Closed-form inverse kinematics solutions for a class of serial robots without spherical wrist using conformal geometric algebra

Arnau Marzabal and Isiah Zaplana

Institute of Industrial and Control Engineering Universitat Politècnica de Catalunya

isiah.zaplana@upc.edu

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONA**TECH**

Institut d'Organització i Control de Sistemes Industrials

What to expect from this talk? An outline

- The **formulation of the inverse kinematics (IK) problem** for serial robots and the traditional approaches to solve it (inc. some with GA).
- A novel **CGA-based method to solve the IK problem** for some classes of serial robots without spherical wrist.
- Implementation of the solution using specific GA libraries (inc. a new library).
- Validation of the proposed solution with a real robot.

The actors \rightarrow Serial robots

The actors \rightarrow Serial robots

The actors \rightarrow Serial robots

Spherical wrist

Non-spherical wrist

- Joint variable → Rotation angle θ (revolute joints) or amount of displacement d (prismatic joints).
- **Configuration** \rightarrow Vector $q = (q_1, ..., q_n)$ with $q_i = \theta_i$ (*i* revolute joint) or $q_i = d_i$ (*i* prismatic joint).
- **Configuration space** $C \rightarrow$ (Vector, Topological) Space of all configurations.
- Workspace $\mathcal{W} \rightarrow$ Space of all the positions and orientations of the end-effector.
- Kinematic map → Relation between the configuration space C and the workspace W of a given robot. The direct relation, C → W is the forward kinematics, while the inverse relation, W → C is the inverse kinematics.

- Joint variable → Rotation angle θ (revolute joints) or amount of displacement d (prismatic joints).
- **Configuration** \rightarrow Vector $\boldsymbol{q} = (q_1, \dots, q_n)$ with $q_i = \theta_i$ (*i* revolute joint) or $q_i = d_i$ (*i* prismatic joint).
- **Configuration space** $C \rightarrow$ (Vector, Topological) Space of all configurations.
- Workspace $\mathcal{W} \rightarrow$ Space of all the positions and orientations of the end-effector.
- Kinematic map → Relation between the configuration space C and the workspace W of a given robot. The direct relation, C → W is the forward kinematics, while the inverse relation, W → C is the inverse kinematics.

- Joint variable → Rotation angle θ (revolute joints) or amount of displacement d (prismatic joints).
- **Configuration** \rightarrow Vector $\boldsymbol{q} = (q_1, ..., q_n)$ with $q_i = \theta_i$ (*i* revolute joint) or $q_i = d_i$ (*i* prismatic joint).
- **Configuration space** $C \rightarrow$ Space of all configurations.
- Workspace $\mathcal{W} \rightarrow$ Space of all the positions and orientations of the end-effector.
- **Kinematic map** \rightarrow Relation between the configuration space C and the workspace W of a given robot. The direct relation, $C \rightarrow W$ is the **forward kinematics**, while the inverse relation, $W \rightarrow C$ is the **inverse kinematics**.

- Joint variable → Rotation angle θ (revolute joints) or amount of displacement d (prismatic joints).
- **Configuration** \rightarrow Vector $\boldsymbol{q} = (q_1, ..., q_n)$ with $q_i = \theta_i$ (*i* revolute joint) or $q_i = d_i$ (*i* prismatic joint).
- **Configuration space** $C \rightarrow$ Space of all configurations.
- Workspace $\mathcal{W} \rightarrow$ Space of all the positions and orientations of the end-effector.
- **Kinematic map** \rightarrow Relation between the configuration space C and the workspace W of a given robot. The direct relation, $C \rightarrow W$ is the **forward kinematics**, while the inverse relation, $W \rightarrow C$ is the **inverse kinematics**.

- Joint variable → Rotation angle θ (revolute joints) or amount of displacement d (prismatic joints).
- **Configuration** \rightarrow Vector $\boldsymbol{q} = (q_1, ..., q_n)$ with $q_i = \theta_i$ (*i* revolute joint) or $q_i = d_i$ (*i* prismatic joint).
- **Configuration space** $C \rightarrow$ Space of all configurations.
- Workspace $\mathcal{W} \rightarrow$ Space of all the positions and orientations of the end-effector.
- Kinematic map → Relation between the configuration space C and the workspace W of a given robot. The direct relation, C → W is the forward kinematics, while the inverse relation, W → C is the inverse kinematics.

