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Controlability of vertical rolling disc

Let the considered mechanism be the homogeneous rolling disc of
mass m = 1 and radius r = 1 in the plane. Assume that the disc
moves without tilting and slipping

Obviously, we got two vector fields
X1 = €os pOy, +sin pOy,, Xo = 04,

where (x1,x2) € R?, 0 € S! which forms the first-order control
system
g = 1 X1+ nX. (1)



Controlability of vertical rolling disc

Lie bracked shows the remaining vector field
X3 = [X1, X2] = sin ¢p0y, — cos pOy,,

which completes the algebra. In these coordinates Lie algebra of
controllability g is equipped with the following multiplication table

8 X [X [Xo

X1 0 X12 0
Xo || X2 | 0 X1
X2 || O —-X1 10

Table: The multiplication table of Lie algebra of controlabilty of vertical
rolling disc



Controlability of vertical rolling disc

Thanks to the Chow-Rashevskii theorem, the disk is controllable
on the complete configuration space R? x St

cos¢p +sing 0
0 0 1|=—-
sing —cos¢ O

How to control it?

cos¢ +sing _q
sing —coso|

We have to pick some control!



Geometric control theory (Sub-Riemannian geometry)

Sub-Riemannian geometry (also known as Carnot geometry in
France, and non-holonomic geometry in Russia) is a geometric
structure studied intensively over the last decades, because it plays
an important role in the Geometric control theory.

In a sub-Riemannian space we can neither move nor send
information in all the directions, nor can we receive information
from everywhere. There are constraints (imposed by God, by a
moral imperative, by a government, or just by the laws of Nature).



Geometric control theory (Sub-Riemannian geometry)

Normal extremals of the rolling disc problem are solutions of the
ODE system

hy = —hsha, hy = h3hy, hs = —hihy,
x=hycosl, y=hosinf, 0=hy,
based on Hamiltonian system of PMP
hi = {H, h;}
g = hiXi(g) + h2X2(g)
where 1
H= 208+ 1)
Dubins paths:
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Nilpotent approximation (NA)

The nilpotent approximation (NA) is a classical technique to
approximate the algebra of controllability by a nilpotent Lie algebra
and thus simplify the finding of the optimal solution. For the
construction of nilpotent coordinates, we use the Bellaiche
algorithm.

X1 = c0s @0y, + sin 9Oy, = POy, + O,
Xo = 8¢, - a¢



Nilpotent approximation (NA)

This new coordinates (y1, y2, y3) yields a nilpotent Lie algebra n
with the following multiplication table,

n | m  [m | m
ny 0 ni2 0
np —nN12 0 0
ni 0 0 0

Table: The multiplication table of nilpotent Lie algebra

where the new vector fields look like
n = aﬂ - y28y37 ny = ayzv mo = [nla n2] = 8}’3’ (2)

i.e. forms so-called Heisenberg algebra b3, together with the
first-order nilpotent control system

qg=uin + uxny. (3)



Nilpotent approximation (NA)

The method suggests the use of an iterative method of the
Newton type. At first, the method solves the motion planning
problem for a nilpotent approximation of the system, given by an
initial point x™t and a final point xfi". Then, the resulting input
control & is applied to the original system and the procedure is
iterated from the resulting point x,. The algorithm is designed in
the following algorithm.

Input: Xinit Xfinal e
k=0
sk sinit
while d(x*,xfi") > e do
Compute 0% such that xfina! = 5(T; x, 0¥)
Set xk*1 .= 4(T; xk, k)
k=k+1

>l

Where d is the sub-Riemannian distance of the original system.



Nilpotent approximation (NA)

Normal extremals of the rolling disc problem are solutions of the
ODE system

hy = —hghy, hy = h3hy, h3 =0,
X = h20> y= h297 9: h17
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Symmetric three dimensional Heisenberg group Hi

With a straightforward change of coordinates, we can transform
them into a vector field represented in a symmetric form

X =0y, —2y0;, Y =0, —2»0,, T =40,
where the group operation on R? will then be of the form
(y1,¥2,7) 0 (71,72, 7) = (1 + V1, ¥2 + 72, T+ T — 2(y152 — y251))-

The Lie group (R3,0) is called symmetric three dimensional
Heisenberg group Hs, the element (0,0, 0) is origin and the inverse

of ()/17}’2a T) is (—}/1, —y2, _T)-



Gr(2) model of Hjs

The symmetric three dimensional Heisenberg group Hs can be
realized in the Grassmannian algebra Gr(2)

a:H; = Gr(2) =Ra&R?>® A’R> 2 R @ R? @ s0(2)

by the identification
0 t

Vi, y2,t) > 1+ yier +yoeo tter Aep =1+ (Q) + <—t 0>
where the multiplication coincides with wedge operation
(1+y1e1 + y2e2 + ter Ae2) A (1 + Jrer + joex + ter A e2)

