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Overview

* (Quick) Overview of the field.
 Machine learning and neural networks.
e Clifford Group Equivariant Neural Networks

e Subsequent Works.



GA + NN Overview

e Early works from 90s, 00s.
* Brandstetter et al., 2022: Clifford Neural Layers for PDE Modeling (ICML)
» Use the CA to encode and transform geometric quantities (vectors, bivectors).
* Multivector weights.
* Applications in fluid mechanics.
* Ruhe et al., 2023: Geometric Clifford algebra Networks
* Based on rotational layer.
 Use PGA to represent points, planes, etc.
 Parameterized motors for dynamical systems.

» Clifford Group Equivariant Neural Networks...



Machine Learning and Neural Networks

» Model ¢ : X — Y that takes an input and outputs a prediction.

e Loss function L : ¥ X Y — R that measures how well the prediction was.

 Various optimization schemes to minimize L given a dataset



Machine Learning and Neural Networks
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A neural network @ : X — Y is a composition of layers with J

- W, el 114, b, €l 4+1 and o is an element-wise nonlinearity.

c Pi=Ppogo e

. Parameters 0 := {W,, b,};=}! are typically refined using gradient descent or its
variants.






The Clifford Algebra

Why Deep Learning?

 Some indications CA data representations + CA weights yields more efficient learning +
generalization properties.

* Similar to complex neural networks.

* Can represent certain physics quantities through e.g. bivectors.

* Equivariance w.r.t. several groups in several dimensions (O(3), SO(3), O(2), O(1, 3), E(3), etc.
* Translations (PGA), conformal group.

* Equivariant multiplicative operation (geometric product).

* No need for spherical harmonics, CG coefficients, etc. Space is bounded.
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Introduction

Equivariant Neural Networks
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* WEG:pW)p = ¢pp(w)

* Group equivariance stimulates robust and reliable results.

i * Images by Maurice Weller
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Convolved
» Group convolutions (LieConv, B-spline CNNs). Image Feature

* Integral over a group - computationally intensive.

e Scalarization methods (EGNN, GVP, VN).
* Operate almost exclusively with invariant (scalar) features.
* Restricted expressivity.

 E(3)-NN based methods (TFN, SEGNN).

* Jensor products of Wigner-D representations decomposed into irreps
using Clebsch-Gordan coefficients.

* Operate on spherical harmonics basis. ?

* Not trivially extended to other dimensions or groups than O(3). -
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Introduction

Clifford Group Equivariant Networks
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Theoretical Results

* The Clifford subspaces are not basis-dependent.

 Even in the degenerate case.

» Clifford Group:

. I'(V,qg) .= {w e CI1*(V,qg) N (CI[O](V, g) U CltHv, q)) | Vv eV, p(w)(v) € V}
 Quotient is isomorphic to O(V, g) in general?
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Theoretical Results
The Clifford Group

O(V, g) multivector representation.
e wel (V,q) C Cl (V,q)

« p(w) satisfies:
1. ((pW)(x)), p(W)(x,)) = (X1, X%5)

2. Additivity: p(W)(x; + x,) = p(W)(x;) + p(W)(x,) |
All geometric product

3. Multiplicativity: p(w)(x;x,) = p(W)(x;)p(W)(x,) } polynomials are I'(V, g)

equivariant.
4. Commutes with scalars: p(w)(a - x) = a - p(w)(x)
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Network Architectures

Equivariant Layers...
A

| Implicitly building a big polynomial...




Methodology

Linear Layers

- Letx,...,x. denote a set of multivectors.

e . . €I

outcln

Or more densely: T;;n
Cout

We can linearly combine them using qubl? t(xl, X, ) =

Cin

(xl’ T Cln)(k) — Z ¢ Olltcll/l (k)
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Linear Layers “Multivector Neurons”

Methodology
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Methodology ‘

Parameterized Geometric Product

e All products:

Cin  Cin

d k) .__ k

. TP™%(x,, ...,xcin)( ) 1= E E P¢pq(xp, xq)( )
p:l q:l
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Network Architectures

Implicitly building a big polynomial...
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Experiments
E(3) Experiment: n-body.

