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space vs. time (classical physics)

consider a basketball game: _ )
—> basketball court is space, a clock counts time;

=> the time is absolute (same for everyone);

=> space and time are decoupled: Jordan’s
height doesn’t depend on how fast Pippen
runs.

=> everyone at the court hears referee blowing
the whistle simultaneously.
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source: https://www.sportsnet.ca/basketball/nba/breaking-michael-jordans-famous-last-shot-sequence/



classical physics vs. relativistic physics

classical physics relativistic physics

space time spacetime
Euclidean geometry 1 dim. flow Minkowski geometry
space and time space and time

are disentangled are unified



geometry of spacetime

consider 4 clocks, each moving with different velocity.
what distance do they need to cover to display the same time?
note: time is compressed along the direction of motion.
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1 dim. rods spacetime diagram

source: https://sites.pitt.edu/~jdnorton/teaching/HPS_0410/chapters/spacetime/index.html



geometry of spacetime
let’s look how distance is defined for Euclidean spaces and (Minkowski) spacetime:

Euclidean space Minkowski spacetime

/ R20 ~ R2

here, colours depict different loci of points at the same distance from the origin.



pseudo-Euclidean spaces

RP9 generalizes Euclidean spaces R™ allowing for distance to be negative.
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=> pis the number of time-like dimensions in the space.

=> qis the number of space-like dimensions.



isometries of pseudo-Euclidean spaces

=> isometries are distance preserving
transformations.

=> for Euclidean spaces, those are rotations,
reflections, translations.

=> for pseudo-Euclidean spaces, those are also
boosts between inertial frames forming the
pseudo-Euclidean group E(p, q).
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data on geometric spaces
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base space RP4
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group action on base space

=> transformations of the base space —
transformations of the data.

—=> feature vector fields assign a feature f(x) to
each point x € RP4 :

fiRP9 > W

=> feature fields are equipped with transformation
rules under group actions g - representations

p(g).



data on geometric spaces

=> transformations of the base space —
transformations of the data.

—=> feature vector fields assign a feature f(x) to
each point x € RP4 :

f:RP9 > W
: gv 1
~ ‘N 9 —> feature fields are equipped with transformation
% rules under group actions g - representations

p(g).

vector field, p(g)=g

different types of feature fields

source: https://github.com/QUVA-Lab/escnn



functions on geometric spaces

=> our goal is to approximate the map between
two feature spaces:

v

F:fin = fout



functions on geometric spaces

=> our goal is to approximate the map between
two feature spaces:

F:fin = fout

=> since every feature field is equipped with its

group representation, the map must respect it
= equivariant:
F o pln(g) = pout(g) oF transformed transformed

input output



convolutional neural networks

convolution => convolutional layer:

(with arbitrary kernel)

ol @ (fin * @) = [ o fin(@k(x — )dr




convolutional neural networks

convolution => convolutional layer:

(with arbitrary kernel)

@ (Fin * K)(®) = [ fin(Dke(x — 1)

Gpf

translation l l translation

@ ' => it is translation-equivariant — pattern
= —_— L
recognition power.

convolution




steerable CNNs

) o => for arbitrary group G, one can put a
—C%_, constraint on kernels:
l l k(g-%) = pout(Pk(X)pin(9)'Vg € G
{%_’ —> guarantees G-equivariance of a
B  ad convolutional layer.

=> convolution provides translation
equivariance, kernels take care of G.




still not what we need (but close)

classic CNNs
Euclidean space scalars

Green Channel

image data

R

Euclidean space tensors

steerable CNNs
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E(p,q)-equivariant CNNs

known recipe for the Euclidean group E(n):

E(n)-equivariant convolution = convolution + O(n)-equivariant kernels

let’s use it for the pseudo-Euclidean group E(p,q)!

