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Geometric Algebra for Conics (GAC) Wedge construction of conics in bundles of conics

Basics

GAC...Clifford algebra Cl(5,3) with embedding C : R2 → R5,3 of
point (x , y) defined as

C(x , y) = n̄+ + xe1 + ye2 +
1
2
(x2 + y2)n+ +

1
2
(x2 − y2)n− + xyn×. (1)

Conic section representations in GAC:
IPNS representation

QI = v̄×n̄× + v̄−n̄− + v̄+n̄+ + v1e1 + v2e2 + v+n+ (2)

OPNS representation

QO = P1 ∧ P2 ∧ P3 ∧ P4 ∧ P5 (3)
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Geometric Algebra for Conics (GAC) Wedge construction of conics in bundles of conics

Basics

matrix representation

M =


−1

2(v̄
+ + v̄−) −1

2 v̄× 1
2v1

−1
2 v̄× −1

2(v̄
+ − v̄−) 1

2v2

1
2v1 1

2v2 −v+

 (4)

M̄ =

(
−1

2(v̄
+ + v̄−) −1

2 v̄×

−1
2 v̄× −1

2(v̄
+ − v̄−)

)
(5)
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Geometric Algebra for Conics (GAC) Wedge construction of conics in bundles of conics

Projective extension of GAC

Real projective plane RP2 = R2 ∪ l∞:
R2...real plane, set of proper points
l∞...line at infinity, set of improper points

Figure 1: Improper points of parabola and hyperbola
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Geometric Algebra for Conics (GAC) Wedge construction of conics in bundles of conics

Projective extension of GAC

Distinguishing proper & improper points:

(a,b) 7→

{
k(a,b,1), k ̸= 0, if (a,b) is proper
k(a,b,0), k ̸= 0, if (a,b) is improper

(6)

Embedding CP : RP2 → R5,3:

CP(a, b, c) = c2n̄++ace1 +bce2 +
1
2
(a2 +b2)n++

1
2
(a2 −b2)n−+abn× (7)

Corollary:

CP(x , y , 1) ≡ C(x , y),

CP(s, t , 0) = 1
2
(s2 + t2)n+ +

1
2
(s2 − t2)n− + stn×.
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Geometric Algebra for Conics (GAC) Wedge construction of conics in bundles of conics

Bundles of conics

Bundle of conics generated by conics Q1 and Q2{
λQ1 + µQ2 : (λ, µ) ∈ R2 \ {(0,0)}

}
set of all conics passing through the intersection points of
Q1 and Q2
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Figure 2: Bundles of conics generated by two conics, 4 to 0 real
points of intersection
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Geometric Algebra for Conics (GAC) Wedge construction of conics in bundles of conics

Four-point and another point

Four-point

GAC object representing intersection of two conics

IPNS four-point: (
Q1 ∩ Q2)

I = Q1
I ∧ Q2

I . (8)

Wedge of a four-point and another point =⇒ OPNS conic:

QO =
(
Q1

I ∧ Q2
I
)∗ ∧ PI (9)
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Figure 3: Four-point obtained as an intersection of conics Q1,Q2.
Conics C1and C2 were constructed as wedge of the four-point with
points p1 and p2, respectively.
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Geometric Algebra for Conics (GAC) Wedge construction of conics in bundles of conics

Line-pairs

A bundle of conics generally contains 3 degenerate conics
(line-pairs)10.1 Conic through Five Points 169

1
3

2 4

Fig. 10.1 Bundle of conics through four points. Three degenerate special cases.

One of these two degrees of freedom goes into the homogeneity of the conic
parameters. Therefore we have a bundle of geometric solutions with one de-
gree of freedom. Figure 10.1 (left) illustrates such a bundle of conics. Among
these conics there are three degenerate conics, each of them equal to a pair of
lines spanned by the four points. In Figure 10.1 (right) these pairs of lines are
marked by identical colors. They correspond to the following three quadratic
forms:

[p, 1, 2][p, 3, 4] = 0, [p, 1, 3][p, 2, 4] = 0, [p, 1, 4][p, 2, 3] = 0.

A linear combination of two of these forms (say the last two)

λ[p, 1, 3][p, 2, 4] + µ[p, 1, 4][p, 2, 3] = 0

again generates a quadratic form. The set of points p satisfying this equation
again forms a conic. This conic passes through all four points 1, . . . , 4, since
both summands vanish on these points. If λ and µ run through all possible

1

3

2

4

q

Fig. 10.2 Constructing a conic through five points.