* A benchmark for simulating physical systems using GNNSs.

« Given n = S charged particles’ positions and velocities, estimate their
positions after 1000 time-steps.




Experiments
E(3) Experiment: n-body. (G(3))

* A benchmark for simulating physical systems using GNNSs.

« Given n = S charged particles’ positions and velocities, estimate their
positions after 1000 time-steps.

Method MSE ({)
SE(3)-Tr. 0.0244
TFN 0.0155
NMP 0.0107
Radial Field 0.0104
EGNN 0.0070
SEGNN 0.0043

CGENN 0.0039 = 0.0001

Table 1: Mean-squared error (MSE)
on the n-body system experiment.
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Experiments
O(1,3) Experiment: Top Tagging (G(1,3))

o Jet tagging: identifying particle jets generated during collisions.

* Jop tagging: identifying whether event produced a top quark.
-~ top

argy of £200 particles.
 Relativistic naf \ orfvations ik, éerééegégpeziﬁeﬁagajstances given

Restamar. X ' 0.9837 302 11
P-CN * _?1 {07541 }
by O(1.3) . ARkl 7 0 ) 2 | Uss

e (Given: momentz

P\arti 7 !,"’ . 397 1615
E( ; 0.922 780 148 540
| 0929 —1 [o.9640 124 435

. 0.942 09868 498 2195

CGENN Q/ %942 09869 500 2172

24




Remarks

* No need for group convolutions.
* We can directly use higher-order (vector) features instead of scalarized ones.

* CGENNSs generalize to quadratic spaces of any dimension, can be equivariant to O(n),
E(n), and subgroups.

* No spherical harmonics, CG coefficients, etc.

* Do not have all the SO(3) representations: is it a fundamental limitation?
* Are the representations we do have always irreducible?

 (Geometric products are all you need in the nondegenerate case, not in the degenerate
case.
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Code & Efficiency

* Code is available at https://github.com/DavidRuhe/
clifford-group-equivariant-neural-networks/

 Massive speed ups in JIT-compiled JAX versions.
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(3 README.md Initial commit
[ hulls.py Initial commit
[ nbody.py Initial commit
[ o3.py Initial commit
[ o5_regression.py Initial commit
[ top_tagging.py Initial commit
‘= README.md

Clifford Group Equivariant Networks
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Authors: David Ruhe, Johannes Brandstetter, Patrick Forré

arXiv: https://arxiv.org/abs/2305.11141
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We introduce Clifford Group Equivariant Neural Networks: a novel approach for constructing E(n)-equivariant
networks. We identify and study the Clifford group, a subgroup inside the Clifford algebra, whose definition we

slightly adjust to achieve several favorable properties. Primarily, the group's action forms an orthogonal

automorphism that extends beyond the typical vector space to the entire Clifford algebra while respecting the
multivector grading. This leads to several non-equivalent subrepresentations corresponding to the multivector
decomposition. Furthermore, we prove that the action respects not just the vector space structure of the Clifford
algebra but also its multiplicative structure, i.e., the geometric product. These findings imply that every polynomial
in multivectors, including their grade projections, constitutes an equivariant map with respect to the Clifford group,


https://github.com/DavidRuhe/clifford-group-equivariant-neural-networks/
https://github.com/DavidRuhe/clifford-group-equivariant-neural-networks/
https://github.com/DavidRuhe/clifford-group-equivariant-neural-networks/

Adjacent & Followup Works

 Geometric Algebra Transformer (Brenhmer et al., 2023, NeurlPS 2023)
* |orentz-Equivariant GATr (Spinner et al., 2024)

» Clifford Simplicial Message Passing (Liu et al., 2024, ICLR 2024)

» Clifford-Steerable CNNs (Zhdanov et al., 2024, ICML 2024)

* Applications In
» 3D vision (Pepe et al., 2024)
* (Bio)chemistry (Pepe et al., 2024)

* Fluid Mechanics (Maruyana et al., 2024).
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