The main character

Mobile Anthropomorphic Dual-Arm Robot (MADAR)

Inverse kinematics of a serial robot

Reminder \rightarrow The inverse kinematics is the relation between the workspace of the robot \mathcal{W} with its configuration space $\mathcal{C}, \mathcal{W} \rightarrow \mathcal{C}$.

Inverse kinematics of a serial robot

Reminder \rightarrow The inverse kinematics is the relation between the workspace of the robot \mathcal{W} with its configuration space $\mathcal{C}, \mathcal{W} \rightarrow \mathcal{C}$.

Inverse kinematics of a robot \rightarrow Kinematic problem consisting of determining the configuration or configurations of the robot that result in the end-effector having a predetermined position and orientation.

Why inverse kinematics is so important?

Why inverse kinematics is so important?

It rules robot's motion!

Inverse kinematics of a serial robot

Inverse kinematics of a serial robot

- Suffer from local minima and numerical instabilities.
- Difficult to compute for robots with a complex mechanical structure.

What is already known

- D. Pieper \rightarrow Serial robots with a spherical wrist always have closed-form solution; IK can be divided into the inverse position and inverse orientation subproblems.
- R. Paul → Method to obtain the closed-form solutions of arbitrary serial robots; in practice only works for simple robotic structures.
- GA-based methods → Method to obtain closed-form solutions of serial robots with a spherical wrist; reduce the computation of the joint variables to computing a pre-assigned Euclidean point for each joint (by means of defining and manipulating different geometric entities in CGA).
 - D. Hildenbrand, J. Zamora, and E. Bayro-Corrochano.
 - A. Kleppe, and O. Egeland.
 - I. Zaplana, H. Hadfield, and J. Lasenby.

Some CGA notation to understand each other well

- e_0 and $e_{\infty} \rightarrow$ Null basis vectors associated with the origin and the point at the infinity.
- $p \rightarrow$ Null vector representation of the Euclidean point p.
- $R(\theta, B) = \cos(\theta/2) \sin(\theta/2) B \rightarrow$ Rotor encoding a rotation by an angle θ in the rotation plane represented by the bivector *B*.
- $T(d, v) = 1 d \frac{ve_{\infty}}{2} \rightarrow$ Rotor encoding a translation by an amount *d* along the direction of the vector *v*.
- $G \rightarrow$ Geometric entity with inner representation 0, i.e., $G = \{x \mid x \cdot 0 = 0\}$, and outer representation 0^* , i.e., $G = \{x \mid x \land 0^* = 0\}$.
- $G_1 \vee G_2 = (O_1 \wedge O_2)^* \rightarrow$ Intersection between the geometric entities G_1 and G_2 (with inner representations O_1 and O_2).

Some CGA notation to understand each other well

	Inner representation (0)	Outer representation (0 [*])
Pair of points $m{p}_1$ and $m{p}_2$		$b^* = p_1 \wedge p_2$
Line passing through points p_1 and p_2 , and with direction vector v	$\ell = \boldsymbol{\nu} e_{123} - (\boldsymbol{p}_1 \wedge \boldsymbol{\nu}) e_{123} e_{\infty}$	$\ell^* = p_1 \wedge p_2 \wedge e_\infty$
Plane passing through points p_1 , p_2 , and p_3 , and with with normal vector n and ortho- gonal distance to the origin δ	$\pi = n - \delta e_{\infty}$	$\pi^* = p_1 \wedge p_2 \wedge p_3 \wedge e_{\infty}$
Sphere passing through points p_1, p_2, p_3 , and p_4 , and with centre c and radius r	$s = c - \frac{1}{2}r^2 e_{\infty}$	$s^* = p_1 \wedge p_2 \wedge p_3 \wedge p_4$

Solution strategy

Solution strategy

- Input information:
 - Desired position and orientation, represented by the null vector *p* and the Euclidean vector *z*.
 - Reference frame, associated with the base of the robot, represented by the null vector p_0 and Euclidean vectors x_0 , y_0 and z_0 .

