A Novel Line Alignment Algorithm Using Geometric Algebra

(*Based on Insights from 3D Point Registration*)

Name: Haris Matsantonis Supervisor: Prof. Joan Lasenby

28th August 2024

1

**Engineering and
Physical Sciences Research Council**

Outline

- Point Cloud / 3D Line Registration
- Why Registration Matters?
- Point Cloud Registration Methods
- Point Cloud Registration Problems That Were Solved Using GA
	- Results using *Clifford Multivector Toolbox (Sangwine & Hitzer)*
- **Extension to 3D Line Registration**
	- Results using *Clifford Multivector Toolbox (Sangwine & Hitzer)*

• Sangwine, S. J., & Hitzer, E. (2017). Clifford Multivector Toolbox (for MATLAB). *Advances in Applied Clifford Algebras*, *27*(1), 539-558

Introduction

- **Research Focus:** Point Cloud Registration **+** Line-based 3D Registration
- -
	- 2. Camera Calibration \vdash Point Cloud 2. Measures return time
	- 3. Superimposition \Box

Sources: RGB-D cameras **+ LiDAR Sensors, Photogrammetry**

1. Depth map \Box 1. Emits laser pulses

-
-

Point Cloud, Source: Geospatial World LiDAR Technology, Photogrammetry. Source: PIX4D

 Goal: Find a transformation which consists of a *rotation + translation (rigid registration)* to align two point clouds and two sets of 3D lines

Why do we care about '*Registration*'?

- High precision sensors (LiDAR, Kinect, etc) → Point Clouds **+** Lines = *primary data format*
- Sensors can only capture scans within their limited view range
- Applications include (among others):
	- **3D Reconstruction**

- 2. Autonomous Vehicle Localization
- 3. 3D Terrain Mapping

3D Terrain Mapping. Source: Unmanned Systems Lab, TAMU Visualization of a LiDAR point cloud. Source:

Graham Murdock for Popular Science

Point Cloud Registration Methods

Points can miss critical linear features, leading to less accurate models. What about Lines?

Broadening Horizons in Line Registration

• **Over-Reliance on Traditional Methods:** Most (*point + line*) registration algorithms are built on Vector Algebra, leading to a narrow approach

• **Lack of Exploration:** Few comprehensive studies investigate alternative mathematical frameworks for (*point + line*) registration

• **Innovate with Geometric Algebra:** Develop a novel line registration framework using Geometric Algebra

• **Benchmark Against Standard Methods:** Assess effectiveness against Linear Algebra benchmarks (*SVD point solution*)

6

AIM

Inspiration for Extending from Point to Line Registration

Geometric Algebra Solutions for 3D Registration Problems

Recap: 3D Point Registration using Characteristic **Multivectors**

Let $\{a_k\}, k = 1, 2, \cdots m$, be a frame for the space, and $\{a^k\}$ be its reciprocal frame \rightarrow reciprocal basis set of vectors guarantees orthonormality conditions

 \blacktriangleright Define $\{b_k\} = f(a_k)$. Then the *r*th Characteristic Multivector is: $\theta_{(r)}f_{(r)} = \sum (a^{j_r} \wedge \cdots \wedge a^{j_1})(b_{j_1} \wedge \cdots \wedge b_{j_r})$

the sum over the repeated indices is restricted by $0 < j_1 < \cdots < j_r \le m$

Then, we can recover the Rotor as (Lasenby et al. 2022):

 $\tilde{R} \propto 1 + [a^1b_1 + a^2b_2 + \cdots] + [(a^2 \wedge a^1)(b_1 \wedge b_2) + \cdots] +$ $[(a^3 \wedge a^2 \wedge a^1)(b_1 \wedge b_2 \wedge b_3) + \cdots] +$ higher order terms

WORKS for *any dimension and signature*

• Lasenby A., Lasenby J., Matsantonis C. (2022). Reconstructing a Rotor from Initial and Final Frames using Characteristic Multivectors: with applications in Orthogonal Transformations. *Mathematical Methods in the Applied Sciences*, 1-18

