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Integral Form of Maxwell’s Equations
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The GA Vector Derivative

∇F = ∇∥F +∇⊥F

∂F = ∇||F = I−1
m (Im·∇F )

∇F
∇⊥F

I2 ·∇‖F ∇‖F

For the special case of m = n for Mn in Rn, then ∇⊥ = 0
and thus ∂ = ∇.
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The Boundary Theorem in Geometric Calculus

˛
∂M

dxm−1 F =

ˆ
M

dxm ∂F

=

ˆ
M

dxm (∂ · F + ∂ ∧ F )



The Boundary Theorem in GA, 1D and 2D
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0 Undefined
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The Magnetic Vector Potential (MVP)

B = ∇×A = −I∇ ∧A

B
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since

E = −dA

dt
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Equivalently,

F
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= − d

dt

p
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Hydrodynamics Analogy

a

a
M. V. Berry, R. G.

Chambers, M. D. Large, C.
Upstill, and J. C. Walmsley,
European Journal of Physics 1,
154–162 (1980).

Electromagnetism Hydrodynamics

magnetic vector potential velocity

[A : ML/TQ] [v : L/T]

magnetic field [B: M/TQ] vorticity [ω: 1/T]

electric field [E: ML/T2Q] acceleration [L: L/T2 ]

electric scalar potential kinematic pressure

[ϕ : ML2/T2Q] [ϕ : ML2/T2Q]

phase function [χ: ML2/TQ] velocity potential [Φ: L2/T]

charge [q: Q] mass [m: M]

charge density [ρq: Q/L3] fluid density [ρf: M/L3]

current density [J: Q/TL2] mass flux [jm: M/TL2]
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The Boundary Theorem in GA, 3D

dim(F ) = dim(∂M)

‹
∂M

dx2 · F =

˚
M

dx3 · (∇ ∧ F )
‹

∂M

dx2 × F =

˚
M

dx3 · (∇ · F )
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MVP of a Magnetic Monopole

∇ ∧A = IB



MVP of a Current Element - Ring Vortex

|A(r)| · êz

B=∇×A
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Macmillan and co., 1876).
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Summary

The integral form of Maxwell’s equations was compared to
corresponding instances of the boundary theorem in
geometric calculus.

A more direct correspondence shown to be obtainable by
considering the electromagnetic potential.

This naturally leads to consideration of the boundary
theorem for more complex gauge symmetries and internal
degrees of freedom, worthy of further investigation.
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