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Motivation

Motivation

Geometric Algebra (GA) Networks have been gaining significant momentum in the past two
years1.

We have employed them to...

(a) ...solve PDEs (b) ...predict protein structures

(c) ...estimate camera poses
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Motivation

Motivation

A key step in GA Networks is the embedding in a given algebra

Figure 2: Elements in G(3,0,0)1

Examples:

Data Data in GA Networks: embedding

scalar vector field 

G(3,0,0)

scalar bivector

G(2,0,0)

+

+

Figure 3: Two examples of GA embedding
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Motivation

Goal

Question

How does the choice of the algebra impact learning in Geometric Algebra
Networks?

We address it by studying Maxwell’s equations and solving them in
Spacetime Algebra (STA).

Contributions:

Showed that STA simplifies the solution Maxwell’s PDEs also if learnt

Up to 2.6× lower MSE with 6× fewer trainable parameters compared to
Clifford ResNet

First implementation of a network entirely in STA
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Problem Definition

Problem Definition: Describing Maxwell’s PDEs

Maxwell’s Equations in Differential Form

∇ ·E = ρ ∇ ·B = 0 ∇×E = − ∂B
∂t

∇×B = ∂E
∂t

+ J

Maxwell’s Equations in GA - G3,0,0(
∂
∂t

+ i∇
)
F = J− iρ, with

F = E+ iB = E1e1 + E2e2 + E3e3 +B1e23 +B2e13 +B3e12

Maxwell’s Equations in STA - G1,3,0

∇F = J , with
F = E+ IB = E1γ10 + E2γ20 + E3γ30 +B1γ13 +B2γ13 +B3γ12,

J = (ρ− J)γ0
∇ = γi ∂

∂xi
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Problem Definition

Problem Definition: Describing Maxwell’s PDEs

Maxwell’s Equations in STA

∇F = J

Single, covariant Maxwell’s equations equation

From Prof. Lasenby’s presentation, A new language for Physics at GAME
2020:

“ The advantage here is not merely notational [...] the geometric product
with the vector derivative is invertible [...] where the separate divergence
and curl operators are not”

“This led to the development of a new method for calculating EM response
of conductors to incoming plane waves [...] it was possible to change the
illumination in real time”
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Problem Definition

Problem Definition: Architecture

GA - G3,0,0(
∂
∂t

+ i∇
)
F = J− iρ

STA - G1,3,0

∇F = J
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Figure 4: The two approaches to the solution of Maxwell’s PDEs
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Experiments

Experiments

To validate the claim that STA is a better suited space to work in when dealing
with Maxwell’s PDEs...

We look at:

2D EM fields

3D EM fields

Generated through a FDTD solver. We study the impact of:

Varying sampling period of the dataset ∆t

Presence of obstables in the domain

Number of trainable parameters

Rollout error
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Experiments

Metrics

Three metrics to assess the quality of the PDEs solution

Mean squared error

L = 1
LMN

∑
j+x,y,z

∑L
l=0

∑M
m=0

∑N
n=0(Ejlmn,i+2∆t − Êjlmn,i+2∆t)

2

+(Bjlmn,i+2∆t − B̂jlmn,i+2∆t)
2

Structural Similarity Index Measure

SSIM(F2, F̂2) =
(2µF2µ ˆ

F2+C1)(2σ
F2 ˆ

F2+C2)

(µ2
F2+µ2

ˆ
F2

+C1)(σ2
F2+σ2

ˆ
F2

+C2)
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Experiments

Experiments: 2D fields, varying ∆t
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Epochs

10 5Lo
ss

Training G(2,0,0)
Val G(2,0,0)
Training G(1,2,0)
Val G(1,2,0)

(a) ∆t = 25s
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(b) ∆t = 50s

Figure 5: Training and validation losses versus number of epochs for 2D Maxwell’s PDEs.
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Figure 6: MSE between estimated and GT EM fields vs ∆t.
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Experiments

Experiments: 2D fields, varying ∆t

F2 = (E+ IB)2 = (E1γ10 + E2γ20 + E3γ30 +B1γ13 +B2γ13 +B3γ12)2

GT
STAResNet 

G(1,2,0)

Clifford  
ResNet 
G(2,0,0)

Δt = 25 s 

Δt = 50 s 

Δt = 75 s 

Δt = 100 s 

Figure 7: Squared magnitude of the Faraday bivector F2 for varying ∆t.
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Experiments

Experiments: impact of obstacles

Figure 8: The 5 different obstacle configurations. The 3 unseen geometries are highlighted.
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Figure 9: (a) MSE and (b) correlation between estimated and GT fields with obstacles.
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Experiments: impact of obstacles
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Figure 10: Squared magnitude of the Faraday bivector F2 over the test set with seen and
unseen obstacles configurations.
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Experiments

Experiments: impact of trainable parameters

STA is a (n+ 1)D space compared to nD GA: for the same number of channels or for
the same size of the convolutional filters, STAResNet will have a larger number of
trainable parameters.
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Figure 11: Test error over the estimated EM fields in the presence of seen and unseen
obstacle geometries versus the number of trainable parameters.
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Experiments

Experiments: rollout error

Rollout refers to the process of using the model’s own predictions as inputs to generate
future predictions.
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Figure 12: (a) Mean squared error and (b) correlation between estimated and ground
truth EM fields over test set versus rollout steps m for the 2D case.
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Experiments: rollout error - visualizing F2
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Experiments

Experiments: 3D fields
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Figure 13: MSE between estimated and GT EM fields vs rollout steps m for the 3D case.
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Experiments: 3D fields - visualizing F2
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