STAResNet

A Network in Spacetime Algebra to solve Maxwell's PDEs

Alberto Pepe 1 , Sven Buchholz 2 , Joan Lasenby 1

¹University of Cambridge, Signal Processing & Communications Lab, Engineering Department, Cambridge, UK

²Technische Hochschule Brandenburg, Fachbereich Informatik und Medien, Brandenburg, Germany

Applied Geometric Algebras in Computer Science and Engineering (AGACSE) Amsterdam, 27-29 August 2024

 Ω

Outline

重

 299

イロメ イ部メ イ君メ イ君メー

Table of Contents

[Problem Definition](#page-15-0)

重

 299

メロトメ 御 トメ ミトメ ミト

Geometric Algebra (GA) Networks have been gaining significant momentum in the past two years $^1.$

¹Clifford Neural Layers for PDE Modeling, Brandstetter et [al.,](#page-2-0) [IC](#page-4-0)[LR](#page-2-0)[2](#page-7-0)[02](#page-8-0)[3](#page-1-0) \Rightarrow 重 299

Geometric Algebra (GA) Networks have been gaining significant momentum in the past two years 1 . We have employed them to \ldots

¹Clifford Neural Layers for PDE Modeling, Brandstetter et [al.,](#page-3-0) [IC](#page-5-0)[LR](#page-2-0)[2](#page-7-0)[02](#page-8-0)[3](#page-1-0) \Rightarrow 重 299

Geometric Algebra (GA) Networks have been gaining significant momentum in the past two years 1 . We have employed them to \ldots

(a) ...solve PDEs

¹Clifford Neural Layers for PDE Modeling, Brandstetter et [al.,](#page-4-0) [IC](#page-6-0)[LR](#page-2-0)[2](#page-7-0)[02](#page-8-0)[3](#page-1-0) 299 э

Motivation

Geometric Algebra (GA) Networks have been gaining significant momentum in the past two years 1 . We have employed them to \ldots

Motivation

Geometric Algebra (GA) Networks have been gaining significant momentum in the past two years 1 . We have employed them to \ldots

A key step in GA Networks is the embedding in a given algebra

Examples:

A key step in GA Networks is the embedding in a given algebra

Examples:

Figure 3: Two examples of GA embedding

Question

How does the choice of the algebra impact learning in Geometric Algebra Networks?

We address it by studying Maxwell's equations and solving them in Spacetime Algebra (STA).

 Ω

メロトメ 倒 トメ ミトメ ミト

Question

How does the choice of the algebra impact learning in Geometric Algebra Networks?

We address it by studying Maxwell's equations and solving them in Spacetime Algebra (STA).

Contributions:

 Ω

メロトメ 倒 トメ ミトメ ミト

Question

How does the choice of the algebra impact learning in Geometric Algebra Networks?

We address it by studying Maxwell's equations and solving them in Spacetime Algebra (STA).

Contributions:

• Showed that STA simplifies the solution Maxwell's PDEs also if learnt

 Ω

Question

How does the choice of the algebra impact learning in Geometric Algebra Networks?

We address it by studying Maxwell's equations and solving them in Spacetime Algebra (STA).

Contributions:

- Showed that STA simplifies the solution Maxwell's PDEs also if learnt
- Up to 2.6 \times lower MSE with 6 \times fewer trainable parameters compared to Clifford ResNet

 Ω

Question

How does the choice of the algebra impact learning in Geometric Algebra Networks?

We address it by studying Maxwell's equations and solving them in Spacetime Algebra (STA).

