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Abstract. The Dirac Equation is presented as a complete theory of the electron as a gyromagnetic
particle clock with precise physical interpretation for all degrees of freedom. The electron is modeled
as a point charge with toroidal zitter and variable zilch. That is to say, the charge oscillates at
the speed of light on a torus centered on a circular orbit around its center of mass z = z(t), with
an axis at a variable angle � = �(z(t)) with respect to its spin vector s = s(t).

The Dirac Wave Function  =  (ct + x) has a unique factorization  = (⇢ei�)
1
2U , where U =

U(ct+x) is a spatial rotor with magnetic degrees of freedom, and the quantity  e = ⇢ei� specifies
an embedding of electron paths in the Vacuum, where the zilch function � = �(ct+ x� z(t)) is a
measure of electron energy density. It culminates in a new synthesis of Dirac Electron Theory with
Maxwell’s Electrodynamics by identifying zilch as a common factor that binds them together.

PACS numbers: 10,03.65.-w
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I. INTRODUCTION

This is a report on a long term research project to
incorporate de Broglie‘s idea of the electron as a parti-
cle clock into the interpretation of Dirac’s equation and
study its implications. The project was started in 1966
by the book Space Time Algebra [1], which laid out the
essential mathematical insights that have guided robust
development to this day. It aims to revitalize de Broglie’s
idea of an electron clock by giving it a central role in
physical interpretation of the Dirac wave function. In
particular, it aims for insight into structure of the wave
function and fibrations of particle paths it determines.
This opens up new questions about physical interpreta-
tion.

We begin in Section II with a synopsis of Spacetime Al-

gebra (STA), which is an essential tool in all that follows,
especially because it provides a geometric interpretation
for the role of complex numbers in quantum mechanics.

Section III is the theoretical core of this report. It
applies STA in a review of Real Dirac theory and presents
a new analysis of its physical interpretation in terms of
local observables. That provides the context to introduce
de Broglie’s clock as central to physical interpretation of
the Dirac wave function.

Section IV presents a complete formulation and anal-
ysis of conservation laws in Dirac theory in terms of lo-
cal observables, including details that are generally over-
looked in literature and the problematic role of the pa-
rameter � in the Dirac wave function. That establishes
a foundation for a new synthesis of electron theory with
electrodynamics developed below.

Section V discusses a new approach to Born’s statis-
tical interpretation of the Dirac wave function dubbed
Born-Dirac theory. It includes a relativistic extension
of de Broglie-Bohm Pilot Wave theory to interpret the

⇤ hestenes@asu.edu; http://geocalc.clas.asu.edu/

Dirac wave function as describing a fibration (or ensem-
ble) of possible particle paths. Spin dependence of the
so-called Quantum potential is made explicit and gen-
eralized. More details are given in references cited in
this Section, which have been carefully selected for qual-
ity and compatibility with the present approach to Dirac
theory. They o↵er a rich store of ideas and results worth
exploring both theoretically and experimentally.
Section V closes with a sudden realization that � can

be given a clear physical interpretation as a chirality pa-

rameter. That proves to be a game changer! It enables
in Section VI a complete and coherent formulation and
physical interpretation for all parameters in the Dirac
equation without exception or approximation. Let’s call
that synthesis the Zitter Particle Model (ZPM), because
it incorporates Schrödinger’s concept of Zitterbewegung
into a particle model of the electron with lightlike helical

motion called Zitter. We identify it with the physical
mechanism in de Broglie’s particle clock.
Section VI presents the Zitter Dirac Equation as the

centerpiece of the ZPM, because it presents a reformula-
tion of the Dirac equation in terms of local observables,
which are open to direct physical interpretation and anal-
ysis. That provides a unified framework for any appli-
cation of the Dirac theory. In particular, it shows how
the Canonical momentum provides quantum numbers for
any quantized electron state. And it supports derivation
of an Extended Lorentz Force which explains how photons
are emitted when electrons are accelerated.
Section VII provides the capstone for a Unified

Maxwell-Dirac electron theory by recognizing that the
Zilch angle in the Dirac wave function can be identified
with the Zilch parameter in an invariant decomposition
of the electromagnetic field.
New elementary solutions of the Dirac equation are

identified as zilch signals in the vacuum and proposed as
components of Maxwell’s famous Displacement current!
Then, refining arguments by de Broglie, an alternative
solution is proposed to explain how photons are produced
by accelerated electrons.
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Section VIII presents the electron as a point singu-
larity with mass stored as energy in the Vacuum. In
agreement with Dirac [2], this calls for revitalization of
the classical concept of Aether as a substrate for the Vac-
uum. We identify that substrate as none other than the
scalar-valued Zilch function that spans all of spacetime,
wherein electron (and positron) paths are embedded as
singularities along with zilch signals. Details will be dis-
cussed at greater length in a subsequent paper.

Section IX reformulates the Zitter-Dirac equation
as an ordinary di↵erential equation for a point parti-
cle embedded in the zilch vacuum field described by
Maxwell’s equation. This provides a framework for solv-
ing many problems in physics, including atomic struc-
ture, radiative reaction, electron and photon di↵raction,
and gravo-magnetic interaction.

We conclude in Section X with a coda arguing for a
realist interpretation of particle paths embedded in the
Dirac wave function. With a salute to Roget Boudet
as a paragon of intellectual probity in the mathematical
sciences.

II. SPACETIME ALGEBRA

Spacetime Algebra (STA) plays an essential role in the
formulation and analysis of electron theory in this paper.
Since thorough expositions of STA are available in many
places [1, 3, 4], a brief description will su�ce here, mainly
to establish notations and define terms.

STA is an associative algebra generated by spacetime
vectors with the property that the square of any vector
is a (real) scalar. Thus for any vector a we can write

a2 = aa = "|a|2 , (1)

where " is the signature of a and |a| is a positive scalar.
As usual, we say that a is timelike, lightlike or spacelike if
its signature is positive (" = 1), null (" = 0), or negative
(" = �1).

From the geometric product ab of two vectors it is con-
venient to define two other products. The inner product

a · b is defined by

a · b = 1
2 (ab+ ba) = b · a , (2)

while the outer product a ^ b is defined by

a ^ b = 1
2 (ab� ba) = �b ^ a . (3)

The three products are therefore related by

ab = a · b+ a ^ b . (4)

This can be regarded as a decomposition of the product
ab into symmetric and skewsymmetric parts, or alterna-
tively, into scalar and bivector parts.

For physicists unfamiliar with STA, it will be helpful to
note its isomorphism to Dirac algebra over the reals. To

that end, let {�µ; 0, 1, 2, 3} be a right-handed orthonor-

mal frame of vectors with �0 in the forward light cone.
The symbols �µ have been selected to emphasize direct
correspondence with Dirac’s �-matrices. In accordance
with (2), the components gµ⌫ of the metric tensor are
given by

gµ⌫ = �µ · �⌫ = 1
2 (�µ�⌫ + �⌫�µ) . (5)

This will be recognized as isomorphic to a famous formula
of Dirac’s. Of course, the di↵erence here is that the �µ
are vectors rather than matrices.
The unit pseudoscalar i for spacetime is related to the

frame {�⌫} by the equation

i = �0�1�2�3 = �0 ^ �1 ^ �2 ^ �3 . (6)

It is readily verified from (6) that i2 = �1, and the geo-
metric product of i with any vector is anticommutative.
By multiplication the �µ generate a complete basis of

k-vectors for STA, consisting of the 24 = 16 linearly in-
dependent elements

1, �µ, �µ ^ �⌫ , �µi, i . (7)

Obviously, this set corresponds to 16 base matrices for
the Dirac algebra, with the pseudoscalar i corresponding
to the Dirac matrix �5.
The entire spacetime algebra is obtained from linear

combinations of basis k-vectors in (7). A generic element
M of the STA, called a multivector, can thus be written
in the expanded form

M = ↵+ a+ F + bi+ �i =
4X

k=0

hMik , (8)

where ↵ and � are scalars, a and b are vectors, and F
is a bivector. This is a decomposition of M into its k-
vector parts, with k = 0, 1, 2, 3, 4, where h. . .ik means “k-
vector part.” Of course, hMi0 = ↵, hMi1 = a, hMi2 = F ,
hMi3 = bi, hMi4 = �i. It is often convenient to drop the
subscript on the scalar part, writing hMi = hMi0.
We say that a k-vector is even (odd) if the integer k

is even (odd). Accordingly, any multivector can be ex-
pressed as the sum of even and odd parts. A multivector
is said to be “even” if its parts are even k-vectors. The
even multivectors compose a subalgebra of the STA. We
will be using the fact that spinors can be represented as
even multivectors.
Computations are facilitated by the operation of re-

version. For M in the expanded form (8) the reverse fM
can be defined by

fM = ↵+ a� F � bi+ �i . (9)

For arbitrary multivectors M and N

(̂MN) = eNfM . (10)
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It is useful to extend the definitions of inner and outer
products to multivectors of higher grade. Thus, for bivec-
tor F and vector a we can define inner and outer products

F · a = 1
2 (Fa� aF ), (11)

F ^ a = 1
2 (Fa+ aF ), (12)

so that

Fa = F · a+ F ^ a (13)

expresses a decomposition of Fa into vector and pseu-
dovector parts. For F = b ^ c it follows that

(b ^ c) · a = b(c · a)� c(b · a) . (14)

Many other useful identities can be derived to facilitate
coordinate-free computations. They will be introduced
as needed throughout the paper.

Any fixed timelike vector such as {�0} defines an iner-
tial frame that determines a unique separation between
space and time directions. Algebraically, this can be ex-
pressed as the “spacetime split” of each vector x designat-
ing a spacetime point (or event) into a time component
x · �0 = ct and a spatial position vector x ⌘ x ^ �0 as
specified by the geometric product

x�0 = ct+ x . (15)

We call this a �0-split when it is important to specify the
generating vector. The resulting quantity ct+x is called
a paravector

This “split” maps a spacetime vector into the STA
subalgebra of even multivectors where, by “regrading,”
the bivector part can be identified as a spatial vector.
Accordingly, the even subalgebra is generated by a frame
of “spatial vectors” {�k ⌘ �k�0; k = 1, 2, 3}, so that

�1�2�3 = �0�1�2�3 = i. (16)

Obviously, this rendition of the STA even subalgebra is
isomorphic to the Pauli algebra, though the Pauli alge-
bra is not a subalgebra of the Dirac algebra because the
matrix dimensions are di↵erent.

We use boldface letters exclusively to denote spatial
vectors determined by a spacetime split. Spatial vectors
generate a coordinate-free spatial geometric algebra with
the geometric product

ab = a · b+ a ^ b = a · b+ ia⇥ b, (17)

where a⇥b = �i(a^b) is the usual vector cross product.
For the even part hMi+ = Q of the multivector M , a

spacetime split gives us

Q = z + F, (18)

where scalar and pseudoscalar parts combine in the form
of a complex number

z = ↵+ i�, (19)

and the bivector part splits into the form of a “complex
vector”

F = E+ iB = �F̃ . (20)

Thus, the even subalgebra in STA has the formal struc-
ture of complex quaternions. However, the geometric
interpretation of the elements is decidedly di↵erent from
the usual one assigned to quaternions. Specifically, the
bivector iB corresponds to a “real vector” in the quater-
nion literature. This di↵erence stems from a failure to
distinguish between vectors and bivectors dating back to
Hamilton. For complex quaternions, it reduces to failure
to identify the imaginary unit i as a pseudoscalar. Geo-
metric interpretation is crucial for application of quater-
nions in physics.
Reversion in the subalgebra is defined by

Q† ⌘ �0 eQ�0. (21)

This is equivalent to “complex conjugation” of quater-
nions. In particular,

F † ⌘ �0 eF�0 = E� iB, (22)

so that

E = 1
2 (F + F †), iB = 1

2 (F � F †). (23)

Moreover,

FF † = E2 +B2 + 2E⇥B, (24)

F 2 = F · F + F ^ F = E2 �B2 + 2́iE ·B, (25)

which are familiar expressions from electrodynamics. the
bivector F is said to be simple if

F ^ F = 0 , E ·B = 0, (26)

and is said to be timelike, spacelike or null, respectively,
when F 2 = E2 �B2 is positive, negative or zero.
Sometimes it is convenient to decompose the geometric

product FG into symmetric and antisymmetric parts

FG = F �G+ F ⇥G, (27)

where the symmetric product is defined by

F �G ⌘ 1
2 (FG+GF ), (28)

and the commutator product is defined by

F ⇥G ⌘ 1
2 (FG�GF ). (29)

In particular, for quaternions the symmetric product
serves as a “complex inner product,” while the commu-
tator product serves as an ”outer product for complex
vectors.” Comparison with (17) shows that for “real vec-
tors”

a � b = a · b, (30)
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and

a⇥ b = a ^ b = i(a⇥ b), (31)

Note that the cross product on the right is distinguished
from the commutator product on the left of this equation
by a boldface of the cross product symbol. Also, it should
be understood that the equivalence of commutator and
outer products in this equation does not generally obtain
for arbitrary multivectors.

Concerning the spacetime split of products between
even and odd multivectors, for a bivector F = E + iB
and spacetime vector a with the split a�0 = a0 + a, we
have

(F · a)�0 = E · a+ a0E+ a⇥B. (32)

This may be recognized as the form for a spacetime split
of the classical Lorentz force. We will use it as a template
for other spacetime splits later on.

Concerning di↵erentiation, the derivative with respect
to any multivector variable M is denoted by @M , so the
derivative with respect to a vector variable n is denoted
by @n. As the derivative with respect to a position vec-
tor x is especially important, we distinguish it with the
special symbol

r ⌘ @x = �k@k, (33)

in agreement with standard vector calculus. Thus, for a
relative vector field A = A(x) The identity (17) gives us

rA = r ·A+r ^A = r ·A+ ir⇥A, (34)

which relates the curl to the standard vector cross prod-
uct.

For field theory, the derivative with respect to a space-
time point must be defined. Though that can be done
in a completely coordinate-free way [3], for a rapid sur-
vey it is more expedient here to exploit the reader’s prior
knowledge about partial derivatives.

For each spacetime point x the reciprocal of a standard
frame {�µ} determines a set of “rectangular coordinates”
{xµ} given by

xµ = �µ · x and x = xµ�µ . (35)

In terms of these coordinates the derivative with respect
to a spacetime point x is an operator ⇤ defined by

⇤ ⌘ @x = �µ@µ, (36)

where @µ is given by

@µ =
@

@xµ
= �µ ·⇤ . (37)

The square of ⇤ is the usual d’Alembertian

⇤2 = gµ⌫@µ@⌫ where gµ⌫ = �µ · �⌫ . (38)

The matrix representation of the vector derivative ⇤
will be recognized as the so-called “Dirac operator,” origi-
nally discovered by Dirac when seeking a “square root” of
the d’Alembertian (38) in order to find a first order “rel-
ativistically invariant” wave equation for the electron. In
STA however, where the �µ are vectors rather than ma-
trices, it is clear that ⇤ is a vector operator, and we
see that it is as significant in Maxwell’s equations as in
Dirac’s.
The symbol r ⌘ @x is often used elsewhere [4, 5] in-

stead of ⇤ ⌘ @x, but it has the disadvantage of con-
fusability with r ⌘ @x in some contexts. Besides, the
triangle is suggestive of three dimensions, while the ⇤ is
suggestive of four. That is why the ⇤ was adopted in the
first book on STA [1], and earlier by Sommerfeld [6] and
Morse and Feshbach [7].
Note that the symbol @t for the derivative with respect

to a scalar variable t denotes the standard partial deriva-
tive, though the coordinate index is used as the subscript
in (37).
In STA an electromagnetic field is represented by a

bivector-valued function F = F (x) on spacetime. Since
⇤ is a vector operator the expansion (13) applies, so we
can write

⇤F = ⇤ · F +⇤ ^ F , (39)

where ⇤ ·F is the divergence of F and ⇤^F is the curl.
Corresponding to the split of a spacetime point (15),

the spacetime split of the vector derivative ⇤ = @x gives
us a paravector derivative

�0⇤ = @0 +r, (40)

where @0 = �0 · ⇤ = c�1@t. Hence, for example, the
d’Alembertian takes the familiar form

⇤2 = @20 �r2, (41)

and the divergence of the vector field A = (c' + A)�0
splits to

⇤ ·A = @0 '+r ·A. (42)

Finally, it is worth mentioning that to evaluate vector
derivatives without resorting to coordinates, a few ba-
sic formulas are needed. For vector n and bivector F ,
we shall have use for the following derivatives of linear
functions:

@nn = 4, @nFn = 0, @n(n · F ) = 2F. (43)

III. ANATOMY OF THE DIRAC WAVE
FUNCTION

Considering the central role of Dirac’s equation in the
spectacular successes of quantum mechanics and QED, it
seems indubitable that this compact equation embodies
some deep truth about the nature of the electron, and
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perhaps elementary particles in general. However, suc-
cess came with problems that called for action by the doc-
tors of QuantumMechanics. Soon after the initial success
in explaining the hydrogen spectrum and the magical ap-
pearance of spin, it was discovered that the electron had
an antiparticle twin, the positron, conjoined with it in
the Dirac equation. Dirac introduced a surgical proce-
dure called “Hole theory” that suppressed the positron
to keep it from interfering with the electron. Eventu-
ally, electron and positron were identified with positive
and negative energy states and separated by a procedure
called “second quantization.” That has become the sur-
gical procedure of choice in QED. Here we take a new
look at the anatomy of the Dirac equation to see what
makes the electron tick. That will lead us to a new uni-
fied interpretation of the Dirac equation wherein electron
and positron appear as di↵erent states of the same object
coupled by photons so surgery is unnecessary to separate
them.