Problem 1: 3D Point Registration with Known **Correspondences**

9

Point Clouds do no carry colour information – colours are added for better visualization purposes

Problem 1 Results: No Noise

■ RMSE and the Mean (μ) of MATLAB's built-in function and 3D Characteristic Multivector method for **200 random initial positions**: Apple (**+**), Helix (**+**), Tree (**+**), Horse (**+**), Armadillo (**+**), Buddha Statue (**+**)

Problem 1 Results: Noise (SNR)

11

 Rotational Convergence Error (plots share same x-axis) of MATLAB's built-in function, 3D Characteristic Multivector and self-coded SVD: Apple (**--**), Helix (**--**), Tree (**--**), Horse (**--**), Armadillo (**--**), Buddha Statue (**--**)

Problem 2a: 3D Registration Problem with Unknown Correspondences (3D Solution)

Standard ICP Algorithm [Besl & McKay 92]

- Determine corresponding points
- 2. Compute the Rotation **R** via SVD
- 3. Compute the translation **t** based on **R**
- 4. Apply **R** and **t** to the points of the point cloud to be registered
- 5. Compute the error E(**R,t**)
- 6. If error decreased and error > threshold
	- Repeat these steps
	- Stop and output final alignment, otherwise

Key Note: The GA-ICP algorithm effectively follows the above calculation steps but **replaces step 2** with a **rotor-calculation** step, i.e. *3D Characteristic Multivector*

13 Problem 2a : Point Cloud Data

Point Clouds do no carry colour information – colours are added for better visualization purposes

Problem 2a Results: No Noise / Noise

 Comparison with MATLAB's *pointToPoint (built-in ICP function)* and *self-coded ICP-SVD*

Problem 2b: 3D Point Registration Problem with Unknown Correspondences (4D Solution)

Standard ICP Algorithm [Besl & McKay 92]

- Determine corresponding points
- 2. Compute the Rotation **R** via SVD
- 3. Compute the translation **t** based on **R**
- 4. Apply **R** and **t** to the points of the point cloud to be registered
- 5. Compute the error E(**R,t**)
- 6. If error decreased and error > threshold
	- Repeat these steps or otherwise stop and output final alignment

Key Note: The 4D algorithm effectively follows the above calculation steps but **replaces steps 2 and 3** with a **4D rotor (motor)-calculation** step.

Calculations are done in **4D Spherical Space** instead of **3D Euclidean Space**

Problem 2b: The 1D-Up Approach in Conformal Geometric Algebra (CGA)

- Euclidean, Hyperbolic, Spherical and Inversive geometries are put on the same footing
- **Null Vectors:** Construct new null vectors representing key points in space

 $n = e + \overline{e}, \quad \overline{n} = e - \overline{e}$

The rotors that keep \bar{e} invariant define a spherical space (4D)

Benefits:

- *Reduced Complexity:* Working on a space with Euclidean signature, *s*implifies operations and improves computational efficiency.
- *Applications:* Useful in geometric object matching, line fitting, and quantum mechanics.
- Lasenby, A. (2011). Rigid body dynamics in a constant curvature space and the '1D-up' approach to conformal geometric algebra. *Guide to geometric algebra in practice*, 371-389.

Problem 2b: Point Clouds ¹⁷

APPLE (Continuous) DOLPHINS (Non - Continuous)

Point Clouds do no carry colour information – colours are added for better visualization purposes

¹⁸ Problem 2b - Hard Transformations

 $\overline{0}$

19 Problem 2b - Hard Transformations Results

 0.05

²⁰ Problem 2b: 1000 Random Positions

21

Problem 2b: Real Data (Room)

- Model Point Cloud (235306 points)
- Measured Point Cloud (236483 points)

Problem 2b: Real Data (Construction Road)

