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Stephen, Leo and Charles

Solution of Rigid Body Dynamics in PGA by S. De Keninck and L. Dorst, based on ideas of C.
Gunn: the motion is characterized by a motor M; an invertible PGA element that represents a
combination of rotation and translation. The kinematics equation reads

Ṁ = −1

2
MBb, (1)

where Bb is a bivector that represents a generator of the motion in the body frame. The
dynamics equation then reads

Ḃb = I−1
b (Bb × Ib(Bb) + Fb), (2)

where × is the geometric algebra commutator product defined by a× b = 1/2(ab − ba) and
where Fb = M̃FwM is an element in PGA that uniformly represents the total forces and
torques in the body frame. For a rigid body consisting of a set of discrete points miXi , the
total body inertia map Ib is given by

Ib(B) =
∑
i

miXi ∨ (Xi × B) (3)

and the Lagrangian of the system can be described as L = 1
2B ∨ I (B).
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Standard approach

Alternatively, one can find the above equations of motion by taking this Lagrangian as an
input and by using the Lagrangian or Hamiltonian formalism. Namely, the configuration space
of a rigid body is the Euclidean Lie group

SE (3) = SO(3)⋊R3,

and the rigid body motion can be viewed as a solution of the optimal control problem∫
L dt → min,

where L : TSE (3) → R is the associated Lagrangian function. This approach is known in
physics as the principle of least action. By the Pontryagin maximum principle, the solution
satisfies Hamilton’s equations defined by the Hamiltonian associated with Lagrangian L.
Indeed, as we shall see, we get equations equivalent to (1) and (2) in this way.
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Lie groups

We start from a general approach where the Euclidean group SE (3) is replaced by an arbitrary
Lie group G and where the classical Hamiltonian by an arbitrary function on its cotangent
bundle. The form of Hamilton’s equations in such cases is well-known, and if G is formed by
rotors of a geometric algebra, we can directly translate this general result for dynamics on Lie
groups into the GA language. The case of the rigid body corresponds to the choice of
geometric algebra PGA and G = SE (3). Of course, we may choose SE (n) to obtain an
n-dimensional version of the rigid body motion. But not just that, we may freely choose
Hamiltonian to describe various interactions, and we may also change geometric algebra, for
example, to CGA, which then leads to Lie group G = SO(n + 1, 1). In particular, we get a
description of the rigid body motion in CGA, and we also get its generalization to an ”elastic
body motion”.
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Lagrangian approach

The classical Lagrangian dynamics is formulated in terms of a function on this tangent bundle,
the so-called Lagrangian function L : TRn → R, which may contain all physical information
concerning the system and the forces acting on it. According to Hamilton’s principle, the
evolution of a physical system between two specified states q0 = q(t0) and q1 = q(t1) is then
determined by a trajectory q(t) in the configuration space that is a stationary point of the
action functional

S[q] =
∫ t1

t0

L(q, q̇)dt. (4)

Computing the first variation, one finds that this requirement is equivalent to well-known
Euler–Lagrange equations

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= 0. (5)
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Hamiltonian approach

The Hamiltonian form of the equations of motion is given in terms of conjugate momentum
covectors. The passage from the tangent bundle to the cotangent bundle is realized by the
Legendre transformation TRn → T ∗Rn : (q, q̇) 7→ (q, p), where p ∈ T ∗

qRn is the conjugate
momentum defined by

p =
∂L

∂q̇
. (6)

Note that we assume that the Legendre transformation is globally invertible. This property is
usually referred to as the hyperregularity of the Lagrangian function in literature. The
Hamiltonian dynamics is then equivalent to the Lagrangian dynamics and can be described by
introducing the Hamiltonian function H : T ∗Rn → R:

H(q, p) = p · q̇ − L(q, q̇), (7)

where q̇ is viewed as a function of (q, p) by inverting the Legendre transformation.
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Hamiltonian approach

Namely, the Euler-Lagrange equations (5) are equivalent to the well-known Hamilton’s
equations

q̇ =
∂H

∂p
, (8)

ṗ = −∂H

∂q
. (9)
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Dynamics on Lie groups

Let g be the associated Lie algebra. The tangent map (differential) at the identity to left
translation map ℓg : G → G , defined as ℓg (h) = gh, defines a map (ℓg )∗ : TeG = g → TgG
from the Lie algebra to a tangent space to G . It is easy to see that this map has the inverse
(ℓg−1)∗ : TgG → g and thus is a linear isomorphism

(ℓg−1)∗ : TG ∼= G × g. (10)

