STAResNet

A Network in Spacetime Algebra to solve Maxwell's PDEs

Alberto Pepe¹, Sven Buchholz², Joan Lasenby¹

¹University of Cambridge, Signal Processing & Communications Lab, Engineering Department, Cambridge, UK

²Technische Hochschule Brandenburg, Fachbereich Informatik und Medien, Brandenburg, Germany

Applied Geometric Algebras in Computer Science and Engineering (AGACSE) Amsterdam, 27-29 August 2024

(日)

Outline

2 Problem Definition

3 Experiments

Alberto Pepe et al. (UoC)

2

イロト イヨト イヨト イヨト

Table of Contents

2 Problem Definition

3 Experiments

2

< □ > < □ > < □ > < □ > < □ >

Geometric Algebra (GA) Networks have been gaining significant momentum in the past two years 1 .

Geometric Algebra (GA) Networks have been gaining significant momentum in the past two years¹. We have employed them to...

¹Clifford Neural Layers for PDE Modeling, Brandstetter et al., $\exists CLR = 2023 \equiv b + 4 \equiv b = 2000$

Geometric Algebra (GA) Networks have been gaining significant momentum in the past two years¹. We have employed them to...

(a) ...solve PDEs

¹Clifford Neural Layers for PDE Modeling, Brandstetter et al., $dCLR_2023 \equiv b \in a = 0$

|--|

Motivation

Geometric Algebra (GA) Networks have been gaining significant momentum in the past two years¹. We have employed them to...

¹Clifford Neural Layers for PDE Modeling, Brandstetter et al., $\exists CLR 2023 \equiv (a + b) \equiv (a + b) = (a + b)$

Alberto	Pene et a	L (UoC

Motivation

Geometric Algebra (GA) Networks have been gaining significant momentum in the past two years¹. We have employed them to...

¹Clifford Neural Layers for PDE Modeling, Brandstetter et al., ICLR 2023 = • (= •)

Alberto Pepe et al. (U _o C
-----------------------	------------------

A key step in GA Networks is the embedding in a given algebra

Examples:

¹Clifford Neural Layers for PDE Modeling, Brandstetter et al., $\exists CLR \exists 2023 \equiv i \in i = 100$ $i \in [1, 1]$

A key step in GA Networks is the embedding in a given algebra

Examples:

Figure 3: Two examples of GA embedding

Alberto	Pepe et a	I. (U₀C
---------	-----------	---------

Question

How does the choice of the algebra impact learning in Geometric Algebra Networks?

We address it by studying Maxwell's equations and solving them in Spacetime Algebra (STA).

э

イロト イ団ト イヨト イヨト

Question

How does the choice of the algebra impact learning in Geometric Algebra Networks?

We address it by studying Maxwell's equations and solving them in Spacetime Algebra (STA).

Contributions:

э

イロト イ団ト イヨト イヨト

Question

How does the choice of the algebra impact learning in Geometric Algebra Networks?

We address it by studying Maxwell's equations and solving them in Spacetime Algebra (STA).

Contributions:

• Showed that STA simplifies the solution Maxwell's PDEs also if learnt

Question

How does the choice of the algebra impact learning in Geometric Algebra Networks?

We address it by studying Maxwell's equations and solving them in Spacetime Algebra (STA).

Contributions:

- Showed that STA simplifies the solution Maxwell's PDEs also if learnt
- \bullet Up to 2.6× lower MSE with 6× fewer trainable parameters compared to Clifford ResNet

Question

How does the choice of the algebra impact learning in Geometric Algebra Networks?

We address it by studying Maxwell's equations and solving them in Spacetime Algebra (STA).

Contributions:

- Showed that STA simplifies the solution Maxwell's PDEs also if learnt
- $\bullet~$ Up to 2.6 $\times~$ lower MSE with 6 $\times~$ fewer trainable parameters compared to Clifford ResNet
- First implementation of a network entirely in STA

6/25

Table of Contents

3 Experiments

2

イロト イヨト イヨト イヨト

Problem Definition

Problem Definition: Describing Maxwell's PDEs

Maxwell's Equations in Differential Form

$$\nabla \cdot \mathbf{E} = \rho$$
 $\nabla \cdot \mathbf{B} = 0$ $\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$ $\nabla \times \mathbf{B} = \frac{\partial \mathbf{E}}{\partial t} + \mathbf{J}$

