neg, €1 Aes, ex Aes,

60/\61/\62, 60/\61/\63, 60/\62/\63, 61/\62/\63, eg Nep N\eg A es

With this change in data structure, the pre-existing operations such as the geometric
product, outer product, inner product, inverse and reverse needed to be rewritten. How-
ever, the underlying mathematics remained the same. It is simply the case that some
8 x 8 matrices were replaced by mathematically analogous 16 x 16 matrices.

Rendering Redesign

Traditional visual representations of geometric algebras draws scalars as points, vectors
as lines, bivectors as planes, trivectors as volumes, etc., all centered at the origin. PGA
is a model of geometric algebra which can represent points, lines, planes and volumes
offset from the origin. This means the rendering abilities of GABLE had to be extended
to draw elements that are offset from the origin.

Extending the rendering abilities alone did not suffice to accurately represent PGA.
PGA is fundamentally different than most other geometric algebra models (such as the
homogeneous model or the conformal model) in that vectors represent planes, not lines
or points. Additionally, bivectors represent lines and trivectors represent points in PGA.
This means that some elements possess a fundamental ambiguity as to how to represent
them. Consider the element e;. In the traditional view, this is represented by a unit
arrow pointing along the positive direction on the e; axis. However, in the PGA view,
this element represents the (oriented) plane whose normal is e;. For this reason, we let
PGABLE possess two modes to users: GA mode and PGA mode. Depending on the
mode the user is currently in, the respective representation is drawn to the user when
a draw call is made. When in GA mode, attempting to visualize a PGA element is not
permitted.

PGABLE_tutorial.mlx +

2.2.3 Trivectors

Taking the outer product of three vectors yields yet another object, which is naturally called a trivector. It is a directed
volume element. In 3-dimensional space, all such elements must be multiples of the unit directed volume element,
05

—
which we denote by £ . (In other words, algebraically the trivectors of a 3-dimensional vector space form a 1-
dimensional linear space with basis 1) In an orthonormal basis e, s, e for our Euclidean 3-space, we equate it 0

- N =
with the volume spanned by the Tight-nanded frame: I = ¢, A es A e The unit directed volume £, is often called
the (unit) pseudoscalar of 3-dimensional Euclidean space. -0.5

We can visualize the unit pseudoscalar, in green, as follows
05

27 clf 0 05
28 draw(I3, 'g') 05 o 0

By multiplying the unit pseudoscalar by a scalar, we can create non-unit pseuscalars. For example, we could create

the pseudoscalar 7% L by doing the following

29 clf
30 draw(-0.5%I3, 'r') 04|

Figure 2: Live Script example.

Additional Operations

To show the full capabilities of PGA, we needed to add new computational abilities to
GABLE. First, since PGA does not possess the traditional geometric algebra dual (since
its pseudoscalar is not invertible), users typically want other types of dualization. We
provided the Hodge dual [2] and the Poincaré Dual Map [5].

As the join operation is computed differently in PGA than in the standard geometric
algebra, we provide a new operation PGAjoin which computes

*x L(xA AN *B),

which is the PGA join operation described in [2]. Since the PGA meet operation is simply
the outer product, for the sake of consistency, we have provided a PGAmeet operation
that performs a call to the outer product function.

Since PGABLE contains a GA and PGA mode, we needed a way to convert between
PGA elements and GA elements for each mode. By default, elements of GA are in-
terpreted as their direct PGA equivalent in PGA mode (for example, the element e;
in GA is simply interpreted as e; in PGA). This can be accomplished by passing the
GA element through the PGA constructor. However, users may want to have their GA
elements converted into PGA elements through a geometric interpretation (for example,
the arrow representing element e; in GA would be e; A e3 in PGA). Thus, we have pro-
vided users with the function geoPGA to cast GA elements into PGA using a geometric
interpretation.

There are two norms in PGA, the Euclidean norm ||-|| and the vanishing norm || ||.
The norm function of PGA computes the Euclidean norm. For the vanishing norm, we
provide the function vnorm, which is computed by the formula

[|Allse =[]+ Al

as described in [2].

ERE

Tutorial

The original GABLE tutorial [1I] was a PDF document that introduced users to geometric
algebra using the GABLE package. For PGABLE, we have provided a similar document.
Notably, however, we have replaced the section detailing the homogeneous model with
a section detailing PGA. Additionally, we have provided series of MATLAB Live Scripts
so that users can follow the tutorial directly in MATLAB, running the example code
snippets in real time; see Figure

References

[1] Leo Dorst, Stephen Mann, and Tim Bouma. GABLE: A Matlab tutorial for geo-
metric algebra. Available at https://cs.uwaterloo.ca/ smann/GABLE/, 1999.

[2] A Guided Tour to the Plane-Based Geometric Algebra PGA. Leo Dorst and Steven
De Keninck https://bivector.net/PGA4CS.html

[3] Leo Dorst, Daniel Fontijne, and Stephen Mann. Geometric Algebra for Computer
Science. Morgan-Kaufmann, 2007.

[4] Stephen Mann, Leo Dorst, and Tim Bouma. The Making of GABLE, a Geomet-
ric Algebra Learning Environment in Matlab. In Advances in Geometric Algebra
with Applications in Science and Engineering. Editors: E. Bayro-Corrochano and G.
Sobczyk. Birkhauser, 2001.

[5] Jeremy Ong.
https://www.jeremyong.com/klein/geometry-potpourri/#the-poincare-dual-map