Contributions:

- Showed that STA simplifies the solution Maxwell's PDEs also if learnt
- Up to 2.6 \times lower MSE with 6 \times fewer trainable parameters compared to Clifford ResNet
- First implementation of a network entirely in STA

 Ω

Table of Contents

重

 299

メロトメ 御 トメ ミトメ ミト

Maxwell's Equations in Differential Form

$$
\nabla \cdot \mathbf{E} = \rho \qquad \nabla \cdot \mathbf{B} = 0 \qquad \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \qquad \nabla \times \mathbf{B} = \frac{\partial \mathbf{E}}{\partial t} + \mathbf{J}
$$

 Ω

K ロ ▶ K (伊 ▶ K)

Maxwell's Equations in Differential Form

$$
\nabla \cdot \mathbf{E} = \rho \qquad \nabla \cdot \mathbf{B} = 0 \qquad \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \qquad \nabla \times \mathbf{B} = \frac{\partial \mathbf{E}}{\partial t} + \mathbf{J}
$$

Maxwell's Equations in GA - $G_{3,0,0}$

$$
\left(\frac{\partial}{\partial t} + i\nabla\right)F = \mathbf{J} - i\rho, \text{ with}
$$

$$
F = \mathbf{E} + i\mathbf{B} = E_1e_1 + E_2e_2 + E_3e_3 + B_1e_{23} + B_2e_{13} + B_3e_{12}
$$

 4 ロ \rightarrow 4 \overline{m} \rightarrow \rightarrow \overline{m}

Maxwell's Equations in Differential Form

 $\nabla \cdot \mathbf{E} = \rho \qquad \nabla \cdot \mathbf{B} = 0 \qquad \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \qquad \nabla \times \mathbf{B} = \frac{\partial \mathbf{E}}{\partial t} + \mathbf{J}$

Maxwell's Equations in GA - $G_{3,0,0}$

$$
\left(\frac{\partial}{\partial t} + i\nabla\right)F = \mathbf{J} - i\rho, \text{ with}
$$

$$
F = \mathbf{E} + i\mathbf{B} = E_1e_1 + E_2e_2 + E_3e_3 + B_1e_{23} + B_2e_{13} + B_3e_{12}
$$

Maxwell's Equations in STA - $G_{1,3,0}$

 $\nabla \mathbf{F} = J$, with $\mathbf{F} = \mathbf{E} + I\mathbf{B} = E_1 \gamma_{10} + E_2 \gamma_{20} + E_3 \gamma_{30} + B_1 \gamma_{13} + B_2 \gamma_{13} + B_3 \gamma_{12}$ $J=(\rho-\mathbf{J})\gamma_0$ $\nabla = \gamma^i \frac{\partial}{\partial x_i}$

目

 Ω

メロトメ 倒 トメ 君 トメ 君 トー

[Problem Definition](#page-15-0)

Problem Definition: Describing Maxwell's PDEs

Maxwell's Equations in STA

$$
\nabla \mathbf{F} = J
$$

メロメメ 倒 メメ きょくきょう

重

 299

Maxwell's Equations in STA

$$
\nabla \mathbf{F} = J
$$

• Single, covariant Maxwell's equations equation

目

 Ω

メロトメ 倒 トメ ミトメ ミト

Maxwell's Equations in STA

$$
\nabla \mathbf{F} = J
$$

- Single, covariant Maxwell's equations equation
- From Prof. Lasenby's presentation, A new language for Physics at GAME 2020:

 Ω

イロト イ何 ト イヨ ト イヨ

Maxwell's Equations in STA

$$
\nabla \mathbf{F} = J
$$

- Single, covariant Maxwell's equations equation
- \bullet From Prof. Lasenby's presentation, A new language for Physics at GAME 2020:

" The advantage here is not merely notational [...] the geometric product with the vector derivative is invertible [...] where the separate divergence and curl operators are not"

 $A \Box B$ A B B A B B A

Maxwell's Equations in STA

$$
\nabla \mathbf{F} = J
$$

- Single, covariant Maxwell's equations equation
- \bullet From Prof. Lasenby's presentation, A new language for Physics at GAME 2020:

" The advantage here is not merely notational [...] the geometric product with the vector derivative is invertible [...] where the separate divergence and curl operators are not"

"This led to the development of a new method for calculating EM response of conductors to incoming plane waves [...] it was possible to change the illumination in real time"

