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Controlability of vertical rolling disc

Let the considered mechanism be the homogeneous rolling disc of
mass m = 1 and radius r = 1 in the plane. Assume that the disc
moves without tilting and slipping

Obviously, we got two vector fields

X1 = cosϕ∂x1 + sinϕ∂x2 , X2 = ∂ϕ,

where (x1, x2) ∈ R2, θ ∈ S1 which forms the first-order control
system

q̇ = u1X1 + u2X2. (1)



Controlability of vertical rolling disc

Lie bracked shows the remaining vector field

X3 = [X1,X2] = sinϕ∂x1 − cosϕ∂x2 ,

which completes the algebra. In these coordinates Lie algebra of
controllability g is equipped with the following multiplication table

g X1 X2 X12

X1 0 X12 0

X2 −X12 0 X1

X12 0 −X1 0

Table: The multiplication table of Lie algebra of controlabilty of vertical
rolling disc



Controlability of vertical rolling disc

Thanks to the Chow-Rashevskii theorem, the disk is controllable
on the complete configuration space R2 × S1∣∣∣∣∣∣

cosϕ +sinϕ 0
0 0 1

sinϕ − cosϕ 0

∣∣∣∣∣∣ = −
∣∣∣∣cosϕ +sinϕ
sinϕ − cosϕ

∣∣∣∣ = 1

How to control it?

We have to pick some control!



Geometric control theory (Sub-Riemannian geometry)

Sub-Riemannian geometry (also known as Carnot geometry in
France, and non-holonomic geometry in Russia) is a geometric
structure studied intensively over the last decades, because it plays
an important role in the Geometric control theory.

In a sub-Riemannian space we can neither move nor send
information in all the directions, nor can we receive information
from everywhere. There are constraints (imposed by God, by a
moral imperative, by a government, or just by the laws of Nature).



Geometric control theory (Sub-Riemannian geometry)

Normal extremals of the rolling disc problem are solutions of the
ODE system

ḣ1 = −h3h2, ḣ2 = h3h1, ḣ3 = −h1h2,

ẋ = h2 cos θ, ẏ = h2 sin θ, θ̇ = h1,

based on Hamiltonian system of PMP

ḣi = {H, hi}
ġ = h1X1(g) + h2X2(g)

where

H =
1

2
(h21 + h22)

Dubins paths:



Nilpotent approximation (NA)

The nilpotent approximation (NA) is a classical technique to
approximate the algebra of controllability by a nilpotent Lie algebra
and thus simplify the finding of the optimal solution. For the
construction of nilpotent coordinates, we use the Bellaiche
algorithm.

X1 = cosϕ∂x1 + sinϕ∂x2 =⇒ ϕ∂x1 + ∂x2

X2 = ∂ϕ,=⇒ ∂ϕ



Nilpotent approximation (NA)

This new coordinates (y1, y2, y3) yields a nilpotent Lie algebra n
with the following multiplication table,

n n1 n2 n12

n1 0 n12 0
n2 −n12 0 0
n12 0 0 0

Table: The multiplication table of nilpotent Lie algebra

where the new vector fields look like

n1 = ∂y1 − y2∂y3 , n2 = ∂y2 , n12 = [n1, n2] = ∂y3 , (2)

i.e. forms so-called Heisenberg algebra h3, together with the
first-order nilpotent control system

q̇ = u1n1 + u2n2. (3)



Nilpotent approximation (NA)

The method suggests the use of an iterative method of the
Newton type. At first, the method solves the motion planning
problem for a nilpotent approximation of the system, given by an
initial point x init and a final point xfinal. Then, the resulting input
control û is applied to the original system and the procedure is
iterated from the resulting point xk . The algorithm is designed in
the following algorithm.

Input: x init, xfinal, e
k := 0

xk := x init

while d(xk , xfinal) > e do
Compute ûk such that xfinal = γ̂(T ; xk , ûk)

Set xk+1 := γ(T ; xk , ûk)
k := k + 1

Where d is the sub-Riemannian distance of the original system.



Nilpotent approximation (NA)

Normal extremals of the rolling disc problem are solutions of the
ODE system

ḣ1 = −h3h2, ḣ2 = h3h1, ḣ3 = 0,

ẋ = h2θ, ẏ = h2θ, θ̇ = h1,



Symmetric three dimensional Heisenberg group H3

With a straightforward change of coordinates, we can transform
them into a vector field represented in a symmetric form

X = ∂y1 − 2y2∂τ , Y = ∂y2 − 2y1∂τ , T = 4∂τ ,

where the group operation on R3 will then be of the form

(y1, y2, τ) ◦ (ȳ1, ȳ2, τ̄) = (y1 + ȳ1, y2 + ȳ2, τ + τ̄ − 2(y1ȳ2 − y2ȳ1)).

The Lie group (R3, ◦) is called symmetric three dimensional
Heisenberg group H3, the element (0, 0, 0) is origin and the inverse
of (y1, y2, τ) is (−y1,−y2,−τ).



Gr(2) model of H3

The symmetric three dimensional Heisenberg group H3 can be
realized in the Grassmannian algebra Gr(2)

α : H3 ↪→ Gr(2) = R⊕ R2 ⊕ ∧2R2 ∼= R⊕ R2 ⊕ so(2)

by the identification

(y1, y2, t) 7→ 1 + y1e1 + y2e2 + te1 ∧ e2 ∼= 1 +

(
y1
y2

)
+

(
0 t
−t 0

)
where the multiplication coincides with wedge operation

(1 + y1e1 + y2e2 + te1 ∧ e2) ∧ (1 + ȳ1e1 + ȳ2e2 + t̄e1 ∧ e2)

= 1 + (y1 + ȳ1)e1 + (y2 + ȳ2)e2 + (t + t̄ + (y1ȳ2 − y2ȳ1))e1 ∧ e2).