As first shown in [5, 8], in terms of STA the Dirac
equation can be written in the form

�µ(@µ i~� e

c
Aµ ) = mec �0 , (44)

where me is electron mass and now we use e = ±|e| for
the charge coupling constant, while the Aµ = A · �µ are
components of the electromagnetic vector potential. The
symbol i denotes a unit bivector, which can be written
in the following equivalent forms:

i ⌘ �2�1 = i�3�0 = i�3 = �1�2 (45)

The notation i emphasizes that it plays the role of the
unit imaginary that appears explicitly in matrix versions
of the Dirac equation.

Let us refer to (44) as the real Dirac equation to dis-
tinguish it from the standard matrix version. It is well
established that the two versions are mathematically iso-
morphic [4, 5, 8]. However, the real version reveals ge-
ometric structure in the Dirac theory that is so deeply
hidden in the matrix version that it remains unrecog-
nized by QED experts to this day. That fact is already
evident in the identification of the imaginary unit i as
a bivector. As we see below, this identification couples
complex numbers in quantum mechanics inextricably to
spin, with profound implications for physical interpre-
tation. It is the first of several insights into geometric
structure of Dirac theory that will guide us to a reformu-
lation and new interpretation.

Employing the vector derivative puts the real Dirac
equation in the coordinate-free form

⇤ i~� e

c
A = mec �0 , (46)

where A = Aµ�µ is the electromagnetic vector potential.
The spinor “wave function”  =  (x) admits of the
Lorentz invariant decomposition

 =  ei�/2 with  (x) = ⇢
1
2R(x), (47)

where ⇢ = ⇢(x) and � = �(x) are scalar-valued functions,
and “rotor” R = R(x) is normalized to

R eR = eRR = 1. (48)

The Lorentz invariant “�-factor” in the general form (47)
for a “Real Dirac spinor” has been singled out for spe-
cial consideration. As this factor is so deeply buried in
matrix representations for spinors, its existence has not
been generally recognized and its physical interpretation
has remained problematic to this day. We shall see it
as a candidate for corrective surgery on the Dirac wave
function.
We shall also be considering singular solutions  ± of

the Dirac equation (46) called Majorana states and de-
fined by

 ± =  (1± �2) =  �±�0, (49)

where

�± = �0 ± �2. (50)

We shall see that STA reveals properties of these states
that make them attractive candidates for distinct elec-
tron and positron states.

A. Local Observables

We begin physical interpretation of the Dirac wave
function with identification of “local observables.” At
each spacetime point x, the rotor R = R(x) determines
a Lorentz rotation of a given fixed frame of vectors {�µ}
into a frame {eµ = eµ(x)} given by

eµ = R�µ eR . (51)

In other words, R determines a unique frame field on
spacetime. Whence, the wave function determines four
vector fields

 �µe =  �µ e = ⇢eµ. (52)

Note that the �-factor has cancelled out of these expres-
sions because the pseudoscalar i anticommutes with the
vectors �µ.
It can be shown [3, 4, 8] that two of the vector fields

(51) correspond to well known quantities in matrix Dirac
theory. The quantity

 �0 e = ⇢v with v = R�0 eR = e0. (53)

is the Dirac current. The Born interpretation identifies
this as a “probability current ;” whence, ⇢ is a probability

density. (We shall consider an alternative interpretation
for ⇢ later on.) The quantity

s =
~
2
R�3 eR =

~
2
e3 (54)
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FIG. 1. The “spinning frame” of local observables along an
electron path is depicted in a direction orthogonal to the spin
vector.

can be identified as the electron “spin vector,” though it
looks rather di↵erent than its matrix counterpart. Phys-
ical interpretation of e1 and e2 is more subtle, as these
vectors are not recognized in standard Dirac theory. To
clarify the matter, we decompose the rotor R into the
product

R = V e�i'. (55)

Then

e1 = R�1 eR = e�I'a1e
I' = a1e

2I', (56)

where

I ⌘ R i eR = V ieV and a1 = V �1 eV , (57)

with an analogous equation for e2. This exhibits the wave
function phase ' as an angle of rotation in a spacelike
plane with tangent bivector I = I(x) at each spacetime
point x. Moreover, the direction of that plane is deter-
mined by the spin bivector defined by

S ⌘ isv =
~
2
R i eR =

~
2
I. (58)

Thus, we have a connection between spin and phase with
the phase as an angle of rotation in the “spin plane.”

In general, the Lorentz rotation (51) has a unique de-
composition into a spatial rotation followed by a boost,
which is generated by the rotor product [3]

R = V U (59)

with U�0 eU = �0 and V = (v�0)1/2.

For simplicity, we often refer to rotors V and U by the
same names “boost” and “spatial rotation” used for the
Lorentz transformations they generate.
We can further decompose the rotor product into

R = U1V0
eU1U = U1V0U2 (60)

where

V0 = exp {↵1�2} = cosh↵1 + �2 sinh↵1 (61)

is a boost in a fixed direction �2 = �2�0, while U1 and
U2 are spatial rotations.

B. Electron clock and chirality

As the notion of an electron clock was central to de
Broglie’s seminal contribution to quantum mechanics [9],
its relevance to interpretation of the Dirac equation de-
serves thorough investigation. The clock mechanism can
be defined by considering a Dirac plane wave solution of
the form (55) with momentum p, wherein the phase has
the specific form ' = k · x. Then ⇤' = k, and the Dirac
equation (46) gives us

~kRei�/2 = mecRei�/2�0, (62)

which we solve for

k =
mec

~ ve�i� . (63)

This has two solutions with opposite signs given by
cos� = ±1 and momentum p = mecv = ±~k,
Equation v ·x = c⌧ describes a propagating hyperplane

with unit normal v, so (63) gives

p · x = mec
2⌧. (64)

Accordingly, the vector e1 in (56) rotates in (or on) the
hyperplane with frequency

!e ⌘
2mec2

~ = ±2
d'

d⌧
. (65)

The handedness is opposite for the two solutions This
will be recognized as the zitterbewegung frequency of
Schrödinger. It is precisely twice the de Broglie frequency

because the wave function phase angle is precisely half
the rotation angle of the observables in (56). The sign of
the phase specifies the sense of rotation, which is opposite
for electron and positron.
We can now give the vector e1 a picturesque physical

interpretation as the hand on de Broglie’s electron clock,
with its rotation given by (56). The face of the clock is
the bivector I in (57), and the reference point for an ini-
tial time on the clock face is given by the vector a1. This
description of the electron clock is completely general, as
the equations hold for an arbitrary electron wave func-
tion. Indeed, equation (57) shows that the electron clock
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can be described as an “inertial clock,” because it retains
the mark of initial time even as interactions change the
rotor R and hence spin direction and the attitude of the
clock in spacetime.

Of course, interactions can change the clock frequency
by changing the phase '. Nevertheless, the free electron
frequency remains as a reference standard for the electron
clock. This suggests that we define the free electron clock
period ⌧e as the fundamental unit of electron time. Its
empirical value, which I propose to call the zit, is

1 zit = ⌧e =
2⇡

!e
=

h

2mec2
= 4.0466⇥ 10�21sec (66)

Approximately: 1 zit ⇡ 4 zepto-sec; 1 sec ⇡ 1/4 zetta-zit.
Remarkably, direct measurement of the “zit” may be pos-
sible with electron channeling experiments [10].

The two signs in (65) indicate clocks with opposite
“handedness” or chirality, as we shall say. We identify the
negative sign with an electron clock and the the positive
sign with a positron clock. Indeed, in standard theory
the two signs are interpretated as states with opposite
energy and the negative energy state is identified with
the positron. However, we have seen that the sign is
actually determined by cos� = ±1 without reference to a
concept of energy. This suggests that we interpret � as a
“chirality parameter.” Be that as it may, we can see that
the vector e2 specifies the clock-face direction of motion
for the clock hand e1. Hence “antiparticle conjugation”
should be defined to reverse the direction of e2 while
keeping the direction of e1 unchanged.

Finally, we note that the Born probability density has
been set to ⇢ = 1 on the propagating hyperplane, thus
implying that all points on the hyperplane are equally
probable positions x0 for the electron at initial time ⌧0.
However, for any initial position x0, the velocity v = ẋ
integrates to a unique position

x(⌧) = v⌧ + x0. (67)

Thus, the plane wave solution consists of an ensemble
of equally probable particle paths composing a congru-
ence (or fibration) of non-intersecting, timelike paths that
sweep out (fibrate) a region of spacetime.

C. Electron clock with zitter

There is another plane wave solution that has been
largely overlooked in the literature. In this case the pa-
rameter � plays no role. We simply switch (55) into the
form (with ⇢ = 1)

 = e�i'V0, (68)

which is of type (60) with constant V0 given by (61). This
solves the Dirac equation with ' = p·x/~ and p = mec�0.
To verify that:

⇤ i~ = �mec�0i�3 i�3 = mec �0. (69)

Note that �0i�3 = i�3 commutes with  , whereas �0 and
i�3 do not. Generalization to a solution for arbitrary
constant p = mecV �0 eV is obviously given by a boost to
 0 = V  .
Now, using (61) we can express the wave function (68)

as the sum of positive and negative energy solutions:

 = cosh↵1e
�ik·x + �2 sinh↵1e

+ik·x ⌘  + +  �. (70)

The analog of hermitian conjugate in standard matrix
Dirac algebra is defined by  † = �0 e �0. Whence, the
velocity is given by

v =  �0 e =  e †�0

= {| +|2 + | �|2 +  + 
†
� +  � 

†
+}�0

= | |2�0 + 2 <  � 
†
+ > �2e

i2�. (71)

In agreement with [11], this exhibits zitterbewegung as
arising from interference between positive and negative
energy states, as originally formulated by Schrödinger.
However, it also exhibits zitterbewegung as circulation of
electron velocity in the spin plane. I have coined the term
zitter to distinguish this interpretation of zitterbewegung
from other alternatives in the literature.
This result settles a long-standing controversy about

the interpretation of zitterbewegung. To this day, stud-
ies of Dirac wave packets (e.g. [12]) fail to recognize
the connection of zitterbewegung to spin. Instead, it is
identified as a high frequency interference e↵ect, often at-
tributed to interaction with the vacuum with a negative
energy component  � presumed to express presence of
positrons. On the contrary, in the zitter model here the
“negative energy” term has nothing to do with positrons.
Instead, it is a structural feature of electron motion in-
volving electron spin and phase.
We can associate our zitter plane wave with particle

motion in the same way for the plane wave in the preced-
ing subsection. Without loss of generality, we can write
p = mec�0, so ' = p ·x/~ = !e⌧/2 defines a plane propa-
gating in the direction of p with proper time ⌧ . Then (68)
and (71) gives us a parametric equation for the particle
velocity:

v(⌧) = e�
1
2 i!e⌧v0 e

1
2 i!e⌧ = a�0 + b �2 e

i!e⌧ , (72)

where a and b are constants, while !e is the free particle
zitter frequency. For v = ẋ, this integrates to

x(⌧) = �0ac⌧ + b�e e1 + x0, (73)

where �e = c/!e and

e1(⌧) = �1 e
i!e⌧ , (74)

is the electron clock vector.
The particle path x(⌧) specified by (73) is a timelike

helix with pitch b�e/a. Thus, the zitter plane wave solu-
tion consists of an ensemble of equally probable particle
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paths that fibrate a region of spacetime with a congru-
ence of non-intersecting, timelike helices.

Though the circular frequency !e is constant, the cir-
cular speed increases with radius b�e without reaching
the limiting case �e!e = c at the speed of light. In that
limit, V0 ! 1+�2 in (60), and we get the Majorana wave
function  + defined in (49), so the velocity vector (72)
becomes a null vector

u(⌧) =  +�0e +/⇢

= e�
1
2 i!e⌧�+e

1
2 i!e⌧ = �0 + �2 e

i!e⌧ . (75)

In this case, zitter with the electron clock is intrinsic to
electron motion, whereas in the previous case described
by (72) the zitter can vanish with b = 0.

Thus, we have three distinct kinds of free particle
(plane wave) states: Kind A, given by (55), with no zit-
ter; Kind B, given by (68) and (72), with zitter velocity
ranging between zero and the speed of light; and Kind

C, given by (75), with zitter velocity �e!e = c.
Kind B is related to Kind A by a unitary transforma-

tion. For example, (68) is related to (55) by

�1(e
�i'V0)�

†
1 = V0e

�i†', (76)

where �†1 = �⇤1 = ��1 and the right side is interpreted as
a positive energy factor with i replaced by i†. It can be
generated by the continuous unitary transformation

 ! W W †, where W = e�1 ↵0 , (77)

which may be recognized as a Foldy-Wouthuysen (FW)
transformation [13].

The FW transformation is commonly used to eliminate
negative energy components in electron wave functions,
often because they are regarded as “unphysical.” With-
out going into arguments supporting this practice, the
point here is that it suppresses the role of zitter in de-
scribing electron motion.

To ascertain what the Dirac equation can tell us about
the physical significance of zitter, the parameter � and
the electron clock, we study the properties of local ob-
servables thoroughly in the next section. This will help
us address such questions as: Is zitter an objectively real
physical property of the electron? Should electron phase
(de Broglie’s clock) be regarded as a feature of electron
zitter? What is the role of zitter in quantization? Of
course, the answers will lead to more questions and spec-
ulation.

IV. FLOW OF LOCAL OBSERVABLES

We turn now to a general analysis of conservation laws
implied by the Dirac equation as a foundation for physi-
cal interpretation. To facilitate comparison with conven-
tional Dirac theory, we first express the conservation laws
in terms of the wave function. Then we peel them apart
to reveal their structure in terms of local observables.

A conservation law for the Dirac current  �0 ̃ = ⇢v
is easily derived from the Dirac equation (46) and takes
the form

⇤ · (⇢v) = 0. (78)

This can be interpreted as flow of a fluid with proper
density ⇢. Precisely what kind of fluid depends on the
interpretation of other local observables, in particular,
observables describing the flow of energy, momentum,
charge and electromagnetic potential. Following a sys-
tematic approach in defining these observables within the
Dirac theory, we shall discover hidden structure that has
been generally overlooked.
The original formulation of the Dirac equation was

based on interpreting

p µ = i~ @µ � e

c
Aµ (79)

as a gauge invariant energymomentum operator. The un-
derbar notation here designates a linear operator. Specif-
ically, the operator i designates multiplication by the unit
imaginary in the matrix version of Dirac theory, and right
multiplication by the unit bivector i = i�3�0 in the STA
version, as specified in

p µ = ~ @µ i�3�0 �
e

c
Aµ . (80)

Equivalence of operators in the matrix version to expres-
sions in the present STA version is discussed in [14].
The energymomentum operator also led to the defini-

tion of an energy momentum tensor T (n) with compo-
nents

Tµ⌫ = Tµ · �⌫ = h�0e �µp⌫ i, (81)

where

Tµ = T (�µ). (82)

The stress tensor T (n) is defined physically as a vector-
valued tensor field specifying, at each spacetime point,
the energymomentum flux through a hypersurface with
unit normal n. Its adjoint T (n) can be defined by

�µ · T (�⌫) = T (�µ) · �⌫ = Tµ⌫ . (83)

Note the overbar notation T (n) to indicate the adjoint
of a linear function T (n) specified by an underbar. In
this case the linear functions are vector-valued, but the
same notation is used for bivector-valued linear functions
below.
The Dirac equation (46) can be derived from the La-

grangian

L =
D
~⇤ i�3e � e

c
A �0e �mec e 

E
. (84)

As is well known, a major advantage of this approach
is that conservation laws consistent with the equations



9

of motion can be derived from symmetries of the La-
grangian. The most elegant and e�cient way to do this
is the method of multivector di↵erentiation introduced
by Lasenby, Doran and Gull in [15]. In particular, from
translation invariance of the Lagrangian they derived the
stress tensor

T (n) = �µ
D
(pµ )�0e n

E

= �µ
D
(~@µ i�3�0)�0e n

E
� e

c
A⇢ (v · n). (85)

This is equivalent to the stress tensor most commonly
employed in Dirac theory.