Figure 4: Bundle of conics, its four-point and three line-pairs, [11]

Wedge construction of the line-pairs
the line-pairs pass through the four-point and the double
points p1,p2,p3:

LP i
O =

(
Q1

I ∧ Q2
I

)∗
∧ CP(pi). (10)
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Geometric Algebra for Conics (GAC) Wedge construction of conics in bundles of conics

Line-pairs

Double points can be found as the vertices of the common
self-polar triangle of generating conics Q1 and Q2:

(a) self-polar triangle of
conic Q

(b) common self-polar
triangle of conics Q1 and Q2

Figure 5

Computation of the double points using conic matrices M1 and
M2 and a generalised eigenproblem:

M1p = λM2p. (11)
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Geometric Algebra for Conics (GAC) Wedge construction of conics in bundles of conics

Line-pairs

Example 1
Ellipses E1,E2 with IPNS representations

E1
I = 16n̄− − 34n̄+ + 225n+,

E2
I = −3n̄− − 5n̄+ − 16e1 − 2e2 − n+,

and the associated matrices

M1 =


9 0 0

0 25 0

0 0 −225

 , M2 =


4 0 −8

0 1 −1

−8 −1 1

 .

Solution to generalised eigenproblem (11):
λ1

λ2

λ3

 ≈


13.0501

21.6502

2.7997

 ,
(

p1 p2 p3

)
≈


2.4167 2.2320 10.1865

−1.0921 −6.4631 −0.1261

1 1 1

 ,

Computation of the line-pairs:

LP i
O =

(
Q1

I ∧ Q2
I

)∗
∧ CP(pi), i = 1, 2, 3.
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Geometric Algebra for Conics (GAC) Wedge construction of conics in bundles of conics

Line-pairs

Example 1
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Figure 6: Four-point obtained as an intersection of two conics from
Example 1. Each of the three line-pairs was constructed by wedging
the four-point and the corresponding double point.
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Geometric Algebra for Conics (GAC) Wedge construction of conics in bundles of conics

Line-pairs

Example 2

Concentric conics =⇒ easier computation of
the-line-pairs
Possible use of improper points in the construction
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Figure 7: Four-point as an intersection of two concentric conics, three
associated line-pairs
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Geometric Algebra for Conics (GAC) Wedge construction of conics in bundles of conics

Generalised parabolas

Generalised parabola...conic with singular principal
submatrix of form (5)
Bundles generally contains 2 generalised parabolas
Generalised parabolas include also geometrically
degenerated parabolas

(a) ordinary
parabola

(b) parallel
lines

(c) double line (d) union of
ordinary line &
line at infinity

Figure 8: Types of generalised parabolas
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Geometric Algebra for Conics (GAC) Wedge construction of conics in bundles of conics

Generalised parabolas

Wedge construction of the generalised parabolas
The generalised parabolas pass through the four-point and
their improper points p∞1,p∞2:

P j
O =

(
Q1

I ∧ Q2
I

)∗
∧ CP(p∞j). (12)

The directions p̄∞1, p̄∞2 of improper points p∞1,p∞2 are
the common conjugate directions of generating conics Q1

and Q2

The common conjugate directions can be computed using
conic submatrices M̄1, M̄2 and a generalised eigenproblem:

M̄1p̄∞ = λM̄2p̄∞. (13)
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Geometric Algebra for Conics (GAC) Wedge construction of conics in bundles of conics

Generalised parabolas

Example 3

Ellipses E1,E2 with IPNS representations

E1
I = −8

√
3n̄× − 8n̄− + 34n̄+ − 225n+,

E2
I = 24n̄× + 40n̄+ + 92e1 + 68e2 − 19n+,

and the associated principal submatrices

M̄1 =

(
−13 4

√
3

4
√

3 −21

)
, M̄2 =

(
−20 −12

−12 −20

)
.

Solution to generalised eigenproblem (13):(
λ1

λ2

)
≈

(
0.2916

3.0142

)
,
(

p̄∞1 p̄∞2

)
≈

(
1.4547 −0.9115

1 1

)
,

Computation of the generalised parabolas:

P j
O =

(
E1

I ∧ E2
I

)∗
∧ CP (p∞j) , j = 1, 2.
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Geometric Algebra for Conics (GAC) Wedge construction of conics in bundles of conics

Generalised parabolas

Example 3
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Figure 9: Four-point obtained as an intersection of two conics from
Example 3, associated generalised parabolas and their improper
points
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Geometric Algebra for Conics (GAC) Wedge construction of conics in bundles of conics

Generalised parabolas

Example 4
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Figure 10: More generalised parabolas of bundles
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Thank you for your attention!
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