Input

Clifford-Steerable Convolutional Neural Networks

Maksim Zhdanov, David Ruhe*, Maurice Weiler*, Ana Lucic, Johannes Brandstetter, Patrick Forré

*equal contribution

space vs. time (classical physics)

consider a basketball game:

- → basketball court is space, a clock counts time;
- → the time is absolute (same for everyone);
- → space and time are decoupled: Jordan's height doesn't depend on how fast Pippen runs.
- → everyone at the court hears referee blowing the whistle simultaneously.

classical physics vs. relativistic physics

classical physics

relativistic physics

1 dim. flo

space and time are disentangled

spacetime Minkowski geometry

space and time are unified

geometry of spacetime

consider 4 clocks, each moving with different velocity. what distance do they need to cover to display the same time? note: time is compressed along the direction of motion.

1 dim. rods

spacetime diagram

geometry of spacetime

let's look how distance is defined for Euclidean spaces and (Minkowski) spacetime:

here, colours depict different loci of points at the same distance from the origin.

pseudo-Euclidean spaces

 $\mathbb{R}^{p,q}$ generalizes Euclidean spaces \mathbb{R}^n allowing for distance to be negative.

- → p is the number of time-like dimensions in the space.
- \rightarrow q is the number of space-like dimensions.

isometries of pseudo-Euclidean spaces

- → isometries are distance preserving transformations.
- → for Euclidean spaces, those are rotations, reflections, translations.

→ for pseudo-Euclidean spaces, those are also boosts between inertial frames forming the pseudo-Euclidean group E(p,q).

space + isometries

data on geometric spaces

data $f: \mathbb{R}^{p,q} \to W$

base space $\mathbb{R}^{p,q}$

group action on data

- \rightarrow transformations of the base space \rightarrow transformations of the data.
- \rightarrow feature vector fields assign a feature f(x) to each point $x \in \mathbb{R}^{p,q}$:

$$f: \mathbb{R}^{p,q} \to W$$

 \rightarrow feature fields are equipped with transformation rules under group actions g - representations $\rho(g).$

group action on base space

data on geometric spaces

different types of feature fields

- → transformations of the base space → transformations of the data.
- → feature vector fields assign a feature f(x) to each point $x \in \mathbb{R}^{p,q}$:

$$f: \mathbb{R}^{p,q} \to W$$

→ feature fields are equipped with transformation rules under group actions g - representations $\rho(g)$.

functions on geometric spaces

→ our goal is to approximate the map between two feature spaces:

$$F: f_{in} \to f_{out}$$

functions on geometric spaces

→ our goal is to approximate the map between two feature spaces:

 $F: f_{in} \to f_{out}$

 → since every feature field is equipped with its group representation, the map must respect it = equivariant:

$$F \circ \rho_{in}(g) = \rho_{out}(g) \circ F$$

convolutional neural networks

→ convolutional layer:

$$(f_{in} * k)(x) = \int_{-\infty}^{\infty} f_{in}(\tau) k(x - \tau) d\tau$$

convolutional neural networks

→ convolutional layer:

$$(f_{in} * k)(x) = \int_{-\infty}^{\infty} f_{in}(\tau) k(x - \tau) d\tau$$

→ it is translation-equivariant → pattern recognition power.

steerable CNNs

input feature fields stabilized view

→ for arbitrary group G, one can put a constraint on kernels:

 $k(g.x) = \rho_{\text{out}}(g)k(x)\rho_{\text{in}}(g)^T \forall g \in G$

- → guarantees G-equivariance of a convolutional layer.
- → convolution provides translation equivariance, kernels take care of G.

still not what we need (but close)

scalars

image data

steerable CNNs

Euclidean space

tensors

fluid dynamics data

what we need

pseudo-Euclidean space tensors

electromagnetic data

E(p,q)-equivariant CNNs

known recipe for the Euclidean group E(n):

E(n)-equivariant convolution = convolution + O(n)-equivariant kernels

let's use it for the pseudo-Euclidean group E(p,q)!

E(p,q)-equivariant convolution = convolution + O(p,q)-equivariant kernels

parameterising kernels with MLPs

parameterising kernels with MLPs

MLP-parameterized kernels

- \rightarrow how do we get the O(p,q)-kernels?
- → we can learn from the Euclidean case again!
- → in prior work, we showed that O(n)-kernels can be parameterised with an O(n)-MLP:

→ hence, we only need an O(p,q)-MLP!

 $k_{\theta}(x): \mathbb{R}^n \mapsto \mathbb{R}^{c_{out} \times c_{in}}$

what we have so far

- → we want to have a convolution that is E(p,q)-equivariant.
- \rightarrow we need O(p,q)-equivariant kernels.
- → we can parameterise them with an O(p,q)equivariant MLP.
- → spoiler: such MLPs exist in Clifford algebrabased neural networks.

orthogonal transformations in Clifford algebra

there is a duality between its elements and orthogonal transformations.

basis elementsorthogonal transformationsgeometric product of basis vectorsgeometric product of unit vectorsscalaridentityvectorreflectionbivectorrotation

example: rotation (bivector)

bivector rotation $e_{12} := e_1 e_2$ rot = $u_1 u_2$

O(p,q)-equivariant Clifford neural networks

furthermore, Clifford algebra forms a representation space of the pseudo-orthogonal group O(p,q).

- → multivectors as features of O(p,q)-equivariant networks (Ruhe et al.).
- \rightarrow we can use the work to implement O(p,q)-equivariant MLP!

clifford-steerable implicit kernels

clifford-steerable convolution

experiments

- → in every experiment, the task is to predict a future state given the history.
- → for classical physics, each time step is a separate image.
- → for relativistic physics, time is part of the grid (aka video).

example: fluid dynamics

experiments

we compare the framework against multiple (equiv-t) convolutional operators:

experiments (fluid dynamics)

equivariance allows for out-of-distribution generalizability across isometries:

experiments (electrodynamics)

equivariance allows for out-of-distribution generalizability across isometries:

experiments (relativistic electrodynamics)

data: EM fields are emitted by point sources that move, orbit and oscillate at relativistic speeds.

1 charge

5 charges

experiments

we compare the framework against multiple (equiv-t) convolutional operators:

experiments

we are now able to implement Lorentz-equivariant CNNs, e.g. equivariant to Lorentz boosts:

conclusion

- 1. we are the first to implement E(p,q)equivariant CNNs.
- 2. it was possible by using CA.
- 3. we can generalize to pseudo-Riemannian manifolds.
- 4. limitation: we are limited to data representable as multivectors.

bonus