However, when Lasenby, Doran and Gull generalized
their method in a ground breaking paper on Gauge The-
ory Gravity [16], translation invariance gave instead the
adjoint stress tensor

T (n) =
D
~(n ·⇤ )i�3e 

E

1
� e

c
(A · n)⇢ v. (86)

This raises a question as to which stress tensor is correct
for the electron: T (n) or T (n)? We will leave that ques-
tion open for the time being while we examine both and
compare their properties. The first derivation of this ten-
sor from the Dirac equation was made by Tetrode [17],
so it is fair to call it the Tetrode tensor.

The dynamics of flow is determined by the divergence
of the stress tensor:

T̀ (⇤̀) = @µT (�
µ) = @µT

µ

=
D
~(⇤2 )i�3e 

E

1
� e

c
@µ(⇢ vA

µ). (87)

We need the Dirac equation (46) to evaluate this. Since

D
@µ i�3 @

µe 
E

1
= 0, (88)

we have

D
~(⇤2 )i�3e 

E

1
=

~
2
[⇤2 i�3e � i�3⇤2e ]

= ⇢
e

c
(⇤ ^A) · v + e

c
@µ(⇢ vA

µ). (89)

Whence

T̀ (⇤̀) = @µT
µ =

e

c
F · (⇢v) ⌘ ⇢f, (90)

where F = ⇤ ^ A is an external electromagnetic field.
This has precisely the form for the Lorentz force on a
classical charged fluid, and it supports the interpretation
of the Dirac current e⇢v as a charge current.

A conservation law for angular momentum can be
derived from invariance of the Lagrangian (84) under
Lorentz rotations [15], but we derive it directly from
properties of the stress tensor, as it makes structure more
explicit. From (90) we get

@µ(T
µ ^ x) = Tµ ^ �µ + ⇢f ^ x. (91)

To see how this equation gives us angular momentum
conservation, we need to analyze the first term on the
right. In doing so we find other interesting results as
byproducts.
First, note that

�µ
D
~(@µ )i�3e 

E

1
= ~(⇤ )i�3e +⇤(i⇢s). (92)

Then, combine this with the Dirac equation (46) in the
form

~(⇤ )i�3e = mec⇢e
i� +

e

c
A⇢v (93)

to get

@nT (n) = �µT (�
µ) = ⇤(i⇢s) +mec⇢e

i� . (94)

The scalar part of this equation gives us the trace of the
stress tensor:

Tr(T ) = @n · T (n) = mec⇢ cos�, (95)

and the pseudoscalar part gives us

⇤ · (⇢s) = mec⇢ sin�. (96)

This displays a peculiar relation of � to mass and spin of
questionable physical significance. However, � plays no
role in the bivector part of (94), which gives us

�µ ^ T (�µ) = T (�µ) ^ �µ = ⇤ · (i⇢s) = @µS
µ, (97)

where

Sµ = S(�µ) = �µ · (i⇢s) = ⇢i(s ^ �µ). (98)

is identified as a bivector-valued spin flux tensor.
Equation (97) gives us an explicit relation between the

stress tensor and its adjoint:

T (n)� T (n) = n · (�µ ^ Tµ) = (n ^⇤) · (i⇢s). (99)

And inserting this into (90) with n = ⇤, we find that the
divergence of the stress tensor is equal to the divergence
of its adjoint:

@µT (�
µ) = @µT (�

µ) =
e

c
F · (⇢v) = ⇢f. (100)

This equivalent divergence of the stress tensor and its ad-
joint has been overlooked in the literature. Let’s compare
these two tensors more closely.
The flux of momentum along the Dirac current is espe-

cially significant, because that is the direction of particle
flow. Accordingly, we define a momentum density ⇢p
along this flow by

⇢p ⌘ T (v). (101)

The adjoint determines a “conjugate momentum” density
⇢pc defined by

⇢pc ⌘ T (v). (102)
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We will be looking to ascertain the physical di↵erence
between these two kinds of momenta. First we note a
small di↵erence in angular momentum.

Returning now to the question of angular momentum
conservation, inserting (97) into (91), we get the desired
conservation law:

J̀(⇤̀) = @µJ
µ = ⇢f ^ x. (103)

where the total angular momentum tensor flux is a
bivector-valued tensor with orbital and spin parts defined
by

Jµ = J(�µ) = Tµ ^ x+ Sµ. (104)

Accordingly, the angular momentum flux along the Dirac
current is given by

J(v) = ⇢(p ^ x+ S), (105)

where S(v) = ⇢S confirms our earlier identification of
S = isv as a spin bivector.

Alternatively, we can define a “conjugate” angular mo-
mentum tensor

Jµ
c = T (�µ) ^ x� Sµ, (106)

which by the same argument yields the conservation law

@µJ
µ
c = ⇢f ^ x, (107)

But the conjugate angular momentum flow has a spin of
opposite sign:

Jc(v) = ⇢(pc ^ x� S). (108)

This sign di↵erence can be interpreted geometrically as
an opposite orientation of spin S to velocity v or mo-
menta p and pc. To probe the di↵erence between the
momenta p and pc more deeply, we express them as ex-
plicit functions of local observables.

The dynamics of the local observables eµ = R�µ eR is
determined by the linear bivector-valued function

⌦µ = ⌦(�µ) ⌘ 2(@µR)R̃. (109)

Thus,

@⌫eµ = ⌦⌫ · eµ. (110)

In particular, the derivatives of the velocity and spin vec-
tors are

@⌫v = ⌦⌫ · v and @⌫s = ⌦⌫ · s, (111)

while the derivative of the spin bivector S = isv is given
by the commutator product:

@µS = ⌦µ ⇥ S. (112)

Now, with the wave function in the form

 =  ei�/2 = Re(↵+i�)/2, (113)

its derivatives can be related to observables by

~(@µ )i�3e = ⇢[(i@µ↵+ @µ�)s+ ⌦µSv], (114)

with the product expansion

⌦µS = Pµ + @µS + iqµ (115)

where we have identified components Pµ = �µ · P of the
“canonical momentum vector” P defined by

Pµ = ⌦µ · S =
~
2
e1 · @µe2 = �~

2
e2 · @µe1, (116)

and the pseudoscalar part is given by

iqµ = ⌦µ ^ S = i⌦µ · (sv) = i(@µs) · v. (117)

Finally, by inserting (114) into (86) we get the compo-
nents of the stress tensor in the transparent form

Tµ⌫ = ⇢[vµ(P⌫ � e

c
A⌫) + (v ^ �µ) · @⌫S � sµ@⌫�]. (118)

This gives us an informative expression for the conjugate
momentum:

T (v) = ⇢{[(P � e

c
A) · v]v + Ṡ · v � s�̇} = ⇢pc. (119)

The first two terms in this expression for momentum
flow along a streamline of the Dirac current make per-
fect physical sense. Note that the factor (P � e

cA) · v
serves as a gauge invariant variable mass determined by
the frequency of the electron clock, which is specified by

P · v = ⌦v · S =
~
2
e1 · ė2 = �~

2
e2 · ė1, (120)

where

ėµ = v ·⇤ eµ = ⌦v · eµ and ⌦v = ⌦(v). (121)

The second term Ṡ · v = v̇ · S in (119) specifies a con-
tribution of spin to linear momentum due to accelera-
tion. However, a physical interpretation for the last term
involving the directional derivative �̇ = v · ⇤� remains
problematic. Resolving that problem will be a major goal
in the rest of this paper.
From the stress energy components (118), we also get a

remarkably simple expression for the momentum density:

T (v) = ⇢(P � e

c
A) = ⇢p. (122)

And for flux in the spin direction we get:

T (s) = �⇢s�̇. (123)

Combining (122) with (119) we get

pc = (p · v)v + Ṡ · v � s�̇. (124)

As we shall see, it is especially important to note that in
these equations both p and pc are defined independently
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of ⇢, and physical interpretation of the strange parameter
� appears to be tied up with spin.

Having thus identified the canonical momentum P as
a local observable, we can express the Dirac equation as
a constitutive equation relating observables. Thus, from
(114) and (115) we derive the expression

~(⇤ )i�3e = [⇢P + [⇤(⇢ei�S)]e�i� ]v, (125)

which we insert into the Dirac equation (93) to get it in
the form

⇢(P � e

c
A)ei� = mec⇢v �⇤(⇢ei�S) (126)

Its vector part is a constitutive equation involving the
Dirac current:

⇢(P � e

c
A) cos� = mec⇢v �⇤ · (⇢ei�S). (127)

The right side of this equation has vanishing divergence,
and we identify it as the well known Gordon current.
Unlike the vector part, the trivector part of (126) does
not have any evident physical meaning, though it does
serve as a constraint among the variables.

This completes our exact reformulation of Dirac The-
ory in terms of local observables. We have found clear
physical interpretations for all components of the Dirac
wave function except the parameter �. The strangeness
of � is most explicit in equation (127) for the Gordon
current, where the factor ei� generates a duality rotation
without obvious physical significance. And that equation
implies the conservation law

⇤ · [⇢(P � e

c
A) cos�] = ⇤ · (⇢p cos�) = 0, (128)

where again the role of � is problematic.
The Gordon current can be regarded as a reformulation

of the Dirac equation in terms of local observables, as
our derivation of (127) shows. For this reason, it plays
a fundamental role in our analysis of alternative physical
interpretations in subsequent sections. But first we try
to make some sense of �.

A. Problems with �

We begin our study of � by reformulating the Dirac
Lagrangian (84) with  =  ei�/2 to make the role of �
explicit and then to relate it to the explicit role of other
observables:

L =
D
~⇤ i�3 e � e

c
A �0 e �mec⇢ cos� � ⇢s⇤�

E

= ⇢(P � e

c
A) · v + (v ^⇤) · (⇢S)

�mec⇢ cos� � ⇢s ·⇤�. (129)

The mass term < mec e >= mec⇢ cos� has always
been problematic in QED. Indeed, it has been eliminated

from the Standard Model, which aims to derive the mass
from fundamental theory. We shall see that is a major
mistake, amounting to “throwing out the baby with the
bathwater!”
When the �-factor ei� is constant, (47) can be used to

factor it out of the Dirac equation (46) to exhibit its role
explicitly:

{~⇤ i�3�0 �
e

c
A } e ei� = mec �0 e = mec⇢v. (130)

Note that setting ei� = �1 amounts to reversing orien-
tation of the bivector i = i�3�0 that generates rotations
in the phase plane along with reversing the sign of the
charge, as required for antiparticle conjugation according
to the chirality hypothesis. Accordingly, the Dirac equa-
tion is resolved into separate equations for electron and
positron.
We have seen how plane wave solutions of the Dirac

equation suggest that the � distinguishes particle from
antiparticle states. Let me call that suggestion the “chi-
rality hypothesis.” Some credence to this hypothesis is
given by the fact that unitary spinors R and Ri are
distinct spin representations of the Lorentz group, so
it is natural to associate them with distinct particles.
However, the Dirac spinor Rei�/2 is a continuous con-
nection between both representations, suggesting that �
parametrizes an admixture of particle/antiparticle states.
After I discovered that cos� = ±1 solves the problem

of negative energies for plane waves and thereby separates
electron and positron plane wave state, I set about study-
ing the physical significance of � in the general case. I got
great help from my graduate student Richard Gurtler,
who thoroughly examined the behavior of � in the Dar-

win solutions of the Dirac equation for Hydrogen [18].
The results do not seem to support the chirality hypoth-
esis, for the parameter � varies with position in peculiar
ways. The values cos� = ±1 appear only in the az-
imuthal plane, which suggests that 2d solutions might
satisfy the chirality hypothesis, but the chirality jumps
in sign across nodes in the plane in an unphysical way.
At about the same time I began a systematic study of
local observables in Dirac theory [19] and their roles in
Pauli and Schrödinger theories [20–22] , but I was unable
to make sense of the peculiar behavior I found for �.
This problem of interpreting � has never been recog-

nized in standard QED. Indeed, it is commonly claimed
that second quantization solves Dirac’s problem of nega-
tive energies. My suspicion is that cos� = ±1 has been
tacitly assumed in QED when it begins by quantizing
plane wave states. Consistency of that procedure with
the Darwin solutions has never been proved to my knowl-
edge. It seems that a perceived need for such a proof is
avoided by claiming that the Darwin case is concerned
with one-particle quantum mechanics, whereas QED is a
many-particle theory.
The next Section makes the essential role of � in stan-

dard Dirac theory explicit in preparation for subsequent
identification its physical significance.
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V. PILOT WAVE THEORY WITH THE DIRAC
EQUATION

Let me coin the name Born–Dirac for standard Dirac
theory with the Born rule for interpreting the Dirac wave
function as a probability amplitude.

The Born rule was initially adopted for Schrödinger
theory and subsequently extended to Dirac theory with-
out much discussion — in fact, without even establish-
ing the correct relation between Dirac and Schrödinger
wave functions. The latter is supposed to describe a
particle without spin. However, a correct derivation
from the Dirac equation [21, 22] implies instead that
the Schrödinger equation describes an electron in a spin
eigenstate, and its imaginary unit must be identified with
the spin bivector i~ = 2is .

Subsequently, physical interpretation of Schrödinger
theory has been hotly debated, while, ironically, relevant
implications of the more precise Dirac theory have been
overlooked. To correct this deficiency, our first task here
is to update Born-Dirac theory with recent insights on
interpretation of Schrödinger theory. Then we can con-
sider enhancements from our study of local observables
in Dirac theory.

After decades of debate and clarifications, it seems safe
to declare that de Broglie–Bohm “Pilot Wave” theory is
well established as a viable interpretation of quantum
mechanics, though that may still be a minority opinion
among physicists. Current accounts suitable for our pur-
poses are given in [23, 24]. The point to be emphasized
here can be regarded as a refinement of the Born rule,
which says the wave function for a single electron speci-
fies its probable position at a given time. The Pilot Wave

rule extends that to regarding the wave function as spec-
ifying an ensemble of possible particle paths, with the
electron traversing exactly one of those paths, but with a
certain probability for each path. So to speak, the wave
function serves to guide the electron along a definite path,
but with a specified probability. Hence the name “pilot

wave” for the wave function. In his “theory of the double
solution,” de Broglie argued for a physical mechanism to
select precisely one of those paths, but that alternative is
not available in conventional Pilot Wave theory. Instead,
path selection is said to require an act of observation,
which continues to be a subject of contentious debate
and will not be discussed here.