• • • • • • • • • •

Maxwell's Equations in Differential Form

$$\nabla \cdot \mathbf{E} = \rho$$
 $\nabla \cdot \mathbf{B} = 0$ $\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$ $\nabla \times \mathbf{B} = \frac{\partial \mathbf{E}}{\partial t} + \mathbf{J}$

Maxwell's Equations in GA - $G_{3,0,0}$

$$\left(\frac{\partial}{\partial t} + i\nabla\right)F = \mathbf{J} - i\rho, \text{ with}$$
$$F = \mathbf{E} + i\mathbf{B} = E_1e_1 + E_2e_2 + E_3e_3 + B_1e_{23} + B_2e_{13} + B_3e_{12}$$

Image: A math a math

Maxwell's Equations in Differential Form

 $\nabla \cdot \mathbf{E} = \rho$ $\nabla \cdot \mathbf{B} = 0$ $\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$ $\nabla \times \mathbf{B} = \frac{\partial \mathbf{E}}{\partial t} + \mathbf{J}$

Maxwell's Equations in GA - $G_{3,0,0}$

$$\left(\frac{\partial}{\partial t} + i\nabla\right)F = \mathbf{J} - i\rho, \text{ with}$$
$$F = \mathbf{E} + i\mathbf{B} = E_1e_1 + E_2e_2 + E_3e_3 + B_1e_{23} + B_2e_{13} + B_3e_{12}$$

Maxwell's Equations in STA - $G_{1,3,0}$

 $\begin{aligned} \nabla \mathbf{F} &= J \text{, with} \\ \mathbf{F} &= \mathbf{E} + I \mathbf{B} = E_1 \gamma_{10} + E_2 \gamma_{20} + E_3 \gamma_{30} + B_1 \gamma_{13} + B_2 \gamma_{13} + B_3 \gamma_{12} \text{,} \\ J &= (\rho - \mathbf{J}) \gamma_0 \\ \nabla &= \gamma^i \frac{\partial}{\partial x_i} \end{aligned}$

3

イロト 不得 トイヨト イヨト

Problem Definition

Problem Definition: Describing Maxwell's PDEs

Maxwell's Equations in STA

$$\nabla \mathbf{F} = J$$

イロト イ団ト イヨト イヨト

2

Maxwell's Equations in STA

$$\nabla \mathbf{F} = J$$

• Single, covariant Maxwell's equations equation

Maxwell's Equations in STA

$$\nabla \mathbf{F} = J$$

- Single, covariant Maxwell's equations equation
- From Prof. Lasenby's presentation, *A new language for Physics* at GAME 2020:

Maxwell's Equations in STA

$$\nabla \mathbf{F} = J$$

- Single, covariant Maxwell's equations equation
- From Prof. Lasenby's presentation, *A new language for Physics* at GAME 2020:

"The advantage here is not merely notational [...] the geometric product with the vector derivative is invertible [...] where the separate divergence and curl operators are not"

< □ > < 同 > < 回 > < Ξ > < Ξ

Maxwell's Equations in STA

$$\nabla \mathbf{F} = J$$

- Single, covariant Maxwell's equations equation
- From Prof. Lasenby's presentation, *A new language for Physics* at GAME 2020:

"The advantage here is not merely notational [...] the geometric product with the vector derivative is invertible [...] where the separate divergence and curl operators are not"

"This led to the development of a new method for calculating EM response of conductors to incoming plane waves [...] it was possible to change the illumination in real time"

< □ > < 同 > < 回 > < Ξ > < Ξ

Problem Definition

Problem Definition: Architecture

GA - G_{3,0,0}

$$\left(\frac{\partial}{\partial t}+i\nabla\right)F=\mathbf{J}-i\rho$$

STA - $G_{1,3,0}$ $abla {f F}=J$

¹Clifford Neural Layers for PDE Modeling, Brandstetter et al., $\exists CLR \ge 023 \equiv b \iff \equiv 0 \land 0 \land 0$

Problem Definition: Architecture

GA -
$$G_{3,0,0}$$
$$\left(\frac{\partial}{\partial t} + i\nabla\right)F = \mathbf{J} - i\rho$$

STA - $G_{1,3,0}$ $\nabla \mathbf{F} = J$

¹Clifford Neural Layers for PDE Modeling, Brandstetter et al., $\exists CLR \exists 2023 \equiv \flat \in \Xi \rightarrow \neg = \neg \land \land$

Alberto Pepe et al. (UoC)

STAResNet

AGACSE 2024

10 / 25

Problem Definition: Architecture

(a) Clifford ResNet (GA) 1

(b) STAResNet (STA) [ours]

Figure 4: The two approaches to the solution of Maxwell's PDEs

¹Clifford Neural Layers for PDE Modeling, Brandstetter et al., $\exists CLR \exists 2023 \equiv \flat \iff \equiv \flat \implies = 0$

Table of Contents

2) Problem Definition

2

< □ > < □ > < □ > < □ > < □ >

To validate the claim that STA is a better suited space to work in when dealing with Maxwell's PDEs...