23 Results So Far

Problem 3: 3D Line Registration with Known **Correspondences**

Problem 3: How? Methodology - Initial Setup

For a point $p(x, y, z)$ in 3D Euclidean space, its equivalent in 4D Spherical space with curvature λ is defined by the transformation:

$$
P = \left(\frac{2\lambda}{\lambda^2 + p^2}\right)p + \left(\frac{\lambda^2 - p^2}{\lambda^2 + p^2}\right)e_4, \quad P^2 = 1, \quad (e_4)^2 = 1
$$

 \blacksquare Map the starting p_{start} and end points p_{end} of a line to 4D Spherical Space and wedge them together to construct a line L :

 $L = qe_{12} + re_{13} + se_{14} + te_{23} + ue_{24} + ve_{34}$, with

 a, r, s, t, u, v being scalar not independent coefficients

 \blacktriangleright A line L can undergo transformation via a motor M:

 $L' = MLM = q'e_{12} + r'e_{13} + s'e_{14} + t'e_{23} + u'e_{24} + v'e_{34}$ q', r', s', t', u', v' being transformed scalar coefficients

Problem 3 Methodology: From Bivectors to Vectors

- \blacksquare To start suppose that we have a set of 6 lines $\{L_i\}, i=1,\ldots,6$ which are rotated and translated via a motor M to $\{L'_i\}, i = 1, \ldots, 6$ s.t: $L_i = ML_i\tilde{M}$
- \blacksquare The bivectors representing both $\{L_i\}$ and $\{L'_i\}$ can be treated as vector components in a 6D Euclidean space with Euclidean basis:

 $\{f_1, f_2, f_3, f_4, f_5, f_6\}$

• The mapping of the original lines (bivectors) to vectors for the original and transformed lines is given by:

 $qe_{12} + re_{13} + se_{14} + te_{23} + ue_{24} + ve_{34} \longrightarrow qf_1 + rf_2 + sf_3 + tf_4 + uf_5 + vf_6$

 $q'e_{12} + r'e_{13} + s'e_{14} + t'e_{23} + u'e_{24} + v'e_{34} \rightarrow q'f_1 + r'f_2 + s'f_3 + t'f_4 + u'f_5 + v'f_6$

 \blacktriangleright Call these vector representations v_i and v'_i , and form the reciprocal vectors v^\imath and

Problem 3 Methodology: From Vectors Back to Bivectors

 \blacktriangleright Map the reciprocal vectors v^i and $v^{i'}$ back into bivectors within the 4D Spherical space that reverses the initial transformation

Details will be given in the paper

- If v^i is represented as $[q, r, s, t, u, v]$, L^i is constructed as: $qe_{12} + re_{13} + se_{14} + te_{23} + ue_{24} + ve_{34}$
- So now we have $\{L_i\}, \{L'_i\}, \{L^i\}, \{L^{i'}\}, i = 1, \ldots, 6$
- \bullet Consider now reciprocal sets of line $\{L^{i}\}\$ and $\{L^{i'}\}\$ s.t:

$$
L_i \cdot L^j = \delta_{ij}, \quad L'_i \cdot L^{j'} = \delta_{ij}
$$

 \blacksquare Then it is easy to say that reciprocals transform correspondingly as: $L^{i'} = ML^i \tilde{M}$

Methodology: Recovering the Motor

 \blacktriangleright The motor M is made up of scalar, bivector and quadvector (pseudoscalar, $I = e_1e_2e_3e_4$) parts which we can write as:

 $M = \alpha + B + \beta I$

 It then follows that (*details will be given in the paper as it is not trivial*): $L_iML^i = 6\alpha + 6\beta I - 2B = -2M + 8(\alpha + \beta I)$

B Hence:

$$
L_iML^i\tilde{M} = L_iL^{i'} = -2 + 8(\alpha + \beta I)\tilde{M}
$$

 We can derive a quantity as a key variable capturing the aggregate transformation effect:

$$
X = \frac{1}{8} \left(\sum_{i}^{6} (L_i \cdot L^{i'}) + 2 \right)
$$

Problem 3 Methodology: Recovering the Motor (cont.)