Strictly speaking the Pilot-Wave rule requires only an
assignment of particle paths to interpret the wave func-
tion; whence, ⇢(x, t) can be interpreted as a density

of paths. However, for agreement with the Born rule
it allows assignment of probabilities to the wave func-
tion in its initial conditions, which then propagate to
probabilities at any subsequent time. Accordingly, these
probabilities should not be interpreted as expressions of
randomness inherent in Nature as commonly claimed for
Schrödinger theory. Rather, consistent with its realist
perspective, Pilot Wave theory regards probabilities in
quantum mechanics as expressing limitations in knowl-

edge of specific particle states (or paths). This view-
point is best described by Bayesian probability theory,
as most trenchantly expounded by Jaynes [25]. Accord-
ingly, we regard the Born-Dirac wave function as specify-
ing Bayesian conditional probabilities for electron paths.
The Schrödinger wave function in Pilot Wave theory is

a many particle wave function. Here we confine attention
to the single particle theory, and we review some well
known specifics [24] to focus on crucial points.
With wave function

 = ⇢1/2eS/i~, (131)

Schrödinger’s equation can be split into a pair of coupled
equations for real functions ⇢ = ⇢(x, t) and S = S(x, t)
with scalar potential V = V (x):

@tS +
(rS)2

2m
� ~2

2m

r2⇢1/2

⇢1/2
+ V = 0, (132)

@t⇢+r ·
✓
⇢rS

2m

◆
= 0. (133)

Equation (132) can be written

(@t +
1

m
(rS) ·r)rS = �r(V +Q), (134)

where

Q = Q(x, t) =
~2
2m

r2⇢1/2

⇢1/2
. (135)

Identifying

m�1rS = v = ẋ (136)

as the velocity of a curve x(t) normal to surfaces of con-
stant S, from (134) we get an equation of motion for the
curve:

(@t +
1

m
ẋ ·r)mẋ = mẍ = �r(V +Q). (137)

This has the form of a classical equation of motion, but
with the classical potential V augmented by the quantity
Q, commonly called the Quantum Potential to emphasize
its distinctive origin.
A striking fact about Q is its influence on electron mo-

tion even in the absence of external forces. Its noteworthy
use in [26] to compute particle paths in electron di↵rac-
tion stimulated a resurgence of interest in Pilot Wave
theory. That computation supported interpretation of
Q as a ”causal agent” in di↵raction, but identification
of a plausible ”physical mechanism” to explain it has
remained elusive. So interpretation of Q as an intrin-
sic property of the wave function that does not require
further explanation has remained the default position in
Pilot Wave theory.
The Pauli equation has been used to analyze the e↵ect

of spin on electron paths in 2-slit di↵raction [27]. The
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authors identify the correct generalization of the Pilot
Wave guidance law (136) as

ẋ = rS + ⇢�1r⇥ (⇢s) (138)

However, they failed to note the more fundamental fact
that, even in Schrödinger theory, the “quantum force” is
spin dependent, though that was spelled out in one of
their references [28]. Indeed that reference derived the
equation of motion

⇢mẍ = ⇢f + T̀(r̀), (139)

where the accent indicates di↵erentiation of the stress
tensor T(n), and the applied force has the general form

f = e[E+ v⇥B/c] +
e

mc
r̀B̀ · s, (140)

while components of the stress tensor are

�i ·T(�j) =
⇢

m
s · [@i@js+ s @i@j ln ⇢] = Tji. (141)

When the spin vector s is constant, the stress tensor
term in (139) reduces to the “Quantum force” �rQ in
Schrödinger theory. Thus we see that the ~2 factor in
Q comes from squaring the spin vector, and the Quan-
tum force is actually a momentum flux. All this puts
the di↵raction problem in new light. Indeed, we shall see
that spin dependence of the quantum force is even more
obvious in Dirac theory.

Derivation of Pauli and Schrödinger equations as non-
relativistic approximations to the Dirac equation in [21]
also traces corresponding changes in local observables.
That brings to light many inconsistencies and omissions
in standard treatments of those approximations. The
most egregious error is failure to recognize that the
Schrödinger equation describes the electron in an eigen-
state of spin. Implications of that fact are discussed at
length in [22].

Another surprising result from [21, 22] is proof that
� makes an indisputable contribution to the energy in
Pauli-Schrödinger theory, even though it has been ban-
ished from the wave function. It arises from the spin
density divergence (96), which in the non-relativistic ap-
proximation takes the form

mec⇢� = �r · (⇢s). (142)

This deepens the mystery of �. More clues come from
solutions to the Dirac equation.

A. Pilot Waves in Dirac Theory

Extension of the Pilot Wave interpretation for nonrel-
ativistic wave functions [23] to Dirac theory with STA
has been critically examined at length in [29], where it is
demonstrated with many examples that calculations and

analysis with the Real Dirac equation is no more com-
plicated than with the Pauli equation. Indeed, the first
order form of the Dirac equation makes some of it decid-
edly easier. The treatment of scattering at potential steps
is generalized to include both spin and oblique incidence,
with STA simplifications not to be found elsewhere. The
analysis of evanescent waves exhibits the flow of Dirac
streamlines (without commitment to their interpretation
as particle paths). The study of tunneling times shows
how part of the wave packet passes through the bar-
rier while part slows down and turns back. No notion
of wave function collapse is needed to interpret observa-
tions. It is also shown that the distribution of tunneling
times observed experimentally can be attributed entirely
to structure of the initial wave packet, thus making it
clear that, contrary to claims in the literature, no super-
luminal e↵ects are involved. The general conclusion is
that interpretation of Dirac streamlines as particle paths
is consistent with the Dirac equation and helpful in phys-
ical interpretation.
Indeed, the fundamental equation for momentum bal-

ance in Dirac theory gives us a complete and straight-
forward relativistic generalization of Pilot Wave theory
that seems not to have been recognized heretofore. One
needs only to apply it to a single streamline z = z(⌧) with
proper velocity ż and spin bivector S = S(z(⌧)). Then
the equation can be put in the form of a generalized Pilot

Wave guidance equation:

⇤� = mecż + S ·⇤ ln ⇢+ Ṡ · ż, (143)

where

⇤� = P � e

c
A. (144)

is the gradient of a generalized electron phase expressed
in action units. This gradient expression may have im-
portant implications for electron di↵raction. For a free
particle, the generalized momentum P is necessarily a
phase gradient. However, electron motion in di↵raction
might also be influenced through a vector potential gen-
erated by material in the guiding slits. Since the curl
⇤ ^ A must vanish in the vacuum near the slits, the
vector potential is necessarily a gradient, so it can be
combined with P as in (144). This possibility has been
overlooked in the literature on di↵raction. It may be
crucial for explaining how the slits transfer momentum
to each electron in di↵raction.
The remaining piece of Pilot Wave theory is given by

the conservation law for the Dirac current (78). Evalu-
ated on the particle path it gives us

⇤2� = �mecż ·⇤ ln ⇢, (145)

which describes the evolution of path density.
The relativistic guidance law (143) not only combines

the the two basic equations (132) and (138) of nonrela-
tivistic theory into one, it generalizes the scalar Quantum

Potential into a vector S · ⇤ ln ⇢ and makes its spin de-
pendence explicit.
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To compare the two versions, we perform a spacetime
split of (143), taking due account of their di↵erent nota-
tions. For the velocity split we have

ż�0 = � + ṙ with � = cṫ. (146)

And for the spin bivector S = isv we have the split

S = s⇥ ṙ+ is?. (147)

where s? = �s � s0ṙ. Writing a = ⇤ ln ⇢ with the split
a�0 = a0 + a and using (32), we get the split of the
“Quantum Vector Potential:”

(S · a)�0 = (s⇥ ṙ) · a+ a0s⇥ ṙ+ a⇥ s?. (148)

Putting it all together, for the split of the guidance law
(143), we get the generalization of (132) and (138):

c�1@t� = mec� + (s⇥ ṙ) ·r ln ⇢, (149)

r� = mec ṙ+ (c�1@t ln ⇢)s⇥ ṙ� s? ⇥r ln ⇢. (150)

A detailed proof that the term (s⇥ ṙ)·r ln ⇢ does indeed
reduce to Bohm’s quantum potential in the nonrelativis-
tic limit is not needed here. Su�ce it to say that both
have been derived from Dirac’s equation. The term Ṡ · ż
has been ignored in these equations, because it has no
analogue in the nonrelativistic theory. It’s implications
are studied in the following Sections.

B. Cauchy problem with �

To solve the Cauchy problem for an electron, we need
to project the Dirac equation to a spacelike hyperplane.
Accordingly, we perform a spacetime split of operators in
the Dirac equation (46) to put it in the form

(@t + cr) i~ = mec
2 ⇤ + e(A0 �A) , (151)

where the mysterious parameter � is hidden in the mass
term with

 ⇤ = �0 �0, (152)

with implications to be discussed later. The definition
of electron energy in Dirac theory di↵ers from the defini-
tion in the nonrelativistic theories by including the rest
energy. As explained in [21], we can remove the rest
energy while retaining the definition of energy in terms
of the wave function by transforming the wave equation
with

 !  e�i�3mec
2t/~. (153)

to the equivalent form

(@t + cr) i~ = mec
2( ⇤ � ) + e(A0 �A) , (154)

This equation is readily re-expressed in standard Hamil-
tonian form

@t i~ = H , (155)

though the structure of the Hamiltonian operator H may
look unfamiliar at first..
Boudet has applied this approach to a thorough treat-

ment of the Darwin solutions for Hydrogen and their ap-
plication to basic state transitions [30]. (See also [29] for
a somewhat di↵erent STA treatment.) For a stationary
state with constant energy E and central potential V (r),
the wave function has the form

 (r, t) =  (r)e�i�3Et/~. (156)

And Boudet puts equation (151) in the form

r =
1

~c [�E0 
⇤ + (E + V ) ]i�3, (157)

where E0 = mec2. He then splits the wave function into
even and odd parts defined by

 =  e + i o  ⇤ =  e � i o (158)

to split (157) into a pair of coupled equations for quater-
nionic spinors:

r e =
1

~c [�E0 � E � V ) o�3, (159)

r o =
1

~c [�E0 + E + V ) e�3. (160)

These he solves to get the Darwin solutions.
The same even-odd split was used in [21] to get non-

relativistic approximations to the Dirac equation. The
split there mixes � and boost factors in a peculiar way
with no obvious meaning. Indeed, the peculiar behav-
ior of � and local velocity in the Darwin solutions defies
any obvious physical interpretation in terms of local ob-
servables, with nodes separating positive and negative
energy components in strange ways [18]. These facts
are not even recognized in the standard literature, let
alone regarded as problematic. Nevertheless, they pose a
challenge to associating particle properties with the wave
function. A capstone for this challenge is the following
virial theorem for electron energy derived in [21]:

hEi = mec
2

⌧
cos�

v0

�
= mec

2

Z
d3x cos�, (161)

where v0 = v(x) · �0 is the time component of the elec-
tron’s velocity field. A straightforward interpretation of
this result is that cos�(x) is a measure of energy den-
sity in the field of an electron. We will find confirming
evidence for this interpretation later in Section VII.
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C. Scattering and QED with zitter

The link between standard quantum mechanics (QM)
and quantum electrodynamics (QED) passes through the
Dirac equation. It is commonly claimed that the link
requires second quantization with quantum field the-
ory (QFT). But Feynman vehemently denied that claim.
When the issue arose in a QED course I attended, I recall
him dramatically remonstrating that, if anyone dares to
defend axioms of QFT, “I will defeat him. I will CUT HIS
FEET OFF!” (with a violent cutting gesture for empha-
sis). Indeed, the famous formula [p, q] = i~, which Born
proposed as a foundation of QM (and had engraved on
his tombstone), cannot be as general as he thought. For
there is no explanation why Planck’s constant here is re-
lated to electron spin or the Dirac equation. Also, one
can argue that QFT commutation relations for particle
creation and annihilation operators are merely bookkeep-
ing devices for multiparticle physics without introducing
new physics. Let’s look at how Feynman got along with-
out it.

A reformulation of Feynman’s approach to QED with
STA is laid out in [31, 32], with explicit demonstrations
of its advantages in Coulomb and Compton scattering
calculations. For example, the S-matrix is replaced by a
scattering operator Sfi that rotates and dilates the initial
state to the final state, as expressed by

 f = Sfi i (162)

with

Sfi = ⇢1/2fi Rfi, (163)

where Rfi is a rotor determining the change in direction
of spin as well as momentum, while ⇢fi = |Sfi|2 is a
scalar dilation factor determining the cross section.

Feynman linked QM to QED by reformulating the
Dirac equation as an integral equation coupled to
Maxwell theory through the vector potential:

 (x) =  i(x)� e

Z
d4x0SF (x� x0)A(x0) (x0). (164)

This solves the Dirac equation (46) with p0 = mec�0 if
the Green’s function SF (x� x0) satisfies the equation

⇤SF (x� x0)M(x0)i� SF (x� x0)M(x0)p0

= '4(x� x0)M(x0), (165)

whereM = M(x) is an arbitrary multivector valued func-
tion of x. It has the causal solution

SF (x� x0)M i =� ⇥(t� t0)

(2⇡)3

Z
d3p

2E
(pM +Mp0)ie

�ip·(x�x0)

+
⇥(t� t0)

(2⇡)3

Z
d3p

2E
(pM +Mp0)ie

ip·(x�x0),

(166)

where E = p · �0 > 0. Note that SF (x � x0) is a linear
operator on M here. In general M does not commute
with p, p0, or the bivector i = i�3, so it cannot be pulled
from under the integral.
We can draw several important conclusions from the

present approach to QED. One advantage of the inte-
gral form (164) for the Dirac equation is that the causal
boundary condition (166) explicitly enforces the associ-
ation of electron/positron states with positive/negative
energy states respectively. As noted in Section IVB, these
states can be switched by multiplication with the pseu-
doscalar i.
At this point, permit me to insert a relevant anecdote

that I heard Feynman tell on himself. One day, when he
was demonstrating his spectacular prowess at complex
QED calculations, a brave student objected: “You can’t
normalize negative energy states to plus one, you must
use negative one.” “O yes I can!” retorted Feynman
with the confidence of one who had won a Nobel prize
with his calculations and demonstrated them repeatedly
over more than a decade in QED courses and lectures.
Then he proceeded to prove that the student was right!
Sure enough, check out eqn. (62) to see that the minus
sign comes from squaring the unit pseudoscalar (which,
of course, Feynman never did learn)!
Returning to the main point, we note that the absence

of a �-factor ei� in the scattering operator (163) shows
that positive and negative energy states are not mixed in
scattering. Indeed, the question of a �-factor never arises
in QED, because all calculations are based on plane waves
without it, and it is not generated by conventional wave
packet construction.
Of course, the Born rule is not an intrinsic feature of

the Dirac equation, but is imposed only for purposes of
interpretation. It is important, therefore, to recognize
that results of plane wave scattering have a straight for-
ward geometric interpretation without appeal to prob-
ability: Indeed, the Dirac equation generates a unique
spacetime path for each point on an initial plane wave.
The conservation law for the Dirac current implies that
these paths do not intersect, though they may converge
or separate. Accordingly, if we assign uniform density to
paths beginning on the initial plane wave, then the scat-
tering operator determines the density of particle paths
intersecting a surface surrounding the scattering center.
In other words. the squared modulus ⇢ of the Dirac wave

function specifies the density of particle paths! This is
a completely geometric result, independent of any asso-
ciation with probabilities. Of course, for experimental
purposes the density of paths can be interpreted as a
particle probability density, but no inherent randomness
in nature is thereby implied.
The bottom line is that QED scattering is fundamen-

tally about paths.
Our STA formulation reveals another aspect of QED

that has been generally overlooked and may be funda-
mental; namely, the existence of zitter solutions and the
possibility that they may describe a fundamental feature
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of the electron. As we have seen, zitter wave functions
with opposite chirality can be obtained from a general
wave function  by projection with a lightlike “zitter
boost”

⌃± = �±�0 = (�0 ± �2)�0 = 1± �2. (167)

Thus, for Majorana states introduced in (75), we obtain

 ±(x) =  (x)⌃± = (⇢ei�)1/2R⌃±, (168)

where, as before, R = R(x) is a general spacetime rotor,
though we may wish to make the phase explicit by writing
R = V ei'. Then the �-factor can also be incorporated
into the rotor R, to give us

ei�/2V ei'⌃+ = V ei�3'ei�2�/2⌃+, (169)

because the ⌃+ factor converts it to a rotation:

ei�/2⌃+ = ei�2�/2⌃+ = ⌃+e
i�2�/2. (170)

Note that the �-rotation will occur before the phase-
rotation in expressions for local observables given be-
low. Thus, the �-factor tilts the spin vector before the

phase rotation in the spin plane. In other words, it is a
“geometric tilting factor.” At last we have here a clear
geometric meaning for the parameter �! And we have
already noted that � is inextricably connected with spin
as shown by the conservation law (96) and its appearance
in Pauli-Schrödinger theory in Section V.