 $\left\{ \begin{array}{ccc} \square & \rightarrow & \left\{ \bigcap \mathbb{R} \right. \right\} & \left\{ \begin{array}{ccc} \square & \rightarrow & \left\{ \end{array} \right. \right. \right. \end{array}$

Problem Definition: Architecture

$$
\mathsf{GA} \cdot G_{3,0,0}
$$

$$
\left(\tfrac{\partial}{\partial t} + i\nabla\right)F = \mathbf{J} - i\rho
$$

$$
\begin{aligned}\n\text{STA} - G_{1,3,0} \\
\nabla \mathbf{F} = J\n\end{aligned}
$$

¹Clifford Neural Layers for PDE Modeling, Brandstetter et ak, [IC](#page-25-0)[LR](#page-23-0)[2](#page-26-0)[02](#page-27-0)[3](#page-14-0) \equiv > $\mathbf{A} \equiv \mathbf{A}$ 重 299

Problem Definition: Architecture

$$
\mathsf{GA} \cdot G_{3,0,0}
$$
\n
$$
\left(\frac{\partial}{\partial t} + i\nabla\right) F = \mathbf{J} - i\rho
$$

 $STA - G_{1,3,0}$ $\nabla \mathbf{F} = J$

¹Clifford Neural Layers for PDE Modeling, Brandstetter et [al.,](#page-24-0) [IC](#page-26-0)[LR](#page-23-0)-[2](#page-26-0)[02](#page-27-0)[3](#page-14-0) $2Q$ э

Alberto Pepe et al. (UoC) **[STAResNet](#page-0-0)** AGACSE 2024 10/25

Problem Definition: Architecture

 $GA - G_{3,0,0}$ $\left(\frac{\partial}{\partial t}+i\nabla\right)F=\mathbf{J}-i\rho$ $STA - G_{1,3,0}$ $\nabla \mathbf{F} = J$

(a) Clifford ResNet (GA) $¹$ </sup>

(b) STAResNet (STA) [ours]

Figure 4: The two approaches to the solution of Maxwell's PDEs

¹Clifford Neural Layers for PDE Modeling, Brandstetter et [al.,](#page-25-0) [IC](#page-27-0)[LR](#page-23-0)[2](#page-26-0)[02](#page-27-0)[3](#page-14-0) \equiv QQ

Table of Contents

[Problem Definition](#page-15-0)

重

 299

メロトメ 御 トメ ミトメ ミト

To validate the claim that STA is a better suited space to work in when dealing with Maxwell's PDEs...

目

メロメ メタメメ ミメメ ヨメ

 299

To validate the claim that STA is a better suited space to work in when dealing with Maxwell's PDFs.

We look at:

- ² 2D FM fields
- 3D FM fields

Generated through a FDTD solver.

 Ω

メロトメ 倒 トメ ミトメ ミト

To validate the claim that STA is a better suited space to work in when dealing with Maxwell's PDFs.

We look at:

- ² 2D FM fields
- 3D FM fields

Generated through a FDTD solver. We study the impact of:

• Varying sampling period of the dataset Δt

 Ω

To validate the claim that STA is a better suited space to work in when dealing with Maxwell's PDFs.

We look at:

- ² 2D FM fields
- 3D FM fields

Generated through a FDTD solver. We study the impact of:

- Varying sampling period of the dataset Δt
- **•** Presence of obstables in the domain

 Ω

 \leftarrow \leftarrow

To validate the claim that STA is a better suited space to work in when dealing with Maxwell's PDFs.

We look at:

- ² 2D FM fields
- 3D FM fields

Generated through a FDTD solver. We study the impact of:

- Varying sampling period of the dataset Δt
- **•** Presence of obstables in the domain
- Number of trainable parameters

 Ω

4 ロ ▶ 4 何 ▶ 4

To validate the claim that STA is a better suited space to work in when dealing with Maxwell's PDFs.