The difference is caused by slightly different definitions
[a, b] = ab − ba = −2a ∧ b. If we would like total equality, we can
define the multiplication as a ◦ b = −2a ∧ b, but for our purposes,
the multiplication factor −2 is irrelevant. Finally, the
corresponding Lie algebra then corresponds to

h3 = {y1e1 + y2e2 + te1 ∧ e2}
and Lie bracket leads to ∧.



G2 model of H3

By control we mean the invariant control problems on Heisenberg
group G := H3. Straightforward calculations

(1 + y1e1 + y2e2 + τe1 ∧ e2) ∧ e1 = e1 + y2e2 ∧ e1 = n1,

(1 + y1e1 + y2e2 + τe1 ∧ e2) ∧ e2 = e2 − y1e2 ∧ e1 = n2

shows that the infinitesimal group multiplication maps the vectors
e1, e2 to vectors n1, n2. If we denote the local coordinates by
(y , t) ∈ R2 ⊕ ∧2Rm, we can model the corresponding Lie algebra
g := h3 as

n1 = e1 + y2 e1 ∧ e2, n2 = e2 − y1 e1 ∧ e2,

n12 = n1 ∧ n2 = e1 ∧ e2
(4)

and discuss the related optimal control problem

q̇(t) = u1n1 + u2n2 (5)



Fiber (vertical) system

In the geometric algebra G2 the solutions of fiber system

ḣ1 = w , ḣ2 = −w , ẇ = 0, (6)

are

h(t) = g(Kt)h(0)g̃(Kt), where h(0) = h1(0)e1 + h2(0)e2 ∈ G2

g(t) = cos(t/2) + sin(t/2)e1 ∧ e2 ∈ Spin(2),K ∈ R

Proof.

The solutions w of (6) is constants that we denote by w = K . If K
is non–zero, the first part of the fiber system (6) forms a

homogeneous system of ODEs ḣ = −Ωh = −
(
0 −K
K 0

)
h with

constant coefficients for h = (h1, h2)
T and the system matrix

Ω ∈ so(2). Its solution is given by

h(t) = g(t)h(0)g̃(t) = e−Kt/2e1∧e2h(0)eKt/2e1∧e2 .



Base (horizontal) system

The base system takes the form of

ẋi = hi , i = 1, 2

ż = −x1 ∧ ẋ2,

for q = (xi , z) ∈ H3.

x(t) =
1

K
(e2 ∧ e1)(g(Kt)h0g̃(Kt)− h0),

z(t) =
1

K 2
[g(t)((e2e1h0) ∧ h0)g̃(t)− (g(t)(e2e1h0)g̃(t)) ∧ (e2e1h0)]

+ (h0 ∧ (e2e1h0))



Symmetries

We live in a geometric algebra G2 we can see the symmetries as
rotations around the origin, i.e. elements of the group Spin(2)

g(t)(1 + y1e1 + y2e2 + τe1 ∧ e2)ḡ(t)

= 1 + g(t)(y1e1 + y2e2)ḡ(t) + τe1 ∧ e2.

and we can use symmetries to transfer the control from one point
to another within the sets

Mk,τ = {q = 1 + y1e1 + y2e2 + τe1 ∧ e2|(y1e1 + y2e2)
2 = k}.



More symmetries

Our goal is to expand the set of symmetries so that we are able to
simplify the motion planning even more. We add one Witt pair
{e0, e∞} to G2 and understand the points in configuration space
by elements in compas ruller algebra (CRA).

1 + y1e1 + y2e2 + τe1 ∧ e2 ∈ G3,1. (7)

If we represent H3 in geometric algebra CRA, then the following
sets are equivariant with respect to control:

M̄k,τ = {q = a0 + ly1e1 + ly2e2 + lτe1 ∧ e2|(y1e1 + y2e2)
2 = k}

If d(k) = exp(k/2e0 ∧ e∞) = 2− 1
k e0 ∧ e∞. then

d(k)(e0 + y1e1 + y2e2 + τe1 ∧ e2)d̄(k)

= e0 + d(k)(y1e1 + y2e2 + τe1 ∧ e2)d̄(k)

= e0 + k(y1e1 + y2e2 + τe1 ∧ e2).



Conformal cone

Is it optimal?

d(t)n1d̄(t) = d(kt)(e1 + y2e2 ∧ e1)d̄(kt)

= ke1 + ky2e2 ∧ e1



The future work

New mechanisms - now questions

Next free two-step mechanisms - trident snake (3,6)

Non free two-step mechanisms - 2-link robotic worm (4,6)

general two-step mechanisms

mechanisms with higher filtration - 3 (n)-link robotic snake
(2,3,5)



The future work

Control issues - open problems

Fixed points of symmetries - Maxwel points

M0 = {1 + τe1 ∧ e2}

Cusp points - control of boats

More and more symmetries ...
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algebras and control problems with SO(3)–symmetries Math Meth
Appl Sci. 47(3), pp. 1257–1273 (2024)
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Froĺık S., J. H. : Local control of 2-link robotic worms based on
additional symmetries. Journal of the Franklin Institute, Vol. 360
(16), 12280-12298 (2023)

Thank you for your attention!