In the next two Sections we see how these puzzling
features of � suddenly make perfect sense with a sim-
ple adjustment in the Dirac equation with far-reaching
physical implications.

VI. ELECTRON ZITTER

Soon after Dirac’s spectacular success in accounting
for electron spin and the Hydrogen spectrum, it was dis-
covered that the electron and its antiparticle were con-
joined in the Dirac equation like a pair of Siamese twins.
Though this was touted as a fabulous prediction as soon
as the positron was discovered, the doctors of Quantum
Mechanics concluded that the twins must be surgically
separated. The diagnosis and surgical procedure is most
completely explained by early practitioners such as Furry
and Oppenheimer [33]. The eventual outcome, of course,
is known as QED today.

In this Section we reexamine the anatomy of the Dirac
equation to identify structural features that can guide a
cleaner separation of the twins. In particular, we identify
zitter as the “beating heart” of the electron and note that
it has been split in two in the standard twin separation,
only to be “sewn back together” in QED. Consequently,
we introduce a new surgical procedure that highlights
zitter as a central property of the electron.

Dirac’s strong endorsement [34] of Schrödinger’s zitter-
bewegung [35] as a fundamental property of the electron

has remained unchallenged to this day, though it plays
little more than a metaphorical role in standard quantum
mechanics and QED. However, evidence is mounting that
zitterbewegung is a real physical e↵ect, observable, for
example, in Bose-Einstein condensates [36] and semicon-
ductors [37]. Analysis with a variant of the model pro-
posed here even suggests that zitterbewegung has been
observed already as a resonance in electron channeling
[10, 38]. That experiment should be repeated at higher
resolution to confirm the result and identify possible fine
structure in the resonance [39].
Theoretical analysis of zitterbewegung, or just zitter,

requires a formulation in terms of local observables. We
have already noted that the zitter frequency is inherent
in the phase of the Dirac wave function. But Schrödinger
claimed more, namely, that it is to be interpreted as a
frequency of position oscillations at the speed of light
about a mean velocity, and it has been further claimed
that association of electron spin with circular zitter was
implicit in his analysis [40].
Fortunately, the adjustment required to incorporate

zitter into standard Dirac theory is fairly straightfor-
ward, so we can brief. Accordingly, we define the “Zit-

ter Particle Model” (ZPM) to restore those fluctuations.
More generally, we see that lightlike zitter velocity factors
the Dirac Lagrangian into separate electron and positron
parts.
Revision of the Dirac equation to describe an electron

with lightlike paths can be neatly formalized with the
projection operators in (168). Zitter boosts possess the
reversion, idempotence and orthogonality properties

e⌃± = ⌃⌥, (⌃±)
2 = 2⌃±, ⌃±e⌃± = 0, (171)

as well as

⌃± � e⌃⌥ = ±2�2�0 = ±2�2, (172)

which specifies the timelike plane of the zitter boost.
Consequently, we have lightlike local observables for elec-
tron current:

1
2 +�0e + =  +�0e =  (�0 + �2)e = ⇢u, (173)

and for spin bivector:

1
2 +i�3

e + =  (�0 + �2)�1e = ⇢ei�ue1, (174)

or, for S = isu,

1
2~ +i�3

e = 1
2~ �1�+e = ⇢ei�S. (175)

The bottom line is a claim that observables of the wave
function  +(x) describe a congruence (or fibration, if you
will) of lightlike helical paths with the circular period of
an electron clock. Next we aim to extract individual
fibrations from the wave function to create a well-defined
particle model of electron motion.
We assume that the lightlike helical path of a fiber in

the wave function has a well-defined center of curvature
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with a timelike path with velocity v = v(⌧) that we iden-
tify as a Center of Mass (CM) for the electron. Accord-
ingly, we regard the electron as a particle with intrinsic
spin and internal clock.

A classical model of the electron as a point charge cir-
culating with a lightlike velocity u(⌧) around a center of
mass with timelike velocity v(⌧) identified with the Dirac
current has been proposed independently by Martin Ri-
vas [41]. It is in general agreement with the zitter model
developed here.

A. Zitter Particle Model

It should be recognized that the Dirac equation by it-
self does not imply any relation of the wave function to
electron velocity. A fundamental question in Dirac The-
ory, therefore, is how to relate observables in the Dirac
equation to particle position or path. The zitter parti-

cle model (ZPM) presented here models electron velocity
as a lightlike vector and defines a complete set of local
observables consistent with that.

We have seen that the hand of the electron clock ro-
tates with the zitter frequency, so it is natural to identify
the velocity of circulation with the vector e2 while e1
is the direction of the zitter radius vector. Since there
are two senses to the circulation corresponding to elec-

tron/positron, we have two null vector particle velocities:

e± = v ± e2 = R�± eR, with �± = �0 ± �2. (176)

It su�ces to restrict our attention to the electron case
and redefine the local observables to incorporate zitter.
Our choice of sign here is a convention in agreement with
[10].

Accordingly, we define the electron’s “zitter velocity”
u by

u = R�+ eR = v + e2 (177)

and we define the “ spin bivector” S introduced in (174)
by

S =
~
2
R�1�+ eR = hu, where h =

~
2
e1 (178)

is identified as the hand h = h(⌧) of the electron clock.
Note that the null velocity u2 = 0 implies a null spin

bivector S2 = 0. Using the identities

ue1 = e0e1 + ie3e0 = ie3u, (179)

we can write S in the several equivalent forms:

S = ius = hu = (h+ is)v = hu+ S. (180)

To further designate the vector h, let me coin the term
“spinet” (that which spins) as counterpart of the “spin”
(vector) s. In the same spirit let me call S the electron
“spindle” and note how it integrates spin and spinet into

FIG. 2. In the Zitter Particle Model the electron path is an
oriented lightlike helix with an opposite orientation (chirality)
for electron and positron.

a single mechanism. The overbar designates a “zitter
average,” that is, an average over the zitter period ⌧e =
2⇡/!e. So the “linear velocity” v = ū is an average of
the chiral velocity u, and, since h̄ = 0, the spin bivector
S = ivs is the zitter average of the spindle S.

B. Zitter Kinematics

The electron’s local observables are now restricted to
a comoving frame attached to the particle path:

eµ = eµ(⌧) = R�µ eR, (181)

where R = R(⌧) is a rotor with spin vector s = (~/2)e3
and spin bivector S = isu as defined above. We note
from (202) that its angular velocity is specified by the
bivector

⌦ ⌘ ⌦(z(⌧)) = 2Ṙ eR, (182)

so

ėµ = ⌦ · eµ (183)

on the electron path, As illustrated in FIG. 2.
As developed to this point, our Zitter Particle model

has much in common with classical models for a “particle
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with spin” considered by many authors [10], so it is of
interest to see what they can contribute to our analysis.
It is reassuring to know that the self consistency of those
models was established by derivation from a Lagrangian
in [10]. Since the kinematic details align perfectly with
our present model, we can restrict our attention to the
key kinematical equation studied there. In particular,
the relevant equation of motion for the rotor R = R(⌧)
has the strange but simple form:

~Ṙ�+�1 =
~
2
⌦R�+�1 = pR�+ + i�R. (184)

It’s interpretation is greatly facilitated as an equivalent
equation in terms of local observables. Namely,

⌦S = pu+ i�, (185)

where (178) gives us S = hu = (~/2)e1u. The bivec-
tor part of this expression gives us the spin equation of
motion:

Ṡ = ⌦⇥ S = p ^ u. (186)

And the scalar part gives us an expression for particle

energy :

p · u = ⌦ · S = ḣ · u > 0. (187)

We cannot divide (185) by the null vector u to solve for
p, but we can divide by v to get a comparable expression
for momentum

p = (p · v)u+ Ṡ · v. (188)

Accordingly, we can identify the coe�cient for the first
term as a (possibly variable) dynamical mass,

p · v/c ⌘ md, (189)

while the second term describes intrinsic angular momen-
tum in the zitter that we call spin momentum:

q ⌘ Ṡ · v = �v · Ṡ. (190)

By the way, (184) also gives us an explicit expression for
acceleration of the zitter velocity

u̇ = ⌦ · u = p · S. (191)

Finally, to complete the analysis of (185), we use (180) to
solve its pseudoscalar part for the parameter � = �(z(⌧))
as a function of the particle path:

� = h⌦sui = u · ⌦ · s = u̇ · s = u · ṡ. (192)

This is our first clear clue for a physical interpretation of
�, expressing it as a relation between electron spin and
velocity.

Since the spin momentum is an unfamiliar concept in
conventional quantum mechanics, it will be worth our

time next to examine its properties. Using S = ius we
get

q · v = (ṡ ^ u+ s ^ u̇) · v = (ṡ ^ u) · v = 0. (193)

Spin and kinetic momenta are orthogonal to one another,
because

q · v = (Ṡ · v) · v = Ṡ · (v ^ v) = 0. (194)

Hence, (188) gives us

p2 = (mecv)
2 + (Ṡ · v)2 = m2

ec
2 � (s ^ u̇)2. (195)

This suggests that

�(s ^ u̇)2 = (Ṡ · v)2 = �(p ^ v)2 (196)

is a measure of energy (or mass) stored “in” an accel-
erated electron. Also, it should be understood that the
“spin momentum” term Ṡ · v = v̇ · S describes linear
momentum due to internal angular momentum, like a
flywheel in a macroscopic moving body.
The ZPM is not complete until we specify its kinemat-

ics relating the particle velocity to its spacetime path.
Accordingly, we define

re = �ee1 with �e =
~

2mec
= c/!e (197)

as the radius vector for circular zitter at the speed of
light. The zitter center follows a timelike path z = z(⌧)
with velocity v = ż. Hence, the particle path z+ = z+(⌧)
with lightlike velocity

u = ż+ = v(⌧) + ṙe(⌧) (198)

as depicted in Fig.2. This integrates to

z+(⌧) = z(⌧ � ⌧c) + re(⌧), (199)

where, as we shall see, the time shift ⌧c depends on the
energy from external interactions. Note that the time
variable is the proper time of the zitter center.
An especially attractive feature of the ZPM is the phys-

ical interpretation it gives to e1 and e2 as the hand of an
electron clock and its rate of motion. From (197) see that
e1 = r̂e is the unit radius vector of the zitter, and from
(177) we see that e2 = ṙe is the zitter velocity.
To understand the mechanics of the electron clock we

introduce the concept of canonical momentum next.

C. Canonical Momentum

The real Dirac wave function has the canonical form

given in (47) by

 = ⇢
1
2 ei�/2R =  (x), (200)

and we spent the bulk of this paper showing how its eight
degrees of freedom can be interpreted in terms of local
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observables. Let it review the main points to see how
they relate to the problematic parameter � and the elec-
tron’s Canonical Momentum.

We have assumed that the electron path is embedded
smoothly in the spacetime manifold, so the comoving
frame of local observables extends to a field

eµ = eµ(x) = R�µ eR, (201)

and the dynamics of the local observables is determined
by the linear bivector-valued function

⌦µ = ⌦µ(x) = 2(@µR)R̃, (202)

so

@⌫eµ = ⌦⌫ · eµ. (203)

Components of the canonical momentum are then given
by

Pµ = ⌦µ · S, (204)

and the spin dynamics is specified by

@µS = ⌦µ ⇥ S, (205)

where S = hu in accordance with (180).
The rotor factor R = R(x) in the general Dirac wave

function is normalized to R eR = eRR = 1. It has a unique
decomposition into the product

R = UV U1U2, (206)

where rotor V = (v�0)
1
2 defines a boost to the electron’s

center of mass, with spatial rotors

U = U(x) = e�i�3'/2 (207)

and

U1U2 = e�i�3'1/2e�i�1'2/2 (208)

that can be parametrized with scalar phase functions
'(x),'1(x),'2(x), thus with three degrees of gauge free-
dom.

Let’s refer to R as the electron’s canonical rotor, to U
as its electric rotor and to U1U2 as its magnetic rotor.
For the record, the boost rotor is discussed in [3], which
gives the general result

V = (v�0)
1
2 =

1 + v�0
[2(1 + v · �0)]1/2

. (209)

For quantized states indexed with familiar quantum
numbers n, `,m employed in atomic physics, we can write
the most general rotor for an electron in the form

Rn,`,m = UnV U`Um. (210)

We will conclude in later Sections that these quantum
numbers characterize the electron’s magnetic field under
any circumstance, not just when it is an atomic state.

A further simplification is worth considering, namely
omitting the boost in (209) to reduce (210) to the spatial
rotor

Un,`,m = UnU`Um. (211)

with all the same quantum numbers but described in an
inertial system specified by the constant timelike vector
�0. These details are necessary for the most general elec-
tron state. But the essential part for electron motion is
specified by the canonical momentum and the spin bivec-
tor as described next.
Along the electron particle path with velocity v = v(⌧),

eqns (204) and (205) reduce to

P · v = ⌦ · S = ⌦ · (hu), (212)

and

Ṡ = ⌦⇥ S. (213)

where ⌦ = ⌦(⌧) = ⌦(z(⌧)) = vµ⌦µ(z(⌧)). Applying the
vector derivative evaluated on the particle path we have
⇤ ^ v = (v d/d⌧) ^ v = vv̇ to get

⌦ = vv̇ + (P̂ · v)e1u, (214)

with |P | = ~/2. Hence, for motion of the “electron clock
hand” h = e1~/2 we have

ḣ = (v̇v) · h+ P · v(e1u) · e1
= �(v̇ · h)v + (P · v)u. (215)

This shows the role of the canonical momentum P in
evolution of the electron clock explicitly. In the electron
rest frame this reduces to a generalization of (74)

e1(⌧) = �1 e
i'(⌧) = U�1U

†, (216)

where rotor U = U(z(⌧)) is given by (207) and '(⌧)
generalizes the free particle phase !e⌧ .
Remarkably, our model of the electron as a particle

with circular zitter was proposed by Slater [42] well be-
fore the Dirac equation and Schrödinger’s zitterbewe-
gung. His argument linking it to the null Poynting vector
of the photon may also prove prophetic. Of course, we get
much more than Slater could by embedding the model in
Dirac theory.

D. Extended Lorentz Force

At last we are prepared to consider specific implica-
tions of the ZPM with profound physical significance.
Electron momentum p = p(x � z(⌧)) is a gauge in-

variant vector field p = P � e
cA independent of the den-

sity ⇢. That means it is invariant under a gradient shift
P ! P 0 = P +⇤ ✓ of the canonical momentum.
The momentum curl has the strikingly simple form

⇤ ^ p = �e

c
F +⇤ ^ P, (217)



20

where F = ⇤ ^ A is the external electromagnetic field.
Since p = p(z(⌧)) on the particle path,we have

v ·⇤ p = ṗ and ⇤ p = vṗ. (218)

Thus, for momentum on the particle path we have

v ^ ṗ = �e

c
F + v ^ Ṗ , (219)

Accordingly, on dotting (219) with the velocity v, we get
the relativistically invariant Lorentz force law

ṗ =
e

c
F · v + q̇, (220)

with an additional term q̇ that we interpret as momentum
released to the vacuum by acceleration of the electron due
to the Lorentz force.

Based on the analysis in preceding subsections, we pro-
pose identifying q with the spin momentum defined by
(190) and propose the specific form

q = q(z(⌧)) ⌘ p� P = �s�̇, (221)

This agrees with identifying

T (s) = �⇢s�̇ = ⇢v · (s ^⇤�) (222)

as the flux in the spin direction derived from the Tetrode
tensor (123). We will confirm this conclusion with a
more direct argument later on. And we shall see that
the Lorentz force also has a spin dependent component
responsible for the Stern-Gerlach e↵ect.

Let’s call (220) the Extended Lorentz Force (ELF)
equation, because it extends the interaction F · v which
is orthogonal to velocity v with a component that is
collinear with the spin s. Note that this generalization
of the Lorentz Force o↵ers a simple solution to the long-
standing problem of explaining why atomic states don’t
radiate away all their energy. It tells us that energy re-
leased by an accelerating electron is always orthogonal to
the force and along the spin direction.

Later we will identify q with the momentum released by
an electron when it emits a photon. Thereby we finesse
the notorious di�culties of the much studied Lorentz-

Dirac equation [43], such as pre-acceleration, and run-
away solutions. Instead, radiative reaction is generated
directly by photon production, with energy (mass) car-
ried with momentum q.