E(p,q)-equivariant convolution = convolution + O(p,q)-equivariant kernels



parameterising kernels with MLPs

1. analytically

/ e must be solved VG x

kernel constraint



parameterising kernels with MLPs

1. analytically

/ e must be solved VG x

kernel constraint

ith G-equivariant MLP

alytical solution is
require

e works out-of-the-box for any G




MLP-parameterized kernels

- ?
=> how do we get the O(p,q)-kernels: N R [
=> we can learn from the Euclidean case again! grid relative positions
=> in prior work, we showed that O(n)-kernels
can be parameterised with an O(n)-MLP: l O(n)-MLP + reshape

=> hence, we only need an O(p,q)-MLP! r.-l - . . I !
kg(x): R™ = RCut*Cin S -, :

kernel response



what we have so far

—-> we want to have a convolution that is
E(p,q)-equivariant.

y

we need O(p,q)-equivariant kernels.

=> we can parameterise them with an O(p,q)-
equivariant MLP.

=> spoiler: such MLPs exist in Clifford algebra-
based neural networks.
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O(p,q)-steerable kernels

O(p,q)-equivariant MLP



orthogonal transformations in Clifford algebra

there is a duality between its elements and orthogonal transformations.

basis elements orthogonal transformations
geometric product of basis vectors geometric product of unit vectors
scalar identity
vector reflection
bivector rotation

example: rotation (bivector)

bivector rotation

elz = elez rot = uluZ



O(p,q)-equivariant Clifford neural networks

furthermore, Clifford algebra forms a representation space of the pseudo-orthogonal group O(p,q).
=> multivectors as features of O(p,q)-equivariant networks (Ruhe et al.).

=> we can use the work to implement O(p,q)-equivariant MLP!
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clifford-steerable implicit kernels

_——,'

2 ] 4. compute convolution

multlvector fields

3. partially evaluate
geometric product

1. define kernel grid (e.g.

3x3)
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Clifford-Steerable kernels

geometric
product

430
multivector kernels
T Clifford MLP
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grid' relative positions

multwector fields

2. compute kernel matrix



clifford-steerable convolution

Clifford-Steerable
Convolution

Sl 4

Clifford-Steerable
Convolution




experiments

example: fluid dynamics

=> in every experiment, the task is to predict a
future state given the history.

=> for classical physics, each time step is a

separate image. history
=> for relativistic physics, time is part of the
grid (aka video).
compare
G—

next state prediction



experiments

we compare the framework against multiple (equiv-t) convolutional operators:

relativistic symmetry

fluid dynamics electrodynamics
Y Y electrodynamics breaking

— Clifford-steerable ResNet (Ours) — Basic ResNet — Steerable ResNet — Clifford ResNet — FNO — G-FNO
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experiments (fluid dynamics)
equivariance allows for out-of-distribution generalizability across isometries:
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experiments (electrodynamics)

equivariance allows for out-of-distribution generalizability across isometries:

Bivector tx Bivector ty Bivector xy
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experiments (relativistic electrodynamics)

data: EM fields are emitted by point sources that move, orbit and
oscillate at relativistic speeds.

1 charge 5 charges



experiments

we compare the framework against multiple (equiv-t) convolutional operators:

relativistic symmetry

fluid dynamics electrodynamics
Y Y electrodynamics breaking

— Clifford-steerable ResNet (Ours) — Basic ResNet — Steerable ResNet — Clifford ResNet — FNO — G-FNO
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experiments

we are now able to implement Lorentz-equivariant CNNs, e.g. equivariant to Lorentz boosts:

CS-CNN CS-CNN, comoving

Input, boosted

ResNet, comoving




conclusion

1. we are the first to implement E(p,q)-
equivariant CNNs.

2. it was possible by using CA.

3. we can generalize to pseudo-Riemannian
manifolds.

4. limitation: we are limited to data
representable as multivectors.

Clifford-Steerable
Convolution

S

DA

Clifford-Steerable
Convolution




bonus

input: coords, weight =1.0 implicit kernel MLP output: kernel values

o |2

O(p, q)-equivariant
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