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space vs. time (classical physics) 

source: https://www.sportsnet.ca/basketball/nba/breaking-michael-jordans-famous-last-shot-sequence/

consider a basketball game:

space
space

time

space

➔ basketball court is space, a clock counts time;

➔ the time is absolute (same for everyone);

➔ space and time are decoupled: Jordan’s 
height doesn’t depend on how fast Pippen 
runs.

➔ everyone at the court hears referee blowing 
the whistle simultaneously.



relativistic physics classical physics 

space
Euclidean geometry

time
1 dim. flow

spacetime
Minkowski geometry

classical physics vs. relativistic physics 

space and time 
are  disentangled

space and time 
are  unified

source: https://photojournal.jpl.nasa.gov/animation/PIA22350



geometry of spacetime

source: https://sites.pitt.edu/~jdnorton/teaching/HPS_0410/chapters/spacetime/index.html

v = 0 v = v1

v = v2 > v1

consider 4 clocks, each moving with different velocity.

what distance do they need to cover to display the same time? 

note: time is compressed along the direction of motion.

v = v3 > v2

spacetime diagram 1 dim. rods

hyperbola



let’s look how distance is defined for Euclidean spaces and (Minkowski) spacetime:

Euclidean space Minkowski spacetime

Δ2 = 𝑥2 + 𝑦2 Δ2 = (𝑐𝑡)2 − 𝑥2

geometry of spacetime

here, colours depict different loci of points at the same distance from the origin.



ℝ𝑝,𝑞 generalizes Euclidean spaces ℝ𝑛 allowing for distance to be negative.

➔ p is the number of time-like dimensions in the space.

➔ q is the number of space-like dimensions. 

Euclidean space pseudo-Euclidean space

p q

𝑣𝑢 = 𝑣𝑇diag(1, . . . , 1)𝑢 𝑣𝑢 = 𝑣𝑇diag(1, . . . , 1, −1, . . . , −1)𝑢

pseudo-Euclidean spaces



isometries of pseudo-Euclidean spaces

space + isometries 
➔ isometries are distance preserving 

transformations.

➔ for Euclidean spaces, those are rotations, 
reflections, translations.

➔ for pseudo-Euclidean spaces, those are also 
boosts between inertial frames forming the 
pseudo-Euclidean group E(𝑝, 𝑞).

E(𝑛)

E(𝑝, 𝑞)



➔ transformations of the base space →
transformations of the data.

➔ feature vector fields assign a feature 𝑓(𝑥) to 
each point 𝑥 ∈ ℝ𝑝,𝑞 :

𝑓:ℝ𝑝,𝑞 → 𝑊

➔ feature fields are equipped with transformation 

rules under group actions 𝑔 - representations 
𝜌(𝑔).

data on geometric spaces 

base space ℝ𝑝,𝑞

data 𝑓:ℝ𝑝,𝑞 → 𝑊

group action on base space

𝑔 ∈ 𝐺

𝜌(𝑔)

group action on data 



data on geometric spaces 

source: https://github.com/QUVA-Lab/escnn

different types of feature fields 

➔ transformations of the base space →
transformations of the data.

➔ feature vector fields assign a feature 𝑓(𝑥) to 
each point 𝑥 ∈ ℝ𝑝,𝑞 :

𝑓:ℝ𝑝,𝑞 → 𝑊

➔ feature fields are equipped with transformation 

rules under group actions 𝑔 - representations 
𝜌(𝑔).



functions on geometric spaces 

𝐹

input output

➔ our goal is to approximate the map between 
two feature spaces:

𝐹: 𝑓𝑖𝑛 → 𝑓𝑜𝑢𝑡



functions on geometric spaces 

𝐹

𝐹

𝑇𝑖𝑛(𝑔)

➔ our goal is to approximate the map between 
two feature spaces:

➔ since every feature field is equipped with its 
group representation, the map must respect it 
= equivariant:

transformed
input 

transformed
output

𝑇𝑜𝑢𝑡(𝑔)

input output

𝐹: 𝑓𝑖𝑛 → 𝑓𝑜𝑢𝑡

𝐹 ∘ 𝜌𝑖𝑛(𝑔) = 𝜌𝑜𝑢𝑡(𝑔) ∘ 𝐹



convolutional neural networks

➔ convolutional layer:

(𝑓𝑖𝑛 ∗ 𝑘)(𝑥) = ∫−∞
∞
𝑓𝑖𝑛(𝜏)𝑘(𝑥 − 𝜏)𝑑𝜏



convolutional neural networks

➔ convolutional layer:

(𝑓𝑖𝑛 ∗ 𝑘)(𝑥) = ∫−∞
∞
𝑓𝑖𝑛(𝜏)𝑘(𝑥 − 𝜏)𝑑𝜏

➔ it is translation-equivariant  → pattern 
recognition power. 



steerable CNNs

➔ for arbitrary group G, one can put a 
constraint on kernels:

𝑘(𝑔. 𝑥) = 𝜌out(𝑔)𝑘(𝑥)𝜌in(𝑔)
𝑇∀𝑔 ∈ 𝐺

➔ guarantees G-equivariance of a 
convolutional layer.  