E. Zitter Dynamics

Electron dynamics is governed by the Dirac equation
(93), which has been completely reformulated in terms of
local observables in (126) to make manifest its physical
structure and interpretation. We repeat that equation
here because of its seminal importance:

⇢(P � e

c
A)ei� = mec⇢v �⇤(⇢ei�S). (223)

As we shall explain, this enables a rigorous and trans-
parent interpretation of Dirac theory without any mod-
ification or approximation. Let’s call it the chiral Dirac

equation to emphasize it’s equivalence to a conventional
formulation in terms of the spinor wave function given
by (46), albeit using STA instead of an equivalent ma-
trix algebra.
Chiral Dirac (223) is a multivector equation, so it can

be separated into vector and trivector parts as two inde-
pendent equations. It appears that the physical content

of this equation resides entirely in its vector part, where
the Dirac current resides. The trivector part seems to be
a consistency constraint among the local observables and
we need not discuss it further here.
We interpret the vector part of Chiral Dirac as a con-

stitutive equation for the energy-momentum content in
the Dirac current:

⇢(P � e

c
A) cos� = mec⇢v �⇤ · (⇢ei�S). (224)

We hold that this equation applies for all values of cos�
with positive values for the electron and negative val-
ues for the positron. Thus we have a unified model of
the electron as a single entity with a range of energy-
momentum states given by cos�. Here at last we can
understand the physical significance of the mysterious
parameter �.
The terms “spinet” and “spindle” were introduced to

emphasize significance of the null bivector S = hu given
by (180). In particular, it follows from (170), that S is
eigen(bivector) for a rotation with the duality factor ei�

as its eigenvalue, as specified by the equation

ei�S = ReS eRe = R2
eS. (225)

The unique solution to this equation is the rotor Re given
by

R2
e = eX� , where X = h/s = e1e3 (226)

is the bivector generator of rotations in the spin-spinet

plane. Let’s call them chirality rotations.
Note that the chirality rotation (225)

ReS eRe = Red eReu = eX�S = h(�)u ⌘ S (227)

can be interpreted as a tilt of the zitter spin axis s(⌧) with
respect to the plane of the charge circulating with veloc-
ity u(⌧), as illustrated in the description of the Spin-
dle in FIG. 3. For a polarized electron with velocity
v(⌧) collinear with the spin s(⌧), the circulating charge
generates a helical path with energy proportional to its
pitch = cos�, which gives us at last a clear physical in-
terpretation for the parameter �; This makes it clear that
the electron properties of spin and zitter reside entirely
in the “spindle” S = S(�), where the underbar nota-
tion emphasizes a functional dependence on the chirality

angle �.
The electron’s spindle ring has two independent de-

grees of freedom. The twofold degeneracy was lifted by
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FIG. 3. Spindle structure of an electron: Picture the
Energy Shell of the electron as a sphere of radius �e with two
orthogonal cross sections. Section (a) depicts the Spindle ring
with a pole fixed as a reference point, and the electron position
r located on an Energy Bubble generated by accelerating the
electron. Section (b) depicts the tilt angle � measuring energy
~!  ~!e in the bubble and its direction of propagation along
the spin s. (not to scale).

Schwinger’s famous calculation for the electron’s anoma-
lous magnetic moment, raising the circular orbit to a
toroidal tube with radius ↵e/2⇡. See FIG.4.

F. Conservation Laws

We see the full significance of � emerge when we iden-
tify it as a measure of stored energy in the Chiral Dirac
equation (224). We identify the left side of that equation
with momentum density

⇢p ⌘ ⇢p cos� = ⇢(P � e

c
A) cos�. (228)

The gauge invariant factor (P � e
cA) includes a vector

potential A = A(x) for all external interactions. Speci-
fication of the scalar density ⇢ = ⇢(x) is discussed in a
later Section. We will identify the factor cos�(x) as a
measure of the energy extracted from the electron’s mo-
mentum when it accelerates. This is in accord with the
little known virial theorem (161) implying that cos�(x)
is a measure of energy density in the vacuum.

With the factor � incorporated into the spindle (227),
we can interpret (224) as an equation for momentum den-
sity balance:

⇢p = mec⇢v �⇤ · (⇢S). (229)

Taking the divergence of this equation and using the con-
servation law (78) for the Dirac current

⇤ · (⇢v) = 0

along with the identity

⇤ · [⇤ · (⇢S)] = (⇤ ^⇤) · (⇢S) = 0

then gives us the Gordon conservation law:

⇤ · (⇢p) = 0. (230)

FIG. 4. In a plane rotating with angular velocity !1�3 around
the CM, the electron’s lightlike circular orbit lies on a toroidal
surface called the electron energy shell that projects to the
orbital plane as an ellipse with antipodes a and b. Fig. from
[44],

We interpret this as a conservation law for energy-
momentum shared between electron and its ambient elec-
tromagnetic field.
The Chiral Dirac equation (229) is a field equation.

Extracting the particle path with velocity v = v(⌧) as
a fiber in the field we get an explicit expression for spin
dependence of electron momentum:

p = mecv + Ṡ · v + S ·⇤ ⇢. (231)

This is a completely general consequence of the Dirac
equation without any approximation. Note that the last
term measures deviations from the particle path as ex-
pected from a Stern-Gerlach force on electrons.
Ambiguities in the physical interpretation of the Dirac

current ⇢v have bedeviled quantum mechanics since its
inception. In (229) we identify the left side with Center
of Mass (CM) flow. In contrast, we identify ⇤ · (⇢S)
with a flow of charge, which is expressed in terms of a
divergence because the electron charge is displaced from
the CM by the zitter radius �e and circulates around it
at the speed of light.
The chiral Dirac equation (224) is a field equation de-

fined in terms of smooth functions f(x) of spacetime
points x, while electron particle paths are embedded as
fibers in the field.
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We have seen that zitter can be incorporated into
the Dirac equation simply by replacing the timelike spin
bivector S = isv with the null spin bivector S = isu
given by (180). With this replacement, zitter is imme-
diately incorporated into the formulation and analysis
of conservation laws for energy-momentum, angular mo-
mentum and spin in Section IV, so they are ready for
any application to the electron. Of course the ELF equa-
tion is just the energy-momentum law discussed above.
We leave detailed treatment of orbital angular momen-
tum and spin conservation for another time, though the
fundamentals are already formulated in Section IV.

VII. FROM ZITTER TO ZILCH

As first shown in [1], the Faraday bivector F = E+ iB
can be put in the unique invariant form:

F = fei� = f cos� + if sin�, (232)

where the exponential specifies a duality transformation
through an angle given by

tan 2� =
2E ·B
E2 �B2

=
iF ^ F

F · F . (233)

Note that (232) determines a rest frame in which the

electric and magnetic fields are parallel without using a

Lorentz transformation. In addition, the squared magni-
tude of f is

f2 = [(E2 +B2)2 � 4(E⇥B)2]
1
2 , (234)

which is a tensor invariant of the Poynting vector for F :

Tµ = 1
2 F̃�

µF = 1
2 f̃�

µf . (235)

This belongs to a family of invariants of the electromag-
netic field called Zilch tensors [45, 46]. All these tensors
are independent of the value for the angle � = �(x) in
(232). Ironically, that angle is the most important fea-
ture of Zilch, so we give it a special name: Zilch angle or
Zilch function or just Zilch and propose to designate
it with a special symbol, such as

� = �(x) or � = �(x), (236)

where the “null slash” symbol is suggestive of the vac-
uum. One reason the significance of this quantity has
been overlooked heretofore is that its value depends on
coupling the Dirac equation with its ambient EM field,
and that coupling is not often considered in classical EM
theory.

Indeed, we shall show that the Zilch angle can be iden-
tified with the function � = �(x) in the canonical form
(47) for the Dirac wave function, so we can write

� = �(x) , � = �(x) (237)

interchangeably. For reasons explained in preceding Sec-
tions, this implies immediately that Zilch can be inter-

preted as a measure of energy density in the electromag-

netic vacuum. That calls for analysis of the � role in
energy exchange between electron and field which we con-
sider below.
Like Maxwell’s equation, the Dirac equation is a field

equation defined on all of spacetime. The Zilch function

� = �(x) = �(x, ct) defines a mapping between these

two equations as well as an embedding of particle paths

in the Dirac field. This Section presents details of that
embedding for a comprehensive theory of the electron.

A. Dynamics with Zilch: Quantum Force &
Current

Recall that v = v(⌧) = e0 is the CM velocity, while
u = u(⌧) is the particle velocity of the electron charge
circulating in a spacelike plane specified by the unit bivec-
tor e2(⌧)e1(⌧) = e2e1 = ie3e0 designating electron spin
direction. This determines a unique comoving frame at-
tached to the electron path. Let’s call it the electron

inertial frame. Then, without loss of generality, we can
use (209) to map the electron path to the lab frame spec-
ified by �0, putting the Dirac equation in the form given
by (151):

(@t + cr) i~ = mec
2 ⇤ + e(A0 �A) , (238)

where the Zilch parameter � makes an explicit appear-
ance as a function � = �(x) in the mass term with

 ⇤ = �0 �0 = e�i� . (239)

This confirms Boudet’s demonstration that Zilch is an
essential feature of the Darwin solutions for hydrogen.
And it explains how the virial theorem for electron energy
(161) applies to an inertial system.

hEi = mec
2hcos�i = mec

2

Z
d3x cos�, (240)

further supporting the view that cos�(x) is a measure of
energy density in the field of an electron.
By the way, the association of �0 with electron mass

given by (239) clarifies another puzzling feature of quan-
tum mechanics, namely the physical significance of the
hermitian conjugate  ⇤. Moreover, we shall see that �0
can be identified with the velocity of the electron in a
spacetime Aether.

For an inertial frame with v = �0 the spin bivector S
in (180) splits into spatial vector and bivector parts:

S = isu = isvvu = isv(1 + v ^ u) = is� is ^ u, (241)

which reduces to the formally complex vector

S = is+ s⇥ u, (242)

which we refer to as inertial spin.
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FIG. 5. The lightlike helical path of an electron with zitter
radius �e, constant speed v and zitter period ⌧e.

Having decided on the primacy of inertial systems
specified by the timelike vector v = �0, we are free to
change notation and represent the electron CM velocity

by v = v(t) and speed by v = |v|. Then, for constant
speed the electron traverses a helical path, as shown in
FIG. 5.

Ṡ = �i(s ^ u̇) = s⇥ u̇. (243)

The proper velocity of electron charge is a lightlike null
vector u = u(⌧). However, its projection into an inertial
frame is a scalar u2 = u2

0�u2 = 0. Accordingly, the zitter
velocity u = u(⌧) = u(ct) ⌘ u(t) executes a helical screw
motion along its spin vector s. For constant acceleration,
the path is given by FIG 5. The general spindle structure

of electron states is described in FIG. 3 and specified by
equations (225) and (226).

With these preliminaries setting the stage, we are pre-
pared to address the fundamental problem of evaluating
the Dirac equation on a particle path. Accordingly, in an
inertial frame the vector derivative of the wave function
on a particle path reduces to

(@t + cr) =  ̇, (244)

whence the Dirac equation (238) reduces to

 ̇ i~ = mec
2 ⇤ + e(A0 �A) , (245)

with  =  (z(⌧)) =  (z(t), t). Here at last we have a
completely general version of the Dirac equation with the
zitter incorporated in the structure of the wave function
to specify electron paths. To emphasize its fundamental
importance let’s call it the Zitter-Dirac equation. Our
next task is to make its structure explicit with specific
solutions so we can study their implications.

But first it should be noted that there are no proba-
bilities involved in this equation, because it describes a
specific path rather than the ensemble of paths consid-
ered by the Copenhagen interpretation. To be sure, there
is a measurement problem because the electron is zipping
around at the speed of light, but now we see Heisenberg’s
uncertainty principle as a consequence of the electron’s
zitter radius, a purely classical concept.

FIG. 6. Lightlike helical path of an electron with constant
acceleration from rest. (Figure from [48] )

Another consequence of the classical interpretation for
zitter-Dirac is that there is no question of gauge invari-
ance. For eA0 can be identified as an electric potential,
while eA is a momentum potential, just as Maxwell sur-
mised in his original formulation of electrodynamics [47].
To emphasize the interpretation of the vector potential
eA asmomentum imparted to the electron by the vacuum,
Of course, electron and positron have opposite chirality
expressed by opposite signs of the electric charge.
A general method for solving the zitter-Dirac equa-

tion that elucidates its geometric structure is given by
the classical Frenet equations for 3D curves. As first
described in [49], that is most e�ciently done by in-
troducing a comoving frame of local observables {ek =
U�k

eU | k = 1, 2, 3} with the equation of motion

ėk = ! ⇥ ek (246)

and angular velocity

! = 1e3 + 2e1 = U(1�3 + 2�1)eU, (247)

where 1 is the (first) curvature and 2 is the (second)
curvature or torsion of the curve. Finally, the equation
of motion can be reduced to a simpler spinor equation:

U̇ = 1
2Ui(1�3 + 2�1). (248)

Call it the Spinor Frenet equation.
In the general case, the rotor U = U(t) factors into a

product U3U1U2 of three simple rotors, but for constant
spin s it can be reduced to two rotors with scalar phase
angles ✓m = ✓m(t) given in

U(t) = U1U2 = e
1
2 ✓1i�3e

1
2 ✓2i�1 . (249)

Accordingly, we can now write the rotor for an electron
with constant spin in the explicit form

U(t) = e
1
2 i!ete

1
2 ie1�(t), (250)

and its path for constant speed is illustrated in FIG. 5,
without showing a possible phase shift when the signal is
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emitted. The rotor for constant acceleration is illustrated
in FIG. 6

The electron spindle structure specified by these equa-
tions is described by FIG. 3 in Section VI. We emphasize,
however, that the Zilch function � = �(x) = �(x, t) is a
scalar-valued field that permeates all of spacetime with
values � = �(⌧) on the path of a zilch signal. Thereby
it may serve as an electromagneic Aether, much as Dirac
[2] and others have proposed.

B. Birth of a photon

In the preceding subsection we described motion of an
electron in an inertial frame with zilch functions given
by (249) and (250). In subsequent Sections we will use
the same functions to describe Zilch signals emitted
into the Aether by an electron at rest. Moreover, we
will freely switch between these alternative interpreta-
tions when convenience and context permits.

Here we apply the same equations to describe produc-
tion of a photon from a freely moving electron. To set the
stage, we interpret kinetic energy in free electron zitter
as a dynamical mass

mec
2/2 = ⌦e ·S = (�i!e) ·(is) = !e ·s = ~!e/2. (251)

Then the classical energy equipartition theorem tells us
that the total energy is composed of equal parts kinetic
energy K and potential energy V given by

E = mec
2 = Ke + eVe = ~!e, (252)

where V = eVe = e2/2r is potential energy with respect
to the electron CM. This is consistent with the energy
equipartition theorem derived from the Dirac equation
(240).

When a electron is accelerated, the force law (220) re-
quires that a packet of energy (a photon) be released
to the vacuum to maintain the balance of bound energy

(189). De Broglie realized that this energy release is
equivalent to creating a positron with negative energy
(�e)Ve = �e2/2r. That will be recognized as a version
of Dirac’s “hole theory” argument to justify the existence
of the positron, which was surely the inspiration for de
Broglie’s theory that the photon must be composed of an

electron-positron pair [50].
Though de Broglie persisted in his claim that the Dirac

equation must explain the photon, he was never able to
bring his argument to a successful conclusion. Here we
show how to realize de Broglie’s proposal with the zit-
ter particle model depicted in Fig.1 for both electron
and positron. We simply assume that both electron and
positron have helical paths with a common center, but
separated with a spacelike interval less than a Compton
wavelength.

As described in Fig. 7, we assume that photon produc-
tion originates at the CM with the creation of an e�e+

pair with dynamical mass

m� ⌘ me cos�, (253)

FIG. 7. Spindle structure of a photon: Picture the pho-
ton Energy Shell as a sphere of radius �e with two orthogonal
cross sections. Section (a) depicts the Spindle ring for a pho-
ton composed of an electron-positron pair e+e� with fixed
separation 2r circulating at the speed of light with polariza-
tion angle '0, where the range 0  '0  ±⇡ designates left
and right circular polarizations. Section (b) shows the photon
vector k and tilt angle � in the photon bubble filled with en-
ergy ~!e (not to scale). When the bubble is filled with energy
2mec

2 the photon splits into an electron-positron pair.