Ξ.

イロト イヨト イヨト イヨト

To validate the claim that STA is a better suited space to work in when dealing with Maxwell's PDEs $\!\!\!\!$

We look at:

- 2D EM fields
- 3D EM fields

Generated through a FDTD solver.

æ

イロト イ団ト イヨト イヨト

To validate the claim that STA is a better suited space to work in when dealing with Maxwell's PDEs $\!\!\!\!$

We look at:

- 2D EM fields
- 3D EM fields

Generated through a FDTD solver. We study the impact of:

• Varying sampling period of the dataset Δt

To validate the claim that STA is a better suited space to work in when dealing with Maxwell's PDEs...

We look at:

- 2D EM fields
- 3D EM fields

Generated through a FDTD solver. We study the impact of:

- \bullet Varying sampling period of the dataset Δt
- Presence of obstables in the domain

To validate the claim that STA is a better suited space to work in when dealing with Maxwell's PDEs...

We look at:

- 2D EM fields
- 3D EM fields

Generated through a FDTD solver. We study the impact of:

- \bullet Varying sampling period of the dataset Δt
- Presence of obstables in the domain
- Number of trainable parameters

To validate the claim that STA is a better suited space to work in when dealing with Maxwell's PDEs...

We look at:

- 2D EM fields
- 3D EM fields

Generated through a FDTD solver. We study the impact of:

- \bullet Varying sampling period of the dataset Δt
- Presence of obstables in the domain
- Number of trainable parameters
- Rollout error

Metrics

Three metrics to assess the quality of the PDEs solution

Ξ.

Metrics

Three metrics to assess the quality of the PDEs solution

• Mean squared error

$$\mathcal{L} = \frac{1}{LMN} \sum_{j+x,y,z} \sum_{l=0}^{L} \sum_{m=0}^{M} \sum_{n=0}^{N} (E_{jlmn,i+2\Delta t} - \hat{E}_{jlmn,i+2\Delta t})^2 + (B_{jlmn,i+2\Delta t} - \hat{B}_{jlmn,i+2\Delta t})^2$$

2

イロト イヨト イヨト イヨト

Metrics

Three metrics to assess the quality of the PDEs solution

• Mean squared error

$$\mathcal{L} = \frac{1}{LMN} \sum_{j+x,y,z} \sum_{l=0}^{L} \sum_{m=0}^{M} \sum_{n=0}^{N} (E_{jlmn,i+2\Delta t} - \hat{E}_{jlmn,i+2\Delta t})^2 + (B_{jlmn,i+2\Delta t} - \hat{B}_{jlmn,i+2\Delta t})^2$$

• Structural Similarity Index Measure

$$\mathsf{SSIM}(\mathbf{F}^2, \hat{\mathbf{F}^2}) = \frac{(2\mu_{\mathbf{F}^2}\mu_{\hat{\mathbf{F}^2}} + C_1)(2\sigma_{\mathbf{F}^2\hat{\mathbf{F}^2}} + C_2)}{(\mu_{\mathbf{F}^2}^2 + \mu_{\hat{\mathbf{F}^2}}^2 + C_1)(\sigma_{\mathbf{F}^2}^2 + \sigma_{\hat{\mathbf{F}^2}}^2 + C_2)}$$

æ

イロト イ団ト イヨト イヨト

Experiments: 2D fields, varying Δt

Figure 5: Training and validation losses versus number of epochs for 2D Maxwell's PDEs.

イロト イ団ト イヨト イヨト

Experiments: 2D fields, varying Δt

Figure 5: Training and validation losses versus number of epochs for 2D Maxwell's PDEs.