In other words, by left trivialization, we can identify the tangent bundle TG of a Lie group G
with G × g. Similarly, we can use the cotangent map to left translation
(ℓg )

∗ : T ∗
gG → T ∗

e G = g∗, defined by (ℓg )
∗(µ)(ξ) = µ((ℓg )∗(ξ)) for each ξ ∈ g and µ ∈ T ∗

gG ,
to get a global trivialization of the cotangent bundle T ∗G :

(ℓg )
∗ : T ∗G ∼= G × g∗. (11)
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Dynamics on Lie groups

The next ingredient we need to formulate the Hamilton’s equations on a Lie group G is the
coadjoint operator, for each µ ∈ g∗ and ξ, ζ ∈ g. defined by

ad∗ξ(µ)(ζ) = µ(adξ(ζ)) = µ([ξ, ζ]), (12)

where [, ] denotes the Lie bracket in g. Now we are ready to formulate a coordinate-free
Hamiltonian dynamics on Lie group G . Using the identification (11), the Hamiltonian function
may be viewed as

H : G × g∗ → R.

Its derivative with respect to the second argument, which we write as ∂H/∂µ, is a linear map
g∗ → R, therefore it can be naturally considered as an element of (g∗)∗ ∼= g. The derivative of
the Hamiltonian function with respect to the first (group) argument, which we write as
∂H/∂g , may be seen as a directional derivative and thus as a vector in the cotangent space
T ∗
gG .
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Dynamics on Lie groups

Proposition

(Hamilton’s equations on a Lie group) Let G be a Lie group, g its associated Lie algebra, and
let ξ = ∂H/∂µ ∈ g. The Hamilton’s equations on G are a system on G × g∗ given by

ġ = (ℓg )∗ξ, (13)

µ̇ = ad∗ξ µ− (ℓg )
∗∂H

∂g
. (14)
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GA formulation

The general form of Hamilton’s equations on a Lie group given above allows a direct
translation into the GA language if G = G(V ) is the Lie group of rotors in a geometric algebra
induced on a vector space V equipped with a quadratic form. In the case of a non-degenerate
form of signature (p, q), the Lie group G is a covering of the orthogonal Lie group SO(p, q). If
we allow a degenerate quadratic form with a kernel of dimension r , the resulting geometric
algebra can be embedded into the geometric algebra induced by a non-degenerate quadratic
form of signature (p + r , q + r). Hence G is a covering of a Lie subgroup of SO(p + r , q + r).
In any case, the associated Lie algebra is the algebra of bivectors,

g ∼= Λ2V .
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GA formulation

The dual Lie algebra g∗ ∼= Λ2V ∗ can be identified with g in the non-degenerate case. Namely,
the defining bilinear form extends then extends to a non-degenerate bilinear form on bivectors
via ⟨A,B⟩ = ⟨AB̃⟩0, where ⟨⟩0 denotes the projection to the scalar part and B̃ is the reversion
of B. Another possibility of viewing the dual algebra g∗ in GA is via a pseudoscalar I ( or
volume form). Namely, if we associate a µ♯ ∈ Λn−2V to each µ ∈ g∗ ∼= Λ2V ∗ such that
µ♯ ∧ B = µ(B)I for each bivector B ∈ Λ2V , we get an isomorphism of Lie algebras

g∗ ∼= Λn−2V ,

where the Lie bracket on the right-hand side is given by the commutator with respect to the
geometric product in G(V ). It is easy to show that, in this identification, the coadjoint action
corresponds to a commutator in GA of a bivector and an element of grade n − 2,

(ad∗ξ µ)
♯ = [µ♯, ξ].
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GA formulation

Then the Hamiltonian is a function

H : G × Λn−2V → R,

the inverse Legendre transformation gives a bivector

B =
∂H

∂µ
∈ Λ2V (15)

while the derivative of the Hamiltonian function with respect to the group variable, expressed
in the right trivialization is an element

Fs =
∂H

∂M
M̃ ∈ Λn−2V .

This term corresponds in the Newtonian picture to forces expressed in the world frame.
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Hamiltonian on Lie groups

Then, the Hamiltonian dynamics on the Lie group G in GA language look as follows.

Proposition

Let G(V ) be a geometric algebra over a quadratic space V of dimension n and of any
signature, and let G be the Lie group of its invertible elements. The Hamilton’s equations on
G read

Ṁ = MB

µ̇ = [µ,B]− M̃FsM

where M ∈ G , µ ∈ Λn−2V , B = ∂H/∂µ is the bivector obtained by the inverse Legendre
transformation, and where [ , ] is the commutator with respect to the geometric product in
G(V ).
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PGA

PGA is generated by vector space V and quadratic form of degenerate signature (3, 0, 1), i.e.
with basis (e0, e1, e2, e3) such that

e21 = e22 = e23 = 1 and e20 = 0.