=1+ +y)e+ (e +p)e+ (t+E+ (yive — yoi1))er A ).
The difference is caused by slightly different definitions
[a, b] = ab — ba = —2a A b. If we would like total equality, we can
define the multiplication as ao b = —2a A b, but for our purposes,

the multiplication factor —2 is irrelevant. Finally, the
corresponding Lie algebra then corresponds to

hs = {y1e1 + yoe2 + ter A o}



Gy model of Hj

By control we mean the invariant control problems on Heisenberg
group G := Hj. Straightforward calculations

(1+yre1 +yre2+Ter Aex) ANer = e + yre2 Aer = ny,
(l+yet+ypeatreaAe) \a=ea—yieaAe =mn
shows that the infinitesimal group multiplication maps the vectors

e1, & to vectors ni, ny. If we denote the local coordinates by
(v,t) € R2@® A?R™, we can model the corresponding Lie algebra

g:=bszas

np=e+y e1Ne, n=e —y e Aey, (4)

no=nNANn =eNe
and discuss the related optimal control problem

q(t) = uiny + usny (5)



Fiber (vertical) system

In the geometric algebra G the solutions of fiber system
hh=w, h=-w, Ww=0, (6)
are
h(t) = g(Kt)h(0)&(Kt), where h(0) = h1(0)er + h2(0)ez € G
g(t) = cos(t/2) +sin(t/2)e1 A ez € Spin(2), K € R

Proof.
The solutions w of (6) is constants that we denote by w = K. If K
is non—zero, the first part of the fiber system (6) forms a

homogeneous system of ODEs h = —Qh = — (2 _OK> h with

constant coefficients for h = (hy, ho) " and the system matrix
Q € 50(2). Its solution is given by

h(t) = g(t)h(0)&(t) = e Kt/2arep(g)eht/2ane



Base (horizontal) system

The base system takes the form of
xi=h;, =12
z=—x1 N\ Xp,
for g = (x;,z) € Hs.
1 ~
x(8) = (&2 A e))(g(KE)hoE (Kt) — ho).
1 . ~
2(t) = 45 g(t)((e2e1ho) A ho)&(t) — (g(t)(e2e1h0)E(t)) A (e2erho)]
+ (ho A (62€1h0))

Proposition 3.8. In the case hy # 0, the horizontal system (28) has solutions
satisfying x(0) = y(0) = 0(0) =0

T = CL(C;, — Cosin(Cht) — C';;COS(Clif)).
1

1
(30) V=i (2C1(CF + C3)t — 40205 cos(C1t) + 2C2C;5 cos(2C1t)
—4CEsin(C1t) + (CF — CF) sin(201¢) + 2C2C3),

1
0= F(CZ — Cycos(Cht) + Cs Sin(Clt))
1
for constants C1, Cz, C5 from Proposition 3.7. In the degenerate case hy = 0 we
get x = Cat, y = 3020112, 0 = Cit for Oy, Cy from Proposition 3.7.



Symmetries

We live in a geometric algebra G, we can see the symmetries as
rotations around the origin, i.e. elements of the group Spin(2)

g(t)(1+ y1e1 + y2e2 + Te1 A €2)5(t)
=1+ g(t)(y1e1 —|—y2e2)§(t) + 7e1 N es.

and we can use symmetries to transfer the control from one point
to another within the sets

M ={q=1+y1e1 + yreo + Te1 A &|(y1€1 + yoe2)* = k}.




More symmetries

Our goal is to expand the set of symmetries so that we are able to
simplify the motion planning even more. We add one Witt pair
{eo, ex} to Gy and understand the points in configuration space
by elements in compas ruller algebra (CRA).

1+ yie1 +yoeo+7e1 ANex € Gz . (7)

If we represent H3 in geometric algebra CRA, then the following
sets are equivariant with respect to control:

M. =1{q=a0+ lyre; + lyzes + ITe1 A ea|(y1€1 + y2€2)% = k}
If d(k) = exp(k/2ey A ex) =2 — + € A €xo. then

d(k)(eo + yre1 + yae2 + Ter A e2)d (k)
= eg + d(k)(y1e1 + yoe2 + Te1 A e2)d (k)
= e + k(y1e1 + yoer +TeE1 N e2).



Conformal cone

Is it optimal?

d(t)nd(t) = d(kt)(e1 + y2es A e1)d(kt)
= ke1 + kyoex A e1



The future work

New mechanisms - now questions

m Next free two-step mechanisms - trident snake (3,6)

m Non free two-step mechanisms - 2-link robotic worm (4,6)

m general two-step mechanisms

m mechanisms with higher filtration - 3 (n)-link robotic snake
(2,3,5)




The future work

Control issues - open problems

m Fixed points of symmetries - Maxwel points
Mo={1l+7e1 ANe}

m Cusp points - control of boats

m More and more symmetries ...
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Thank you for your attention!