Solution strategy

• First step \rightarrow Computation of points p_1 and p_5 :

•
$$p_5 = T(-d_6, \mathbf{z})p\tilde{T}(-d_6, \mathbf{z})$$
 where $T(-d_6, \mathbf{z}) = 1 + d_6 \frac{\mathbf{z}e_{\infty}}{2}$

•
$$p_1 = T(d_1, \mathbf{z}_0) p_0 \tilde{T}(d_1, \mathbf{z}_0)$$
 where $T(d_1, \mathbf{z}_0) = 1 - d_1 \frac{z_0 e_\infty}{2}$

Solution strategy

- Second step \rightarrow Computation of point p_4 , which lies on the intersection between:
 - A sphere centred at p_5 and with radius $d_5 \rightarrow S_5$.
 - A plane with normal vector $\mathbf{n}_5 = \mathbf{p} \mathbf{p}_5$ containing $\mathbf{p}_5 \rightarrow \Pi_5$.
 - A vertical plane that contains p_5 with orthogonal distance to the origin $\delta = d_4 \rightarrow \Pi_4$.

Solution strategy

• Inner representations of S_5 and Π_5 :

•
$$s_5 = p_5 - \frac{1}{2}d_5^2 e_\infty$$

•
$$\pi_5 = \boldsymbol{n}_5 - \boldsymbol{p}_5 \cdot \boldsymbol{n}_5 \boldsymbol{e}_\infty$$

Solution strategy

- To compute the inner representation of plane Π_4 , point p_5 is first projected onto the x y plane of the reference frame and:
 - $p_m = \frac{p'_5}{2} \rightarrow$ Middle point between the origin of the reference frame and the projected point p'_5 .

•
$$d_m = |\boldsymbol{p}_m|.$$
 17

Solution strategy

• Now, the inner representations of two spheres and a plane are computed:

•
$$s_m = p_m - \frac{1}{2}d_m^2 e_\infty$$

•
$$s_0 = p_0 - \frac{1}{2}d_4^2 e_\infty$$

•
$$\pi_{xy} = \mathbf{z}_0$$

Solution strategy

- The intersection of these three entities, given by $(s_m \wedge s_0 \wedge \pi_{xy})^*$, is a bivector representing a pair points, which define two vectors, v_1 and v_2 .
- The inner representation of two different planes Π_4 can be defined as:
 - $\pi_4 = \boldsymbol{v}_1 d_4 e_{\infty}$
 - $\pi_4 = \boldsymbol{v}_2 d_4 e_{\infty}$

Solution strategy

• Finally, p_4 is extracted from the bivector computed as the intersection of S_5 , Π_5 and any of the two planes Π_4 :

$$(s_5 \wedge \pi_5 \wedge \pi_4)^*$$

• This gives rise to up to four different points p_4 , each of which leads to a distinct, yet valid, solution.

Solution strategy

- Third step \rightarrow Computation of point p_3 :
 - Two different points p_3 , one with vector v_1 and another with vector v_2 , can be computed as $p_3 = T(-d_4, v_i)p_4\tilde{T}(-d_4, v_i)$ where:

$$T(-d_4, \boldsymbol{v}_i) = 1 + d_4 \frac{\boldsymbol{v}_i e_\infty}{2}$$
 (*i* = 1,2)

Solution strategy

- Fourth step \rightarrow Computation of point p_2 , which lies on the intersection between:
 - A sphere centred at p_1 and with radius $a_2 \rightarrow S_1$.
 - A sphere centred at p_3 and with radius $a_3 \rightarrow S_3$.
 - A plane passing by p_0 , p_1 and $p_3 \rightarrow \Pi$.

Solution strategy

• Inner representation of S_1 , S_3 and Π :

•
$$s_1 = p_1 - \frac{1}{2}a_2^2 e_\infty$$

•
$$s_2 = p_3 - \frac{1}{2}a_3^2 e_\infty$$

•
$$\pi = (p_0 \wedge p_1 \wedge p_3 \wedge e_\infty)^*$$

Implementation, simulation and real execution

- The obtained geometric expressions have been implemented numerically using the Python library clifford and the Matlab library Symbolic and Userfriendly GA routines (SUGAR).
- SUGAR is a open-source Matlab toolbox recently developed that allows symbolic computations, therefore facilitating the calculation of closed-form solutions to these kind of geometric-oriented problems.

clifford's Git repository

Implementation, simulation and real execution

Lissajous curve for position, continuous rotation around x axis of the reference frame for orientation

Parameterization of both position and orientation along the input curve

Implementation, simulation and real execution

And now, what?

GA-based numerical algorithm for position control.

Applications to the inverse kinematics of complex robotic structures, inc. redundant robots without a spherical wrist.

CGA-based formulation of the Paden-Kahan subproblems and extensions.

Thanks for your attention!