
Towards an Integrated Development tool for GA

and a symbolic CGA implementation based on

CasADi for application in robotics

www.dhbw-karlsruhe.de

Oliver Rettig, Fabian Hinderer, Marcus Strand

• Collaborative robotics, motion analysis, grinding/sanding with robots

• Sustainability topics: e.g. energy consumption reduction, remanufactoring

Background

Goal: Simplify usage of geometric algebra not only in robotics

applications

Fast impl.
(Jacobimatrices)

3D

Visualisation
DSL with static
typed Syntax)

Debugging
(breakpoints,

not available for
GA´DSLs e.g.
Gaalopscript)

DSL with Smart
editing features

IDE-Integration
(not available for

GA DSL e.g
Gaalopscript)

DSL in polyglot
development

Application:

• Robotics: IK, RNEA, …

• Optimal-Control

Missing:

• DSL (statically typed)

• Tooling (Smart editing features,

debugging, 3d visualization)

• Software architecture fitting into robotic

tools to solve optimal control problems

• Jaccobian/Hessian

(automatic/algorithmic differentiation)

Web-based

tools for

beginners

Integration into
Robotics libs

(Optimal control)

Available:

• many good GA libs and tools

GA libs

How to get tooling support?

? Integrate a GA lib into a good supported general programming

language (Python, C++, Julia…)?

? Create your own DSL from scratch and implement the complete tooling

yourself

? Create your own DSL based on modern software-technology-stack for

creating programming languages

How to reach good integration of GA lib into robotics appl.?

• fast symbolic expression based GA implementation which allows

Jacobian/Hessian calculation by automated differentiation

• to solve nonlinear optimization problems e.g. by Optimal-Control or

Model-Predictive-Control

? Create it from the scratch?

? Create it based on an existing modern software-technology-stack

How to reach the goal: Simplify usage GA in robotics apps

Overview – Choosen open-source technologies

Apache NetBeans

Typical 100.000 lines of code for state-of-the-

art IDE-support for a new programming

language. With usage of GraalVMLSP only

10.000.

• High-performance, polyglot virtual machine

• JIT- and Ahead-of-time-compiler

• Comes with Truffle, a language implementation

framework

• Truffle provides an API for program instrumentation

• based on this API, GraalVM provides various lang-

uageagnostic tools such as debuggers and profilers

• Symbolic framework implementing forward

and reverse mode of algorithmic differentiation

on expression graphs to construct gradients,

large-and-sparse Jacobians and Hessians

• Evalution in its own VM or exported to

standalone c-code.

Overview – software architecture

DSL4GA specific LS

Developer

…

IDE

Programming

Environment
LS Client

Program

LS Server

JVM TI

JDI

LSP

modifies

reads

Interacts with

JDWP

delegates

Textmate DSL4GA

depends

https://github.com/MobMonRob/DSL4GeometricAlgebra

DSL – status

Syntax

- Symbols (unicode representations)

- function defs (multiple result values)

- Build-in functions

- Assignments

Usage

• Java integration (via annotation)

• Command line execution

• Polyglot inside GraalVM

• Creation of c-code (CasADi)

Smart editing features

GraalVM‘s Language Server (generic, language-agnostic)

✓ Text Document Synchronization

✓ Hover Provider

✓ Completion Provider

✓ Signature Help Provider

✓ Code Action Provider (refactoring, quick fixes)

✓ CodeLens Provider (links in-between the source code)

✓ Execute Command Provider (key-bindings, e.g.

command to uncomment a line)

DSL4GA specific Language Server

Textmate based Syntax-Highlighting

More powerful Syntax-Highlighting based on the anlr

Debugging

✓ tested with the Netbeans IDE

✓ breakpoints, variables/watches

✓ 3d visualization of

the scope („:“ syntax)