We look at:

- ² 2D FM fields
- 3D FM fields

Generated through a FDTD solver. We study the impact of:

- Varying sampling period of the dataset Δt
- **•** Presence of obstables in the domain
- Number of trainable parameters
- **Rollout error**

 Ω

K ロ ▶ K 何 ▶ K

Metrics

Three metrics to assess the quality of the PDEs solution

重

 299

メロメ メ御 メメ ミメ メミメー

Metrics

Three metrics to assess the quality of the PDEs solution

Mean squared error

$$
\mathcal{L} = \frac{1}{LMN} \sum_{j+x,y,z} \sum_{l=0}^{L} \sum_{m=0}^{M} \sum_{n=0}^{N} (E_{jlmn,i+2\Delta t} - \hat{E}_{jlmn,i+2\Delta t})^2 + (B_{jlmn,i+2\Delta t} - \hat{B}_{jlmn,i+2\Delta t})^2
$$

重

 299

メロトメ 御 トメ ミトメ ミト

Metrics

Three metrics to assess the quality of the PDEs solution

Mean squared error

$$
\mathcal{L} = \frac{1}{LMN} \sum_{j+x,y,z} \sum_{l=0}^{L} \sum_{m=0}^{M} \sum_{n=0}^{N} (E_{jlmn,i+2\Delta t} - \hat{E}_{jlmn,i+2\Delta t})^2
$$

$$
+ (B_{jlmn,i+2\Delta t} - \hat{B}_{jlmn,i+2\Delta t})^2
$$

• Structural Similarity Index Measure

$$
\text{SSIM}(\mathbf{F}^2, \hat{\mathbf{F}^2}) = \frac{(2\mu_{\mathbf{F}^2}\mu_{\hat{\mathbf{F}^2}} + C_1)(2\sigma_{\mathbf{F}^2\hat{\mathbf{F}^2}} + C_2)}{(\mu_{\mathbf{F}^2}^2 + \mu_{\hat{\mathbf{F}^2}}^2 + C_1)(\sigma_{\mathbf{F}^2}^2 + \sigma_{\hat{\mathbf{F}^2}}^2 + C_2)}
$$

 299

メロトメ 倒 トメ ミトメ ミト

 \rightarrow \rightarrow \rightarrow

K ロ ▶ K 個 ▶ K

 299

Figure 5: Training and validation losses versus number of epochs for 2D Maxwell's PDEs.

Figure 6: MSE between estimated and GT [EM](#page-37-0) [fie](#page-39-0)[ld](#page-36-0)[s](#page-39-0) [v](#page-38-0)s Δt [.](#page-51-0)

 $2Q$

$$
\mathbf{F}^2 = (\mathbf{E} + I\mathbf{B})^2 = (E_1 \gamma_{10} + E_2 \gamma_{20} + E_3 \gamma_{30} + B_1 \gamma_{13} + B_2 \gamma_{13} + B_3 \gamma_{12})^2
$$

目

メロメ メタメメ ミメメ ヨメ

 299

$$
\mathbf{F}^2 = (\mathbf{E} + I\mathbf{B})^2 = (E_1\gamma_{10} + E_2\gamma_{20} + E_3\gamma_{30} + B_1\gamma_{13} + B_2\gamma_{13} + B_3\gamma_{12})^2
$$

Experiments: impact of obstacles

K ロ ▶ K 個 ▶ K

 299

Experiments: impact of obstacles

Figure 8: The 5 different obstacle configurations. The 3 unseen geometries are highlighted.

Experiments: impact of obstacles

Figure 10: Squared magnitude of the Faraday bivector \mathbf{F}^2 over the test set with seen and unseen obstacles configurations.

Alberto Pepe et al. (UoC) **[STAResNet](#page-0-0)** STAResNet AGACSE 2024 17/25

目

メロトメ 倒 トメ ミトメ ミト

 299

Experiments: impact of trainable parameters

STA is a $(n + 1)$ D space compared to nD GA: for the same number of channels or for the same size of the convolutional filters, STAResNet will have a larger number of trainable parameters.