Due to the one-dimensional kernel generated by e0, the bivectors form Lie algebra
g = se(3) = span{e0 ∧ ei , ei ∧ ej}. Hence any bivector is of the form

B =
∑

vie0 ∧ ei +
∑

ωkei ∧ ej ,

where we assume that k is the complementary index to indices i , j .
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PGA

For the dual Lie algebra we have g∗ = span{ei ∧ ej , e0 ∧ ei}. Actually, it has the same
structure as g, and a dual bivector can be written as

µ =
∑

pi (e0 ∧ ei )
∗ +

∑
ℓk(ei ∧ ej)

∗,

where the star denotes the usual PGA duality. The dependence of rigid body Lagrangian
L(M,B) on the fiber variable is given by

L( ,B) =
1

2
mv2 +

1

2

∑
Jkω

2
k

and thus the Legendre transformation g → g∗ is given by linear function

I (B) =
∂L

∂B
= mvi (e0 ∧ ei )

∗ + Jkωk(ei ∧ ej)
∗.
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PGA

The corresponding Hamiltonian reads

H( , µ) = pi
pi
m

− 1

2
m(

pi
m
)2 − 1

2

∑
Jk(

ℓk
Jk

)2 =
p2

2m
−
∑ ℓ2k

2Jk

and the inverse Legendre transformation is given by the (also linear) function

I−1(µ) =
∂H

∂µ
=

pi
m
e0 ∧ ei +

ℓk
Jk

ei ∧ ej .

Due to the linearity, Hamilton’s equations can be written as

Ṁ = MB

I (Ḃ) = [I (B),B] + M̃
∂H

∂M
M

which is equivalent to the S-L-C equations up to conventions concerning sign and factor 1/2.
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CGA

If we view the Euclidean group SE (3) as a subgroup of SO(4, 1), and we take the same
Hamiltonian, we get a description of rigid body motion in terms of geometric algebra CGA.
Such conformal description also allows a generalization to the motion of an ”elastic body.”
Due to the existence of two null vectors e20 = e2∞ = 0, the lie algebra has extra elements. In
particular, it is e0 ∧ e∞ that generates scaling.
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Matrix representation

Recap: G a Lie group, g its Lie algebra, H Hamiltonian function G × g → R, ξ = ∂H/∂µ ∈ g.
Hamiltonian equations:

on G: ġ = (ℓg )∗ξ,

on g∗: µ̇ = ad∗ξ µ− (ℓg )
∗∂H

∂g
.

G = SE (3), then g = se(3) = so(3)⊕ R3 ∋ (ξ, u) and (Π, p) ∈ se∗(3) and under the usual
identification so(3) ∼= R3

ad∗(ξ,u)(Π, p) = (Π× ξ + p × u, p × ξ)⇝

d

dt

(
r
x

)
=

(
r × ∂H/∂Π
R∂H/∂p

)
d

dt

(
Π
p

)
=

(
Pi × ∂H/∂Π+ r × ∂H/∂r + p × ∂H/∂p

−RT∂H/∂x + p × ∂H/∂Π

)
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GA representation

In GA we can model the dual Lie algebra g∗ by the GA duality such that the coadjoint
operator becomes the commutator

ad∗ξ µ = (ξ × µ∗)∗

works for G -invariant duality:

• µ(ζ)I = µ∗ ∧ ζ

• µ(ζ) = ⟨µ∗, ζ⟩ for nondegenerate GA’s

⇒ troubles with the CGA duality in implementations
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Conformal model

View SE (3) as a subgroup of SO(4, 1).

• G = SO(4, 1), Lie algebra g = so(4, 1) modeled on bivectors in CGA = Cl(4, 1).
V = R4,1 with basis (e0, e1, e2, e3, e∞) such that e20 = e2∞ = 0

g = so(4, 1) = span{e0 ∧ ei , ei ∧ ej , ei ∧ e∞, e0 ∧ e∞}

• Lagrangian l(B) = 1
2mv2 + 1

2

∑
Jiω

2
i +

1
2J0ω

2
0 ⇝ an extra term in the Legendre

transformation J0(e0 ∧ e∞)∗

• initial shrinking (expanding) possible

An (easy) implementation in Ganja.js (A versatile and multiplatform Algebra generator with a
focus on education and visualization available at BiVector.net)
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