✓ polyglot stacktrace

✓ Chrome Debugger

✓ VS but not tested

breakpoint

Debugging

3D Visualisation

NetbeansIDEEuclid3dView

Jzy3d

DSL4GA

Euclid3DViewAPI

3DView Plugin

• API to plugin visualizers

• Default: Euclid3dView

✓ Plugin to integrate in the Netbeans IDE

✓ can be used with every IDE

− too slow for animations, no scene graph

✓ Visualize robots

✓ and skeletons

? Ganja.js

o Webots

CasADi based GA implementations

Truffle based AST implementation

• The magic of out-of-the-box tooling support needs the AST is based on Truffle-API

• All program statements (representing GA expressions) are immediately executed

by CasADi, if the running programm reaches them

• The CasADi-Wrapper functions (or default Java objects) are invoked a lot

➢ Slow execution, fast compilation

Fast AST implementation

• creates a CasADi AST representation before the program is executed

• automatic resuse parts of the AST – optimization

• Automatic unrolling of loops in into matrices is possible

• CasADi can create automatically optimized c-Code

• code generation with parallelisation is available

➢ Fast execution, long compile time

CasADi based GA implementations

✓ JCasADi

✓ GACalcAPI

✓ CGACasADi

o Generic GA impl.

o Gaalop

? Ganja.js

JCasADi

CGACasADI

GACalcAPI

GACasADI

https://github.com/orat/GACalcAPI

https://github.com/MobMonRob/JCasADi

https://github.com/orat/CGACasADi

D
S

L
4

G
A

https://github.com/MobMonRob/DSL4GeometricAlgebra

• CasADI AST is created via

JCasADi

• CasADI can export optimized c-

code without dependences

Conclusion

✓ The feasibility of creating a programming tool chain with a

DSL for GA, based on Truffle/GraalVM is shown

✓ Base functionality (debugging, syntax-highlighing, …) cauld

be implemented with less lines of code

✓ The build-in GraalVM-LS brings smart editing features out-of-

the-box

− Truffle-based (CasADi) implementation of the AST seems not

to be fast enough for our robotics application

• A symbolic based implementation based on the CasADi AST

is fast and support Jacobians and Hessians out of the box

o It is ambigous how to handle best further hand-in-hand

development of truffle-based and fast GA implementation

DSL – extention of the syntax

• with respect to easy creation a fast CasADI AST representation

• following DOP (data orientated) instead of OOP pattern: 1. model the

data, 2. data is immutable, 3. validate at the boundary, 4. make illegal

states unrepresentable

• keyword to define GA models

• (static) multivector subtypes

• multidim. arrays of multivectors

• records (named tuples)

• if statements, for-loops

• polyglot API (import/export func.)

Truffle based AST implementation

o Impl. of GraalVM Polyglott API (ganjs.js 3d Visualisation?)

Fast implementation:

o „Hyperwedge“ impl.

o Loop unrolling by CasADi based parallelization (map)

o Symbolic optimization of math expressions with Maxima (Computer

algebra system)

o Precompile CasADi into LLVM bitcode (by GraalVM toolchain)

o …

CasADi based implementations: Next steps

Discussion

- DSL Syntax extentions?

- Naming? Current idea „Gaazelle“

- Benchmarks? Quantifying runtime speed?

- Comparison with other ga-libs?

- Recommendations for further development?

Next Milestone

- Bundle of all componentes together into a single plugin for the

NetbeansIDE

- Completion of some features, testing, bug fixing

- Configuration of Windows-Build (JCasADi)

Thank you for your attention

Oliver Rettig
Oliver.Rettig@dhbw-karlsruhe.de

	Slide 1
	Background
	Goal: Simplify usage of geometric algebra not only in robotics applications �
	Slide 4
	Overview – Choosen open-source technologies
	Overview – software architecture
	DSL – status
	Smart editing features
	Debugging
	Debugging
	3D Visualisation
	CasADi based GA implementations
	CasADi based GA implementations
	Conclusion
	DSL – extention of the syntax
	Slide 16
	Discussion
	Thank you for your attention