 \blacktriangleright We can multiply X by \widetilde{X} to form:

$$
Y = X\tilde{X} = M(\alpha + \beta I)(\alpha + \beta \tilde{I})\tilde{M}
$$

= $M(\alpha^2 + \beta^2 + 2\alpha \beta I)\tilde{M}$
= $\underbrace{\alpha^2 + \beta^2}_{u} + 2\alpha \beta I$

- Note that: $(\alpha + \beta)^2 = u + v \Rightarrow \alpha + \beta = \pm \sqrt{u + v}$
- Setting $w = \alpha + \beta$, we get $w = \pm \sqrt{u+v}$
- Then starting with the relations $u = \alpha^2 + \beta^2$, $v = 2\alpha\beta$ and rearranging: $\alpha^2 + \beta^2 - u = 0$

Since $\frac{v}{\rho} = \alpha \beta$, and setting $w = \alpha + \beta$ gives a quadratic equation: $\beta^2 - w\beta + v/2 = 0$

Problem 3 Motor Solution

■ Solving the quadratic equation and considering both (+, -) values of w , we have 4 distinct solutions (a set of two solutions for each sign of w)

 \blacksquare These solutions lead to four unique pairs of (a, b)

After some algebra it can be shown that the motor is:

$$
M = \frac{1}{u}(a_2 - b_2I)X, \text{ or}
$$

$$
M = \frac{1}{u}(b_1 - a_1I)X
$$

Note that we started with 6 lines, but this can also be extended to any number of lines

Problem 3: Setup Details

- **Lines and Points**: *Different numbers* of lines and points used in experiments
- **Transformation:** Rotate (x: -10°, y: -20°, z: -30°) and Translate (x: 1, y: 2, z: 3) cm

Scenarios:

- **No Noise**: Baseline performance measurement
- *With Gaussian Noise (σ = 0.01)*: Added noise to test robustness

 Comparison made with SVD point solution for benchmarking

Problem 3: Results

- Rotation Error:
	- **No Noise (Top Left)**: Both GA and SVD show very low errors $\sim\!10^{-16}$ radians
	- **With Noise (Bottom Left)**: GA shows higher initial error but improves with more data, SVD is consistent
- **Translation Error:**
	- **No Noise (Top Right)**: Errors around $\sim 10^{-15}$ cm
	- **With Noise (Bottom Right)**: Converges to around 10^{-3} cm with more data for both methods.

Problem 3: Line Structures in Focus and Practical Considerations

Thank you for listening!

Any questions or comments?

 Lasenby, A., Lasenby, J., & *Matsantonis, C*. (*2022*). "Reconstructing a Rotor from Initial and Final Frames using Characteristic Multivectors: with applications in Orthogonal Transformations". **Mathematical Methods in the Applied Sciences**. 1-18

 Matsantonis, C. and Lasenby, J. (*2023*). "A Geometric Algebra Solution to the 3D Registration Problem". In: Iida, F., Maiolino, P., Abdulali, A., Wang, M. (eds) **Towards Autonomous Robotic Systems. TAROS 2023**. *Lecture Notes in Computer Science*, vol 14136. Springer, Cham

 Matsantonis, C. and Lasenby, J. (*2024*). "A Geometric Algebra Solution to the Absolute Orientation Problem". In: Araujo Da Silva, D.W.H., Hildenbrand, D., Hitzer, E. (eds) **Advanced Computational Applications of Geometric Algebra**. ICACGA 2022. *Springer Proceedings in Mathematics & Statistics*, vol 445. Springer, Cham

 Matsantonis, C. and Lasenby, J. (*2024*). "Characteristic Multivector Fitting of Two 3D Point Sets". (submitted to **IEEE Transactions on Pattern Analysis and Machine Intelligence**)

 Matsantonis, C., Lasenby, J., & Lasenby, A. (2024). "A Novel Line Alignment Algorithm using Geometric Algebra". In preparation for **Mathematical Methods in the Applied Sciences**