
AGACSE - Aug 28, 2024

Clifford Group Equivariant Simplicial Message Passing Networks
Cong Liu*, David Ruhe*, Floor Eijkelboom, Patrick Forré

1



Overview
• Motivation


• Background


• Message Passing Networks


• Clifford Euclidean Algebra for Group Equivariance


• Simplicial Message Passing


• Shared Simplicial Message Passing Networks


• Experiments


• Conclusion

2



Motivation
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• Many real-world data have complex geometric 
and topological layout, such as molecules, 
proteins, motions, etc…


• Graph Neural Networks are mostly used to 
tackle these challenges but they are only 
capable of modelling bi-interactions at each 
time


• Can we find a general method to both satisfy 
the equivariance constraint and being able 
model both geometries and topologies lie in the 
data? 



Message Passing Neural Networks (MPNNs)

• A specific type of networks that learn on irregular data, i.e. graphs


• MPNNs learn on graphs by modelling bi-node interactions through neural 
networks


• Message function: 


• Update function: 

mij = ϕ(xi, xj, eij)

xl+1
i = ψ( ∑

j∈𝒩i

mij) + xl
i
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Equivariant Message Passing Networks
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(From Victor et al. 2021)

• Sometimes we are interested in learning and 
inferencing on graphs live in certain geometric space, 
e.g. Euclidean space, with some group of interest, 
e.g. orthogonal group


• Equivariance: 


• Invariance: 

∀w ∈ G : ρ(w)ϕ(x) = ϕ(ρ(w)(x))

∀w ∈ G : ϕ(x) = ϕ(ρ(w)(x))



Represent Data in Clifford Space

• Euclidean Clifford Space is chosen to embed geometric data


• Euclidean Geometric Algebra ( ) is simple and memory efficient 
compared to Projective and Conformal counterparts


• Clifford Networks are equivariant to Clifford groups, in  case, 
orthogonal groups 

Cl(ℝ3)

Cl(ℝ3)
O(3)
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• Message Passing Networks are powerful, but they cannot distinguish two 
graphs with the same connectivity and the same set of nodes, even the 
two graphs have different topology.

Message Passing Simplicial Networks
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• By lifting graphs to simplicial 
complex and pass messages on 
simplicial complex, we can identify 
them again!


• Message Passing Simplicial 
Networks learn the topological 
features in simplicial complex 



Simplex Complex
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• 0-simplex , nodes  


• 1-simplex , edges 


• 2-simplex , triangles 

σ0 vi

σ1 {vi, vj}

σ2 {vi, vj, vk}



Message Passing Simplicial Networks (MPSNs)
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(From Bodnar et al. 2021)



Representing data in Clifford Space and pass messages between simplifies yield a 
general method learning on geometric graphs: 


Clifford Group Equivariant Simplicial Message Passing Networks



Shared Message Passing Networks
• In MSPNs, every type of 

communications between different 

dimensional simplices use different 

message networks.


• In this case, 6 networks are created 

and are forward propagated 

sequentially.


• We use only 1 shared message 

passing network, conditioned on 

communication type.
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Shared Message Passing Networks
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Shared Message Passing Networks
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• How do we get higher-order Clifford simplicial features ?


• For 0-simplex, i.e. node, we just embed node feature  in to Clifford space to get .


• For 1-simplex , edges , we stack  as inputs to a Clifford equivariant bilinear layer.


• 2-simplex , triangles , we stack  as inputs to two Clifford equivariant bilinear 

layer.


• This process generalizes to higher-order simplicial Clifford features.

hσ

f v hv ∈ Cl(V, q)

σ1 {vi, vj} [hvi, hvj]

σ2 {vi, vj, vk} [hvi, hvj, hvk]



Experiments
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5D Convex Hulls (O(5))
• Given eight five-dimensional points, estimate their convex hull and its volume.



Experiments
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Human Walking Motion Prediction (E(2))
• Given 31 three-dimensional points coordinates , estimate the coordinates of these points 

after 30 time steps.



Experiments
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MD17 Atomic Motion Prediction (E(3))
• Given the atomic positions at 10 separate time steps , estimate the coordinates of these 

atoms after serveral time steps.



Experiments
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NBA Players 2D Trajectory Prediction
• Given the player positions at 10 separate time steps , estimate the coordinates of these 

players for future 40 time steps.

Figure from Alessio Monti, Alessia Bertugli, Simone Calderara, and Rita Cucchiara. 

Dag-net: Double attentive graph neural network for trajectory forecasting, 2020.




In Conclusion
• We combine Clifford steerable equivariant models with simplicial message passing 

networks to capture both topological and geometric aspects of the graphs. 


• Shared Message Passing Networks save the computations by sharing parameters across 
different dimensional simplices


• We are able to adapt to any dimensional spaces thanks to Clifford algebra.


• Limitation: 


• computational overhead, both steerable methods and simplicial message passing 
networks


• We are still not sure how the model should be designed to best leverage both worlds, 
future direction might be researching on how to combine this two aspects of the 
graphs.

18



Thanks
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Q&A



Vietoris-Rips Lift
• Vietoris-Rips Lift
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Manual Lift
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Manual Lift
• Manually define the simplices by users’ interests
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Simplicial Lift
• OK, but how do we define the adjacency?
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• Boundary Adjacency (1 -> 0, 2 -> 1)


• Coboundary Adjacency (0 -> 1, 1 -> 2)


• Upper Adjacency (0 -> 0,  1 -> 1)


• Lower Adjacency (1 -> 1)