FIG. 8. Picture the photon as a moving Spindle ring with
angular momentum ~ that generates an electromagnetic wave
with amplitude normalized to its energy. (Figure from [48]
with a di↵erent but related interpretation)

where � is the chirality angle given by (228) and shown
in Fig. 3. In other words, the electron spindle generates
a photon with energy

E� = mec
2 cos� =

2e2

r
= ~!� , (254)

and the energy shift in the process of radiation is given
by

E/~ = (�i!) · (iŝ) = ! · ŝ = ! ŝ = !e ± !� , (255)

where the constraint ! ^ s = 0 ensures that propagation
of the photon is aligned with the spin axis, while ± des-
ignates opposite circulations. Thus, the electron spindle
functions as a circular antenna generating photons while
its charge circulates around the spindle ring.
As depicted on Fig. 5 for the rest frame of this electron-

positron system, the particle motion projects to a circle
with zitter radius �e where electron and positron are lo-
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FIG. 9. The photon can be modeled as an electron-positron
pair located on a toroidal ring (or energy shell) with a fixed
angular separation '0 designating its polarization and com-
plementary Villarceau circles for electron and positron. The
fusion of these circles with a suitable phase lag generates a
toroidal photon path.

cated with fixed angular separation '0 and spin angular
momentum 2s = ~�3.

Now we assume that the e�e+ segment embedded in
the photon ring, and the spin and charge stored within
it, propagates as a photon along a lightlike path with
tangent vector k and helical path like the one depicted
in Fig. 4. It is amusing to think of the e� and the e+ as
terminals of a battery that drives a current of constant
energy ~!� around the ring.

As the photon moves, it generates an electromagnetic
field that can be represented algebraically by a vector
potential

A = !� e e
ik̂', (256)

with amplitude proportional to the frequency !� and
phase '(t) = k · z + '0 with k · z = !t � k · z(t), while
the initial phase is set by a fixed vector e with e · s = 0.
Note that the variables for time t and frequency !� are
set as initial conditions in the instantaneous rest frame
of the electron emitting the photon. We note also that
the photon carries energy ~!�  2mec2 with the limiting
value given for pair production

The photon propagates at the speed of light with mo-
mentum p = ~k, so p2 = 0. The photon energy ~!� = p·v
is determined by the proper velocity v = v(⌧) of the
source when it is emitted. Therefore, without loss of
generality, we can describe photon emission in the instan-
taneous rest frame of the electron given by v = �0, so we
have the momentum spacetime split p�0 = ~(!� + k).
Then from the rest frame independence of our photon
model we conclude that the momentum of the emitted

photon p = ~k must be collinear with with electron spin

s. Among other things, this general result accounts for
the headlight e↵ect in cyclotron radiation.

We complete our picture of the photon by projecting its
lightlike path in spacetime into the spacelike path shown
in Fig. 8. That depicts the photon ring generating a cir-

cularly polarized electromagnetic wave with various fre-
quencies as it propagates with velocity ck̂.
Finally, incorporating the toroidal structure of elec-

tron’s anomalous magnetic moment described in Fig. 8
thickens the photon ring. Thus, the field generated in
each cycle is akin to a smoke ring, so the whole wave
train consists of a chain of discrete “circulating smoke
rings” much like the “vortex atoms” proposed by Lord
Kelvin in the nineteenth century. That is consistent with
the experimentally observed countability of photons. The
structure of the photon ”smoke ring” is pictured in Fig. 9.
Its toroidal path [51] is depicted in Fig. 10 .
The problem remains to square our model of the pho-

ton with what is known about electromagnetic radiation
discussed in [44]. As explained there, the motion of a
photon is governed by Maxwell’s equation

@0F = �rF, (257)

with the constraint F 2 = 0. For a photon we can write
F = E+ iB = E(1+ k̂), where the electric field E = @0A
is determined by the vector potential given by (256).
The photon field F = F (') has the same functional

form as a plane wave, but its phase function ' = k · z(⌧)
is centered on a lightlike curve z = z(⌧). Hence, the
phase is given by ' = !t� k · z. and Maxwell’s equation
(258) reduces to the eigenvalue equation

kF = ±F!, (258)

where the signs correspond to states of left/right circular
polarization. Moreover, we can decompose F into the
canonical form

F = E+ iB = fZ, (259)

where

Z = Z(') = ⇢ei' (260)

can be regarded as a complex impedance of the photon
singularity, and f is a polarization bivector with various
forms given in [44]. In particular, we can write

f = ê eik̂'0 = ê(cos'0 + ik̂ sin'0) = e+ ib, (261)

where '0 is the polarization angle in Fig. 5 and ff † =
1. The parameter ⇢ in (260) requires some explanation
which we present in the next Section.
Finally, we complete our model of the photon by men-

tioning a recent demonstration that the photon has
a well defined center of mass (CM) just like the
electron [52]. Among other things, this means that
optical properties such as amplitudes, phases and cor-
relations (even quantum entanglement) can be deduced
directly from measurements of light intensity.

VIII. MASS AND ENERGY DENSITY

Newton supposed that some kind of medium is needed
to transmit gravitational interactions, but he wisely de-
clined to speculate about its properties. In the eighteenth
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FIG. 10. The grey line represents the photon’s axis of travel
around the toroidal flow. This is a left-circularly-polarised
photon. The spin axis in aligned with magnetic north N .
Figure from [53]

century Maxwell led the way in developing a theory of the
vacuum that culminated in an electromagnetic explana-
tion for the properties of light. Regarding the vacuum as
a dielectric medium with variable permittivity " = "(x)
and permeability µ = µ(x) at each spacetime point x,
Maxwell’s condition for the propagation of light in a vac-
uum is given by

"µ = 1/c2 = "0µ0. (262)

From that starting point Seymour Blinder [54, 55] has
shown that polarization of the vacuum in the neighbor-
hood of a classical electron is uniquely determined by the
very simple assumptions that

(1) the energy density of the electron field is propor-
tional to the charge density, and

(2) the total energy in the field determines the electron
mass.

"(r) = "0 exp

✓
�c
r

◆
, (263)

where

�c =
1

2

e2

mec2
= ↵e�e (264)

is recognized as half the classical electron radius ex-
pressed as a product of the fine structure ↵e and the
zitter electron radius �e. I call lt the Blinder ansatz.

This puts that �e into new perspective as the radius of
vacuum polarization. Absorbing the constant "0 into the
units defining electric charge, we interpret its inverse "(r)
as a material density of the electromagnetic vacuum:

⇢e(r) = ⇢e(x� ze(⌧)) = "�1(r) = e��c/r, (265)

where r = (x� z(⌧)) · v is the classical retarded distance

from the position z(⌧) of the electron’s Center of Mass

CM.

Note that the position ze(⌧) of Center of Charge CC
is separated from the CM by the zitter radius

|ze(⌧)� z(⌧)| = �e, (266)

and at that separation

⇢e(ze(⌧)� z(⌧)) = e��c/�e = e�↵e (267)

can be interpreted as a dimensionless measure of the
strength of a vacuum singularity,
That singles out the Dirac current e⇢ev, or more pre-

cisely, the fluctuating null current e⇢u specified by (177),
as the source of the electron’s electric field.
Accordingly, we follow Blinder in identifying each elec-

tron as a singularity in the universal spacetime vacuum.
The ansatz explains how energy (aka mass) is stored in
the vacuum. And we note that the Extended Lorentz
Force (220) serves as a mechanism for installing or re-
moving energy in the vacuum, in particular, for creating
or absorbing photons.
To put the Blinder ansatz in context, we recall from

(47) and (206) that the Dirac wave function  =  (x)
has the general form

 = ⇢1/2ei�/2R where R = UV U1U2 (268)

is a unique factored form of the rotor R = R(x). We
focus our attention here on the factored form  =  R0,
where the factor

 = ⇢1/2U(') = e�(↵+i�3'). (269)

has the familiar form for the Schrödinger wave function
given by (131), but the rotor U = U(x) can be identi-
fied now as the generator for the spinet, the hand of the
electron clock given by (207). On a particle path the
variations of this phase in this wave function are given
by ' = '(x � ż(⌧)), and governed by the Dirac equa-
tion. That is well established in non-relativistic as well
as relativistic QM.
On the other hand, the physical significance of the

scalar factor ⇢ in (269) has long been a subject of in-
tense debate, in particular, as to whether it implies that
QM is inherently probabilistic. To resolve the issue, de

Broglie claimed we must be able to define an alternative

wave function that does not involve probabilities. But he
was not able to show how to do it. Let is see how the
Blinder ansatz solves that problem.

A. Real de Broglie waves and the superposition
principle

For a single electron with density ⇢e(⌧) = ⇢e(z(⌧))
along its path z = z(⌧) given by (265), we define a wave
function with amplitude

 e = ⇢1/2e e�i'/2 = e�(�c/r+i!e⌧)/2 =  e(r, ⌧), (270)



27

Let’s call this a real de Broglie wave. The usual
Schrödinger wave function  S has the same kind of com-
plex function form. Indeed, linearity of the Dirac equa-
tion allows a superposition of solutions with a complex
“Schrödinger” factor

 S = C e (271)

that can be identified as a probability amplitude in ac-
cordance with standard QM. It seems to have been over-
looked, however, that the probability amplitude  S may
have an irreducible complex factor  e with a physical
interpretation that does not involve probabilities.

That observation may be su�cient to resolve the con-
tentious debate between realist and subjectivist interpre-
tations of QM. Of course, experiment must be the arbiter
for the debate. To be specific, we need experiments on
single electrons to measure their real de Broglie wave
properties directly. This is not the place for details, but
a few remarks will point to possibilities.

In particular, we look to measure the electron’s Blin-

der density ⇢e =  e †
e in the vacuum near a fixed sur-

face. One well developed experimental domain where
this is relevant is di↵raction of single electrons and pho-
tons. The key issue there is the mechanism for momen-
tum transfer between the particle and di↵racting slits
[56]. A related issue is the role of Blinder density and
evanescent waves in the Goos—Hänchen and Imbert—
Fedorov beam shifts [57]. A third issue is the role of real
de Broglie waves in explaining tunneling and tunneling
times [29].

As a technical point about de Broglie waves, we note
a crucial feature of the ansatz is that ⇢(ze(⌧)) = 0 ev-
erywhere along the electron path ze(⌧), and thus at a
single point on any 3-D spacelike hypersurface. At that
point the phase in the wave function is undetermined,
so it can be multivalued. This mechanism serves also
to pick out a particle path in the Pilot Wave theory of
Section V. Indeed, it has the surprising implication that
the Quantum potential in Pilot wave theory vanishes on
the electron path [44], with important consequences that
have not been previously considered.

It is no accident that the Blinder constant �c is simply
proportional to the London penetration depth in super-
conductivity [58], since both describe fundamental prop-
erties of the electron. Some of the many implications
have been discussed by Hirsch [59]. Here we identify the
London penetration depth with the irreducible amplitude
 e in the electron wave function (270), so it is an essential
element in electron structure.

We conclude that the electron is nature’s most basic
superconducting current loop. Electron spin designates
the orientation of the loop in space. The electron loop is
a superconducting LC circuit. The mass of the electron
is energy in the electron’s electromagnetic field.

B. Singularity structure

The Blinder function defined for the electron by (265)
has an alternative formulation suggesting a general prop-
erty of vacuum singularities not limited to the electron or
photon. Thus, we write the electron’s Blinder exponent
in the form

�c/r =
e2/~c

mec/~v · (x� ze)
=

↵e

ke · (x� ze(⌧))
. (272)

This suggests that any particle with kinetic momentum
k = p/~ and position z(⌧) will have a Blinder function of
the form

⇢ = e�↵e/k·(x�z(⌧)), (273)

so the particle is located at ⇢ = 0, and we drop the sub-
script on ke to allow k to be a null as well as timelike.
There is no longer a suggestion here that the exponent
is the Coulomb potential of a charged particle. Here the
fine structure constant ↵e acts as a kind of general scal-
ing constant for vacuum singularities, so it may play that
role even in strong interactions, as argued by MacGregor
[60].

Like the electron, the photon is a singularity in the
electromagnetic vacuum field with density ⇢ = ⇢(z) plau-
sibly described by (273). That gives the photon a size and
shape. One might worry that the photon density (273)
could propagate like the electron’s Coulomb potential to
influence the photon’s surroundings in a way that has
not been observed. However, it is a general theorem [29]
that influence from a null surface, like the boundary of
a photon path in the present model, will propagate only
along that boundary. In free space the photon moves in
a straight line. However, in a wave guide or optical fiber,
the path is shaped by the material walls that modify the
parameter ⇢.

Note that incorporating the Blinder function into our
model of the photon increases the degrees of freedom for
the vector potential A specified in (256) from 1 to 2.
Thus, with e · k = 0 the polarization vector e can be
generated by rotor U = U1U2 and written

e = U�1Ũ . (274)

as specified before by (208) and (210). This provides
strong theoretical grounds for predicting the existence
of quantized toroidal states for individual photons. Ex-
perimentalists will be proud to announce that they got
there first! It seems they have already detected toroidal
states in the di↵raction of individual photons! [61] How-
ever, that may be a beginning rather than the end of the
story, a presage of a richer landscape of toroidal states
in elementary particle theory to be considered at another
time.
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FIG. 11. Zitterbewegung oscillations in atomic states. (Fig-
ure from [62]). Now we can understand them quantitatively
as paths on a torus generated by the electron’s anomalous
magnetic moment.

IX. ZITTER-DIRAC EQUATION

Now we are prepared to bring our long investigation
into the physical interpretation of Dirac’s equation for
the electron to a definitive conclusion.

We reframe the analysis in Section VIIA to show how
directly the results flow from the Dirac equation itself.

We suppose now that when the Zilch signal is received
by a near or adjacent electron with an aligned spin, a res-

onant coupling of the zitter phases can be set up between
the two electrons that can evidently be identified with
the Quantum Force proposed and studied at length by
Jorge Hirsch [59].

Free from external perturbation, the strength of the
resonant coupling by two electrons is not limited by dis-
tance. For example, the electrons may be located on
opposite plates of a capacitor. Moreover, in an electric
circuit the signals from similar pairs in a capacitor can
be bundled collectively as filaments of an electric current
that carries energy but no charge. We identify it as the
celebrated Displacement current that Maxwell postu-
lated to complete his theory of electrodynamics. Though
this current carries no charge, it does generate a mag-
netic field so it must play a role in electromagnetic in-
duction. Accordingly, we identify the zilch signal as
the central line of magnetic force connecting two
electrons, in other words, the Quantum Force. We
explore the many implications of that idea in the follow-
ing Sections.

A. Displacement current: Zilch signal

As explained with (249), for constant spin the rotor
equation for a Zilch signal can be written in the explicit

forms

U(t) = e
1
2 ✓1i�3e

1
2 ✓2i�1 = e

1
2 i!ete

1
2 ie1�(t) (275)

and its path for constant � is illustrated in Fig. 5, without
showing an initial phase shift when the signal is emitted.
For the de Broglie wave function (270), direct chiral

projection onto the spindle gives us

 (x, t) = ⇢e(x, t)
1
2 e

1
2 i!ete

1
2 ie1�(t). (276)

This equation can be interpreted as an accelerating elec-
tron or a magnetic zilch signal, depending on initial con-
ditions (Fig. 6). The electron’s Spinet action can be pic-
tured as a propeller with variable pitch that drives the
the electron through the vacuum zilch. The zilch sig-
nal can be identified with the Displacement current @tD
in standard electromagnetic theory. This has simplifica-
tions first recognized by Dirac.
In 1951, Dirac published a short article entitled Is there

an Aether? [2, 63] Therein he proposed that all inertial
forces are due to local motion of the vacuum, to which he
ascribed the velocity (in his notation):

U =
�q

mc
A with U2 = c2, (277)

where A is the relativistic version of Maxwell’s vector
potential. This is completely consistent with the zitter-
Dirac equation (245), so it is free from the problems of
gauge invariance that bedevils conventional quantum me-
chanics. We consider its implications for Maxwell’s equa-
tion below.
The year 1951 is a good date to mark completion of

Dirac’s contribution to quantum mechanics with a salu-
tation to Maxwell.

