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About Me

• PhD-student at AMLab (University of Amsterdam)


• AI4Science


• Generative Models


• Time-Series


• Geometric Deep Learning
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Overview

• (Quick) Overview of the field.


• Machine learning and neural networks.


• Clifford Group Equivariant Neural Networks


• Subsequent Works.
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GA + NN Overview

• Early works from 90s, 00s.


• Brandstetter et al., 2022: Clifford Neural Layers for PDE Modeling (ICML)


• Use the CA to encode and transform geometric quantities (vectors, bivectors).


• Multivector weights.


• Applications in fluid mechanics.


• Ruhe et al., 2023: Geometric Clifford algebra Networks


• Based on rotational layer. 

• Use PGA to represent points, planes, etc.


• Parameterized motors for dynamical systems.


• Clifford Group Equivariant Neural Networks…
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Machine Learning and Neural Networks

• Model  that takes an input and outputs a prediction.


• Loss function  that measures how well the prediction was.


• Various optimization schemes to minimize  given a dataset 


•

ϕ : X → Y

L : Y × Y → ℝ

L

𝒟 := {xi, yi}N
i=1
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Machine Learning and Neural Networks

• , , 


• A neural network  is a composition of layers with


• 


•   and  is an element-wise nonlinearity.


• 


• Parameters  are typically refined using gradient descent or its 
variants.

Hl := ℝdl H1 := X HL := Y

ϕ : X → Y

ϕl : Hl → Hl+1 hl ↦ ϕl(hl) := σ(Wlhl + bl)

Wl ∈ ℝdl+1×dl bl ∈ ℝdl+1 σ

ϕ := ϕL−1 ∘ ⋯ ∘ ϕ1

θ := {Wl, bl}L−1
l=1
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The Clifford Algebra
Why Deep Learning?

• Some indications CA data representations + CA weights yields more efficient learning + 
generalization properties.


• Similar to complex neural networks.


• Can represent certain physics quantities through e.g. bivectors.


• Equivariance w.r.t. several groups in several dimensions (O(3), SO(3), O(2), O(1, 3), E(3), etc.


• Translations (PGA), conformal group.


• Equivariant multiplicative operation (geometric product).


• No need for spherical harmonics, CG coefficients, etc. Space is bounded.
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Introduction
Equivariant Neural Networks

• Images by Maurice Weiler10

• 


• Group equivariance stimulates robust and reliable results.

w ∈ G : ρ(w)ϕ = ϕρ(w)



Introduction
Equivariant Neural Networks: Categorization

• Group convolutions (LieConv, B-spline CNNs).


• Integral over a group - computationally intensive.


• Scalarization methods (EGNN, GVP, VN).


• Operate almost exclusively with invariant (scalar) features.


• Restricted expressivity.


• E(3)-NN based methods (TFN, SEGNN).


• Tensor products of Wigner-D representations decomposed into irreps 
using Clebsch-Gordan coefficients.


• Operate on spherical harmonics basis.


• Not trivially extended to other dimensions or groups than O(3).

Han et al., 202211



Introduction
Clifford Group Equivariant Networks
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Theoretical Results

• The Clifford subspaces are not basis-dependent.


• Even in the degenerate case. 


• Clifford Group:


• 


• Quotient is isomorphic to  in general?

Γ(V, q) := {w ∈ Cl×(V, q) ∩ (Cl[0](V, q) ∪ Cl[1](V, q)) ∣ ∀v ∈ V, ρ(w)(v) ∈ V}
O(V, q)
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Theoretical Results
The Clifford Group

• 


•  satisfies: 


1. 


2. Additivity: 


3. Multiplicativity: 


4. Commutes with scalars: 

w ∈ Γ (V, q) ⊆ Cl (V, q)
ρ(w)

⟨(ρ(w)(x1), ρ(w)(x2)⟩ = ⟨x1, x2⟩

ρ(w)(x1 + x2) = ρ(w)(x1) + ρ(w)(x2)

ρ(w)(x1x2) = ρ(w)(x1)ρ(w)(x2)

ρ(w)(α ⋅ x) = α ⋅ ρ(w)(x)
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 multivector representation.O(V, q)

All geometric product 
polynomials are  
equivariant.

Γ(V, q)



Network Architectures
Equivariant Layers…
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MultivectorLinear

MultivectorGate

GeometricProduct

Implicitly building a big polynomial…



Methodology
Linear Layers

• Let  denote a set of multivectors.


• We can linearly combine them using 


• 


• Or more densely: 

x1, …, xcin

Tlin
ϕcout

(x1, …, xcin
) :=

cin

∑
l=1

ϕcoutcl
xcl

ϕcoutcin
∈ ℝ

Tlin
ϕcout

(x1, …, xcin
)(k) :=

cin

∑
l=1

ϕcoutcinkx(k)
cl
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Methodology
Linear Layers “Multivector Neurons”
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Methodology
Parameterized Geometric Product

• 


• All products:


•

Pϕ(x1, x2)(k) :=
n

∑
i=0

n

∑
j=0

ϕijk(x(i)
1 x( j)

2 )(k)

Tprod(x1, …, xcin
)(k) :=

cin

∑
p=1

cin

∑
q=1

Pϕpq
(xp, xq)(k)
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Network Architectures
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MultivectorLinear

MultivectorGate

GeometricProduct

Implicitly building a big polynomial…



Experiments
 Experiment: -body.E(3) n

• A benchmark for simulating physical systems using GNNs.


• Given  charged particles’ positions and velocities, estimate their 
positions after 1000 time-steps.

n = 5
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Experiments
 Experiment: -body. ( )E(3) n G(3)

• A benchmark for simulating physical systems using GNNs.


• Given  charged particles’ positions and velocities, estimate their 
positions after 1000 time-steps.

n = 5
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Experiments
 Experiment: Top Tagging ( )O(1,3) G(1,3)

• Jet tagging: identifying particle jets generated during collisions.


• Top tagging: identifying whether event produced a top quark.


• Given: momenta, energy of  particles.


• Relativistic nature: transformations that preserve space-time distances given 

by  

±200

O(1,3) . A =

1
−1

−1
−1
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Remarks
• No need for group convolutions.


• We can directly use higher-order (vector) features instead of scalarized ones.


• CGENNs generalize to quadratic spaces of any dimension, can be equivariant to O(n), 
E(n), and subgroups.


• No spherical harmonics, CG coefficients, etc.


• Do not have all the SO(3) representations: is it a fundamental limitation?


• Are the representations we do have always irreducible?


• Geometric products are all you need in the nondegenerate case, not in the degenerate 
case.
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• Code is available at https://github.com/DavidRuhe/
clifford-group-equivariant-neural-networks/


• Massive speed ups in JIT-compiled JAX versions.

Code & Efficiency
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Adjacent & Followup Works

• Geometric Algebra Transformer (Brehmer et al., 2023, NeurIPS 2023)


• Lorentz-Equivariant GATr (Spinner et al., 2024)


• Clifford Simplicial Message Passing (Liu et al., 2024, ICLR 2024)


• Clifford-Steerable CNNs (Zhdanov et al., 2024, ICML 2024)


• Applications in


• 3D vision (Pepe et al., 2024)


• (Bio)chemistry (Pepe et al., 2024)


• Fluid Mechanics (Maruyana et al., 2024).
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Thanks
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