➔ convolution provides translation 
equivariance, kernels take care of G. 



still not what we need (but close)

image data electromagnetic datafluid dynamics data

scalars

classic CNNs

tensors

steerable CNNs

tensorsEuclidean space
Euclidean space pseudo-Euclidean 

space

what we need



E(p,q)-equivariant CNNs

known recipe for the Euclidean group E(n):

E(n)-equivariant convolution = convolution + O(n)-equivariant kernels

E(p,q)-equivariant convolution = convolution + O(p,q)-equivariant kernels

let’s use it for the pseudo-Euclidean group E(p,q)!



parameterising kernels with MLPs 

kernel constraint

1. analytically

● must be solved ∀𝐺



kernel constraint

1. analytically

● must be solved ∀𝐺

2. with G-equivariant MLP 
● no analytical solution is 

required
● works out-of-the-box for any G

parameterising kernels with MLPs 



MLP-parameterized kernels

➔ how do we get the O(p,q)-kernels?

➔ we can learn from the Euclidean case again!

➔ in prior work, we showed that O(n)-kernels 
can be parameterised with an O(n)-MLP: 

➔ hence, we only need an O(p,q)-MLP!   

𝑘𝜃(𝑥): ℝ
𝑛 ↦ ℝ𝑐𝑜𝑢𝑡×𝑐𝑖𝑛

grid relative positions 

O(n)-MLP + reshape

kernel response 



what we have so far

input feature fields

O(p,q)-equivariant MLP

output feature fields

O(p,q)-steerable kernels

➔ we want to have a convolution that is 
E(p,q)-equivariant.

➔ we need O(p,q)-equivariant kernels. 

➔ we can parameterise them with an O(p,q)-
equivariant MLP.

➔ spoiler: such MLPs exist in Clifford algebra-
based neural networks.



orthogonal transformations in Clifford algebra

there is a duality between its elements and orthogonal transformations.

orthogonal transformations 

geometric product of unit vectors

basis elements

geometric product of basis vectors

identityscalar

vector reflection

bivector rotation

example: rotation (bivector)

e12 := e1e2

bivector rotation

rot = u1u2



O(p,q)-equivariant Clifford neural networks

furthermore, Clifford algebra forms a representation space of the pseudo-orthogonal group O(p,q).

➔ multivectors as features of O(p,q)-equivariant networks (Ruhe et al.).

➔ we can use the work to implement O(p,q)-equivariant MLP! 



clifford-steerable implicit kernels

1. define kernel grid (e.g. 

3x3) 

2. compute kernel matrix 

3. partially evaluate 

geometric product  

4. compute convolution   



clifford-steerable convolution



experiments 

3. electrodynamics on ℝ (Maxwell 2D)

➔ in every experiment, the task is to predict a 
future state given the history. 

➔ for classical physics, each time step is a 
separate image.

➔ for relativistic physics, time is part of the 
grid (aka video).  

history

predictionnext state 

NN

compare

example: fluid dynamics



experiments 

we compare the framework against multiple (equiv-t) convolutional operators:

3. electrodynamics on ℝ (Maxwell 2D)

fluid dynamics electrodynamics
relativistic 

electrodynamics

symmetry 

breaking 



experiments (fluid dynamics)

equivariance allows for out-of-distribution generalizability across isometries:

trained on 
64 trajectories trained on 5120 

trajectories



experiments (electrodynamics)

equivariance allows for out-of-distribution generalizability across isometries:

CSCNNs capture crisper 
details 



experiments (relativistic electrodynamics) 

data: EM fields are emitted by point sources that move, orbit and 
oscillate at relativistic speeds.

1 charge 5 charges



experiments 

we compare the framework against multiple (equiv-t) convolutional operators:

3. electrodynamics on ℝ (Maxwell 2D)

fluid dynamics electrodynamics
relativistic 

electrodynamics

symmetry 

breaking 



experiments 

we are now able to implement Lorentz-equivariant CNNs, e.g. equivariant to Lorentz boosts:



conclusion

1. we are the first to implement E(p,q)-
equivariant CNNs.

2. it was possible by using CA.  

3. we can generalize to pseudo-Riemannian 
manifolds.

4. limitation: we are limited to data 
representable as multivectors.



bonus
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