B. Atomic Structure

For integer values of the zilch phase the wave function
(276) reduces immediately to a general solution for the
Bohr atom where n = 1, 2, ... is the principal quantum

number :

 n(x, t) = ⇢e(x, t)
1
2 e

1
2 i!ete

1
2 ie1�n(t). (278)

This is the solution depicted in Fig. 11. Generalization to
include angular momentum and magnetic quantum num-
bers as specified by (210) is given by the wave function

 n,`,m =  n(x, t)U`Um. (279)

This, in fact is the form of the general solution of the
Dirac equation found by [30] and described in Section
VB. However, this presentation shows that the quantum
numbers < n, `,m > belong to the magnetic zilch field
and not to the electric charge of the electron. Indeed,
there is clear experimental evidence that zilch can be
separated from charge in di↵raction, as discussed below.
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FIG. 12. Spin transfer torque

[64]

On the other hand, the Dirac equation also determines
discrete paths for the electron in hydrogen, as specified
at length in [44]). The standard objection to these solu-
tions is that they are not energetically stable, because an
accelerating charge radiates away energy. Now, however,
we see that atomic electrons can be stabilized by the zilch
field in which they are embedded, as explained next.

C. Radiation with Zilch

Equation (276) is an exact solution of the Zitter-Dirac
equation, but it has been overlooked until the analysis of
local observables in this paper identified the Zilch func-
tion �(x, t) as the universal substrate of the electromag-
netic vacuum. This confirms the identification (221) of
q = �s�̇ as momentum released to the vacuum by accel-
eration of the electron due to the extended Lorentz force
(ELF):

ṗ =
e

c
F · v + q̇. (280)

Although this is relativistically invariant, we have seen
that projection into the electron’s rest system has special
physical significance. In Section V we saw that the Dirac
equation implies a force on an electron given by (140),
which is worth repeating here.

f = e[E+ v⇥B/c] +
e

mc
r̀B̀ · s, (281)

and we confirm that this must be augmented by release
of momentum given by q = �s�̇ as explained in Section
VID.

D. Spintronics

Spintronics (aka spin-based electronics) is concerned
with manipulation of spin degrees of freedom in solid
state systems along with electronic charge used in tra-
ditional semiconductor electronics. Its applications are
vast, from information storage and transfer to quantum

FIG. 13. E↵ects of mechanical rotation on spin currents. So-
lution for the equation of motion is a superposition of two
cyclotron motions with di↵erent frequencies. The drift ve-
locity of the up-(down-) electron is v+

d (v�
d ) parallel to the

azimuthal direction denoted by �̂.[64]

computing, but it has lacked a coherent theoretical foun-
dation in quantum mechanics. In a stunning tour de

force that foundation has been supplied in [64] and de-
scribed brilliantly with two excellent figures: FIG. 12 and
FIG.13. They found exact solutions of the Dirac equation
for a rotating frame using techniques that were available
more than eighty years ago but obscured by a deficient
understanding of electron spin. Happily, the solutions
are much easier to derive from the zitter-Dirac equation
(245), and they take the form given by (276).
In particular, as shown in FIG. 13, an external Lorentz

force with cyclotron frequency !c drives individual elec-
trons with opposite spins to circulate in opposite direc-
tions specified by the factors

e±
1
2ie1!c , (282)

where  is a scalar constant specifying density of states
for the material in which the electrons are embedded.

E. Stern-Gerlach and AB e↵ects

Note that the last term in (281) is just what is needed
to produce a Stern-Gerlach e↵ect for electrons. It is
a consequence of the spindle structure of the electron.
Problems involved in detecting it experimentally have
been deeply discussed by Batelaan [65]. The solution
promises to provide a fundamental device for separating
spin up and down states of the electron with rich impli-
cations for spintronics and quantum computing.
Batelaan [66] has also conducted ground breaking re-

search on Aharonov-Bohm e↵ect in Fig. 14. However,
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FIG. 14. The AB e↵ect is explained by a nonconservative
force of classical origin. [67]

Wesley [67] explains that the vector potential in the fig-
ure has a perfectly satisfactory classical explanation as
motional induction [68] with a nonconservative force pro-
portional to Ȧ. According to the zitter Dirac equation
(245) there is nothing problematic about this force. The
mistake in previous analysis was failure to recognize that
the Dirac equation implies that the Lorentz force (which
assumes the electron is a point charge) must be general-
ized to an Extended Lorentz Force (ELF) to account for
electron zitter.

F. Marinov Motor

The design and performance of the Marinov motor has
been thoroughly discussed by Phipps [69, 70]. But some-
thing crucial is missing from the account, namely the
spin of the electron in the electric current. We can ex-
plain the significance of that fact here and leave the rest
to Phipps. The spin of an electron free to move in a
magnet naturally aligns itself with the spins in the mag-
netic substrate. When the magnet moves it generates an
electric current J = ŝD = D which we can identify with
Maxwell’s Displacement current. As we have seen before,
this current generates a magnetic field which propagates
in the vacuum. When the closed circuit of magnets in 15
is given a push, it starts to rotate around a vertical axis,
and generates a displacement current @tD that drives a
current 2D = �̇ around a closed circuit and continuously
releases energy into the vacuum.

G. Particle Di↵raction by Zilch

Maxwell–Dirac theory has unique implications for the
problem of electron and photon di↵raction, indeed, for
particle di↵raction in general. The main problem with
particle theories of di↵raction is identifying a plausi-

FIG. 15. The Marinov Motor does useful work on mechanical
systems by extracting magnetic energy from the vacuum

[69, 70]

ble mechanism for momentum exchange between each
di↵racted particle and the slits, a causal link which is
missing from all accounts of di↵raction by standard wave
mechanics and Pilot Wave theory. For each scattered par-
ticle momentum transfer is directly observable, whereas
the di↵raction pattern conserves momentum only as a
statistical average. Evidently the only way to account
for this fact is by reducing di↵raction to quantized mo-
mentum exchange between each particle and slit. To that
end, a detailed analysis of optical di↵raction patterns ex-
plained by photon momentum exchange is given by Mob-
ley [56].
The double-slit di↵raction pattern for light has been

long been regarded as prima facie evidence for wave-
particle duality. However, refinement of experimental
technique in recent decades has produced a growing body
of evidence for an alternative explanation for di↵raction,
namely: quantized momentum exchange between parti-
cles and the di↵racting slits.
The statistical build-up of a di↵raction pattern one

particle at a time is essentially the same for photons and
electrons [65, 71]. A comparable result has been found
for di↵raction of neutrons and atoms [72, 73] as well as
molecules as large as C60 [74, 75]. It even extends to
di↵raction of optical vortex knots [61]. And our analysis
in Section IV of excitations in the free field of an electron
suggests similar results in electron di↵raction.
The fact that the build-up of a di↵raction pattern is

essentially the same for such a wide variety of particles
calls for a theory that explains the essential mechanism
producing the result. Such a theory has been constructed
by maverick physicist J. P. Wesley [76], though it has
found little recognition in the physics community despite
its high relevance to the wave-particle puzzle.
Since Wesley’s own account is so clear and straight-

forward, we can settle for a brief summary of significant
points here. Wesley shows that the 2-slit di↵raction pat-
tern can be constructed from particle trajectories gener-
ated by the scalar wave equation, given a suitable energy
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E = ~! and wave number k = p/!.
Now we identify the universal Zilch function � = �(x)

as the causal mechanism for di↵raction. Then we suppose
that vanishing electric and magnetic fields outside the
di↵raction slits are generated by a vector potential A =
A(x) with ⇤^A = 0, so locally, at least, A is a gradient.
Assuming the same for the canonical momentum P in
(204) , we have a gauge invariant phase gradient

⇤� = P � e

c
A. (283)

This provides a promising mechanism for quantized mo-
mentum transfer in di↵raction. For we know that quan-
tized states in QM are determined by boundary condi-
tions on the phase. Successful calculation of di↵raction
patterns along these lines would provide strong evidence
for the following claim: the vacuum surrounding elec-
tromagnetically inert matter is permeated by a vector
potential with vanishing curl. Evidently the same mech-
anism can explain the extended Aharonov-Bohm (AB)
e↵ect [66]. One concludes, then, that the causal agents
for di↵raction and the AB e↵ect are one and the same:
a universal vector potential permeating the vacuum (or,
Aether, if you will) of all spacetime, much as proposed
by Dirac [2].

Considering the similarity of electron and photon
di↵raction patterns, we should expect the same mecha-
nism to explain both, especially if photons are composed
of electron-positron pairs as proposed in the preceding
Section. Indeed, the evolution of path density for the
electron is determined by the Dirac equation, which gives

⇤2� = �mecż ·⇤ ln ⇢. (284)

For a photon with propagation vector k, the analog is

k ·⇤ ln ⇢ = ⇤2�/~, (285)

where, of course, ⇢ is the path density for photons, just as
it is for electrons. Accordingly, we conclude that di↵rac-
tion is “caused” by the vacuum surrounding material ob-
jects. In other words, di↵raction is refraction by the vac-

uum!
Strictly speaking, the density (impedance) of the vac-

uum should be incorporated into any vector potential
by writing A = ⇢A, with a new notation to distinguish
it from the usual vector potential, whether or not it is
the gradient of a scalar field. The Aether can then be
regarded as a conserved fluid (with ⇤ · A = 0) flow-
ing through spacetime with particle singularities (elec-
tron, photon or whatever) in the density swept along.
This picture has a beautiful macroscopic analog describ-
ing di↵raction of a macro particle in a classical fluid [78].

H. Gravito-electromagnetism (GEM)

The relation of gravity to electrodynamics has been a
fundamental question since the validation of Maxwell’s

FIG. 16. Di↵raction mechanism. Vacuum field modes are
selected by the double-slit structure, which in turn guide the
electron particle motion. ( Figure from H. Batelaan [77])

equation. Famously, Einstein was inspired by Mach in
creating General Relativity (GR) as a universal theory
of gravity but was greatly disappointed to conclude that
GR is incompatible with Mach’s Principle. The possi-
bility that gravity is an inherent property of the vacuum
is given new currency by Dirac’s proposal (277) which
enables us to identify the Aether with Zilch. The role of
the constant c2 = 1/µ✏ is especially noteworthy as the
Blinder ansatz identifies electron mass me = E/c2 with
energy stored in the vacuum, while others ([79]) have re-
lated it to Mach’s Principle. How this enables unification
of gravity with electromagnetism (GEM) is thoroughly
discussed by [80]. That can be compared with the more
conventional approach to gravity from GR reviewed by
[81]. A formulation “Einstein’s Gravity” compatible with
GEM is given by [82, 83]. This has practical implications
for lunar laser ranging measurements and the behavior of
clocks in a global positioning system as discussed by [84].
A definitive study of Mach’s Principle from a classical
point of view has been given by Andre Assis [85].

I. Quantum Force and Superconductivity

As depicted in FIG 3, the electron energy shell is a
sphere with a diameter of a Compton radius 2�e. Conse-
quently, Coulomb repulsion keeps conducting electrons in
a metal separated by that distance under normal condi-
tions. However, as described in FIG. 17, when neighbor-
ing electrons have parallel spins they can form a resonant
state where their centers are separated by less than 2�e.
We emphasize that this model of a bound electron pair
was derived by Martin Rivas from deep analysis of the
Dirac equation with a point particle interpretation. We
propose it as a model for the Cooper pair in super con-
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FIG. 17. Initial position and velocity of the center of mass
and charges for a bound motion of a two-electron system with
parallel spins. The circles would correspond to the trajecto-
ries of the charges if considered free. The interacting Coulomb
force F is computed in terms of the separation distance be-
tween the charges. [41]

ductivity theory, and we call the mean separation of the
of the circulating electrons the Rivas distance.

States where spin currents exist in the absence of exter-
nal fields have been thoroughly studied by Jorge Hirsch to
describe the superconducting state of metals [86] and aro-
matic molecules [86]. We to refer to work as the Hirsch

theory of superconductivity to distinguish it from BCS

theory. In a subsequent paper we expand the present
model for a Cooper pair into a unified theory of the Pauli
Principle and nuclear structure.

X. ONTOLOGY CUM EPISTEMOLOGY

When long-standing scientific debates are finally re-
solved, it invariably turns out that both sides are correct
in positive assertions about their own position but incor-
rect in negative assertions about the opposing position.

The Great Debate over the interpretation of quantum
mechanics can be cast as a dialectic between Einstein’s
emphasis on ontology and Bohr’s emphasis on epistemol-
ogy [87]. This paper o↵ers a new perspective on the
debate by focusing on the local observables determined
by the Dirac wave function.

Since the Dirac equation is a linear di↵erential equa-
tion, the superposition principle can be used to intro-
duce probabilities in initial conditions and construct the
wave packets of standard quantum mechanics with the
Born interpretation of ⇢ as probability density. This es-
tablishes full compatibility between the Pilot Wave and
Born interpretations of Dirac wave functions.

A definitive analysis of zitter in the Dirac wave func-
tion was given in Section IVC and proposed as a defining
property of the electron. That shows that zitter can be
regarded as electron phase incorporated in charge oscil-

lations around its Center of Mass. That completes the
description of the electron in Born-Dirac theory as a par-
ticle with intrinsic spin and zitter in its motion.
Concerning the Born rule for interpreting the wave

function in Quantum Mechanics: There is no doubt that
probability is essential for interpreting experiments. In-
deed, overcoming the failure of Old Quantum Theory to
account for intensities of spectral lines was one of the first
great victories for Quantum Mechanics and Born’s rule
for statistical interpretation.
Moreover, it comes not to destroy QM but to fulfill!

For the particle model o↵ers an ontic interpretation to
QM, while QM o↵ers an empirically significant way to as-
sign probabilities to particle states. The particle model
provides electron states with definite position, momen-
tum, spin and (zitter) phase.
The Born rule o↵ers a way to assign probabilities to

these states. However, such probabilities do not im-
ply uncertainties inherent in Nature as often claimed.
Rather, they express limitations in our knowledge and
control of specific states, best described by Bayesian
probability theory so ably expounded by E. T. Jaynes
[25, 87].
Of course, the present approach calls for reconsider-

ation of many arguments and applications of standard
quantum mechanics, especially those involving zitter and
the Heisenberg Uncertainty Relations, which are already
burdened by many conflicting interpretations [88].
A new perspective on the Great Debate on the inter-

pretation of QM is introduced by incorporating Zilch as
well as Zitter in our electron model, as is evident in pre-
ceding examples.

XI. ACKNOWLEDGEMENT

I dedicate this paper to my good friend Roget Boudet,
who contributed significantly to its development. Roget
died on August 31, 2016 at the age of 88. These remarks
serve as an obituary.
Roget was a fiercely independent and scrupulous fel-

low, with a strong social conscience. I know nothing of
his early life, but I believe he worked as a sailor in his
youth, and I know he enjoyed sailing throughout his life.
He received his doctorate in mathematics and held the
rank of professor at Aix-en-Provence in France until his
retirement.
Roget told me that his doctoral advisor was the last

of the true experts on “Classical Geometry,” and spoke
of him with great reverence. Roget continued that work
in his thesis, but I don’t know any of the details. On
the other hand, Roget could not avoid a heavy dose of
Bourbaki, which was dominant in French mathematics
education, even to the point of naming the real number
line in French schools as “Rue du Bourbaki!” He studied
Bourbaki with due respect but maintained his natural
skepticism born of his schooling in classical geometry.
That helped him develop proficiency with the complex
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FIG. 18. Roget Boudet (1928-2016) French mathematician
and incorruptible scholar in the classical tradition

calculations in quantum electrodynamics that he studied
diligently over many years. Taking nothing for granted,
he worked out every detail for himself. That makes his
published books [30, 89] uniquely valuable, especially as
a context and background for the present article.

Roget was the first person to understand and appre-
ciate my original paper on Real Dirac Theory in 1967
[8]. He was so impressed that he immediately flew from

France to my home in Arizona to visit me. Then he
hosted me and my family in France during my sabbatical
in 1973.

Thereafter, Roget continued to serve for the rest of
his life as a devoted apostle for Space Time Algebra in
the French mathematics community, though conversion
proved to be as di�cult in France as the rest of the world.
The slow di↵usion of STA and Geometric Algebra in the
scientific community is described in [90]. It is most grat-
ifying that Roget independently reworked my papers on
the electron in his own way over many decades, thereby
giving independent support for the main ideas.
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