 Ω

K ロ ▶ K 何 ▶ K 手

Experiments: impact of trainable parameters

STA is a $(n+1)$ D space compared to nD GA: for the same number of channels or for the same size of the convolutional filters, STAResNet will have a larger number of trainable parameters. Exteriments

The GA: for the same number of channels or for

The STAResNet will have a larger number of

Clifford

Clifford **CONTRANS**
CONTRANSPANSE SET ASSESS
CLIIFOrd
CLIIFOrd

Number of trainable parameters

Figure 11: Test error over the estimated EM fields in the presence of seen and unseen obstacle geometries versus the number of trainable para[mete](#page-44-0)[rs.](#page-46-0)

Alberto Pepe et al. (UoC) [STAResNet](#page-0-0) AGACSE 2024 18 / 25

 Ω

Experiments: rollout error

Rollout refers to the process of using the model's own predictions as inputs to generate Experiments: rollout error
Rollout refers to the process of using the model's own predictions as inputs to generate
future predictions.

目

 299

メロトメ 伊 トメ ミトメ ミト

Experiments: rollout error

Rollout refers to the process of using the model's own predictions as inputs to generate future predictions. Experiments

So of using the model's own predictions as inputs to generate

Clifford

Clifford

(a) MSE (1) versus rollout steps.

(b) SSIM $($ \uparrow) versus rollout steps.

イロト イ押ト イヨト イ

Figure 12: (a) Mean squared error and (b) correlation between estimated and ground truth EM fields over test set versus rollout steps m for the 2D case.

 Ω

Experiments: rollout error - visualizing \mathbf{F}^2

 $\star \star \star$

∍

n.

 $2Q$

K ロ ト K 伊 ト K 毛

Experiments: 3D fields

Figure 13: MSE between estimated and GT EM fields vs rollout steps m for the 3D case.

Experiments: 3D fields - visualizing \mathbf{F}^2

 299

メロトメ 伊 トメ ミトメ ミト

Experiments: 3D fields - visualizing \mathbf{F}^2

э Alberto Pepe et al. (UoC) **[STAResNet](#page-0-0)** AGACSE 2024 23/25

∍

 209

 \sim

K ロ ト K 伊 ト K 毛

Table of Contents

[Problem Definition](#page-15-0)

重

 299

メロトメ 御 トメ ミトメ ミト

With STAResNet, we:

• Shed light on the importance of the right algebra in which to embed data

(□) (_□)

 QQ

With STAResNet, we:

- Shed light on the importance of the right algebra in which to embed data
- **•** Showed improvement in the PDEs solution over a vanilla GA network

 Ω

4 ロ ト 4 何 ト

With STAResNet, we:

- Shed light on the importance of the right algebra in which to embed data
- Showed improvement in the PDEs solution over a vanilla GA network

Why does it matter?

Many problems in ML deal with geometrical data

 Ω

 \leftarrow \Box \rightarrow \leftarrow \leftarrow \rightarrow

With STAResNet, we:

- Shed light on the importance of the right algebra in which to embed data
- Showed improvement in the PDEs solution over a vanilla GA network

Why does it matter?

- Many problems in ML deal with geometrical data
- Very few models can capture the geometry of data like GA networks

 Ω

K ロ ▶ K 何 ▶

With STAResNet, we:

- Shed light on the importance of the right algebra in which to embed data
- Showed improvement in the PDEs solution over a vanilla GA network

Why does it matter?

- Many problems in ML deal with geometrical data
- Very few models can capture the geometry of data like GA networks
- Growing interest in industry: Huawei, Microsoft, ...

Acknowledgements: Joan Lasenby, Sven Buchholz, Christian Hockey, David Bowie

 4 ロ \rightarrow 4 \overline{m} \rightarrow \rightarrow \overline{m}