Figure 6: MSE between estimated and GT EM_fields_vs $\Delta t_{...}$

Alberto Pepe et al. (UoC)

Experiments: 2D fields, varying Δt

 $\mathbf{F}^2 = (\mathbf{E} + I\mathbf{B})^2 = (E_1\gamma_{10} + E_2\gamma_{20} + E_3\gamma_{30} + B_1\gamma_{13} + B_2\gamma_{13} + B_3\gamma_{12})^2$

イロト イ団ト イヨト イヨト

Experiments: 2D fields, varying Δt

 $\mathbf{F}^2 = (\mathbf{E} + I\mathbf{B})^2 = (E_1\gamma_{10} + E_2\gamma_{20} + E_3\gamma_{30} + B_1\gamma_{13} + B_2\gamma_{13} + B_3\gamma_{12})^2$

Figure 7: Squared magnitude of the Faraday bivector \mathbf{F}^2 for varying Δt .

Alberto Pepe et al. (UoC)

AGACSE 2024

Experiments: impact of obstacles

Figure 8: The 5 different obstacle configurations. The 3 unseen geometries are highlighted.

• • • • • • • • • • • •

Experiments: impact of obstacles

Figure 8: The 5 different obstacle configurations. The 3 unseen geometries are highlighted.

Alberto Pepe et al. (UoC)

Experiments: impact of obstacles

Figure 10: Squared magnitude of the Faraday bivector ${\bf F}^2$ over the test set with seen and unseen obstacles configurations.

Alberto i epe et al. (000)

< □ > < □ > < □ > < □ > < □ >

Experiments: impact of trainable parameters

STA is a (n + 1)D space compared to nD GA: for the same number of channels or for the same size of the convolutional filters, STAResNet will have a larger number of trainable parameters.

Experiments: impact of trainable parameters

STA is a (n + 1)D space compared to nD GA: for the same number of channels or for the same size of the convolutional filters, STAResNet will have a larger number of trainable parameters.

Number of trainable parameters

Figure 11: Test error over the estimated EM fields in the presence of seen and unseen obstacle geometries versus the number of trainable parameters.

Alberto Pepe et al. (UoC)

Experiments: rollout error

Rollout refers to the process of using the model's own predictions as inputs to generate future predictions.

æ

イロト イ団ト イヨト イヨト

Experiments: rollout error

Rollout refers to the process of using the model's own predictions as inputs to generate future predictions.

(a) MSE (\downarrow) versus rollout steps.

(b) SSIM (\uparrow) versus rollout steps.

Figure 12: (a) Mean squared error and (b) correlation between estimated and ground truth EM fields over test set versus rollout steps m for the 2D case.

Experiments: rollout error - visualizing \mathbf{F}^2

Alberto Pepe et al. (UoC)

2

イロン イ団 とく ヨン イヨン

Experiments: 3D fields

Figure 13: MSE between estimated and GT EM fields vs rollout steps m for the 3D case.

			= -) 40
Alberto Pepe et al. (UoC)	STAResNet	AGACSE 2024	21 / 2

1 JUL 1

-

Experiments: 3D fields - visualizing \mathbf{F}^2

2

イロン イ団 とく ヨン イヨン

Experiments: 3D fields - visualizing \mathbf{F}^2

2

イロン イ団 とく ヨン イヨン

Table of Contents

Problem Definition

2

< □ > < □ > < □ > < □ > < □ >

Conclusion

With STAResNet, we:

• Shed light on the importance of the right algebra in which to embed data

イロト イ団ト イヨト イヨト

Conclusion

• • • • • • • • • • •

With STAResNet, we:

- Shed light on the importance of the right algebra in which to embed data
- Showed improvement in the PDEs solution over a vanilla GA network

Conclusion

Image: A math the second se

With STAResNet, we:

- Shed light on the importance of the right algebra in which to embed data
- Showed improvement in the PDEs solution over a vanilla GA network

Why does it matter?

• Many problems in ML deal with geometrical data

Conclusion

With STAResNet, we:

- Shed light on the importance of the right algebra in which to embed data
- Showed improvement in the PDEs solution over a vanilla GA network

Why does it matter?

- Many problems in ML deal with geometrical data
- Very few models can capture the geometry of data like GA networks

Image: A math the second se

Conclusion

With STAResNet, we:

- Shed light on the importance of the right algebra in which to embed data
- Showed improvement in the PDEs solution over a vanilla GA network

Why does it matter?

- Many problems in ML deal with geometrical data
- Very few models can capture the geometry of data like GA networks
- Growing interest in industry: Huawei, Microsoft, ...

Acknowledgements: Joan Lasenby, Sven Buchholz, Christian Hockey, David Bowie

Image: A math the second se

25 / 25