

Paraxial Geometric Optics in 3D through Point-based Geometric Algebra

Leo Dorst

Informatics Institute, University of Amsterdam

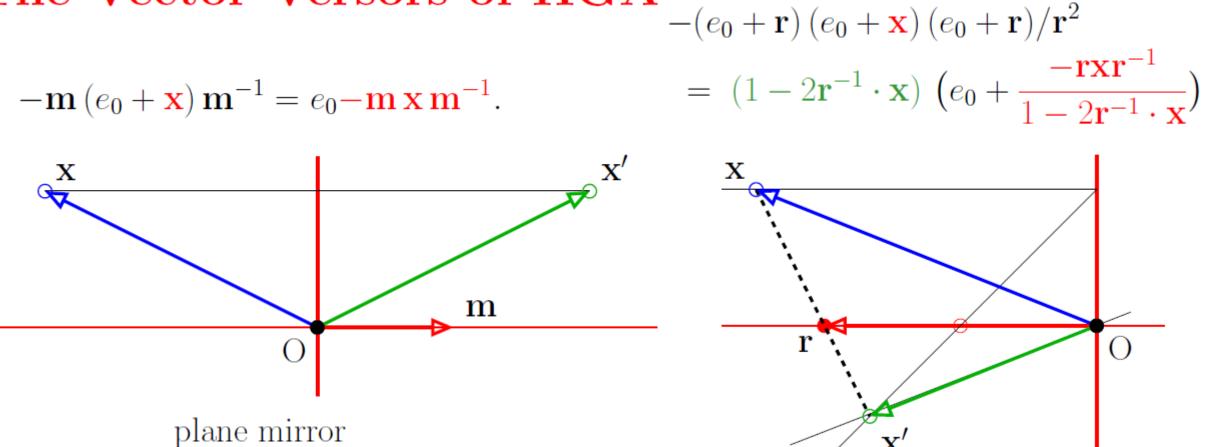
The Vectors of HGA $\mathbb{R}_{d,0,1}$

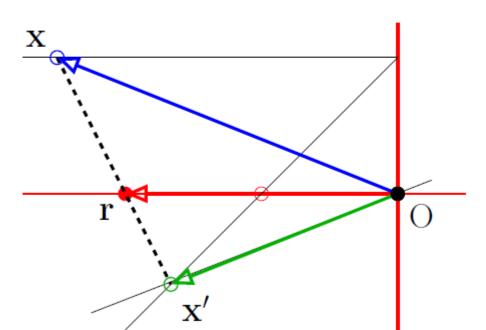
HGA $\mathbb{R}_{d,0,1}$ is an algebra in which homogeneous points are represented as vectors. We choose an orthonormal basis $\{e_0, \mathbf{e}_1, \cdots, \mathbf{e}_d\}$ of anti-commuting 'unit' vectors: $\mathbf{e}_i \mathbf{e}_j = -\mathbf{e}_i \mathbf{e}_i$ and $e_0 \mathbf{e}_i = -\mathbf{e}_i e_0$, with $(e_0)^2 = 0$ and $(\mathbf{e}_i)^2 = 1$.

Three kinds of vectors, differing in algebraic properties and geometric semantics:

- **Directions:** A purely Euclidean vector **m** represents a 1-direction in d-space. Its inverse is $\mathbf{m}^{-1} \equiv \mathbf{m}/(\mathbf{m} \cdot \mathbf{m})$. Directions are 'ideal points' at infinity.
- The origin: The point at the origin is represented by the null vector e_0 . Since $e_0^2 = 0$, it is *not* invertible, and therefore e_0 cannot be used as a versor.
- Non-origin points: A general point at **p** is of the form $P = \alpha(e_0 + \mathbf{p})$. Its inverse is $P^{-1} = P/(P \cdot P) = P/(\alpha^2 \mathbf{p}^2)$, iff $\alpha \neq 0$ and $\mathbf{p}^2 \neq 0$. For versors we can use normalized points with $\alpha = 1$.

The Vector Versors of HGA





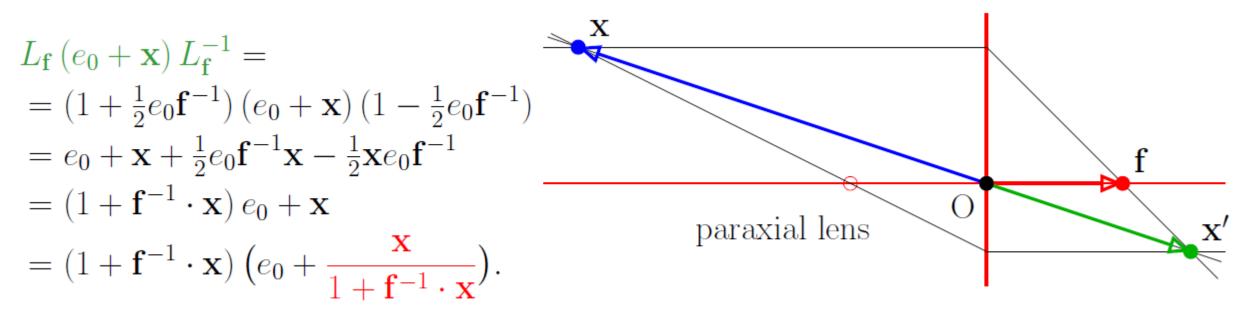
paraxial spherical mirror

The Lensing Versor $L_{\mathbf{f}}$ in HGA

View a lens as the combination of a spherical mirror and a reflection, so use HGA versor $\mathbf{m} R$ to represent it. We should take $\mathbf{m} = \mathbf{r}$ and relate R to the focal point F by $\mathbf{f} = -\mathbf{r}/2$. That gives:

$$\mathbf{r}(e_0 + \mathbf{r}) = \mathbf{r}^2 - e_0 \mathbf{r} = \mathbf{r}^2 (1 - e_0 \mathbf{r}^{-1}) \propto 1 - e_0 \mathbf{r}^{-1} = 1 + \frac{1}{2} e_0 \mathbf{f}^{-1} \equiv L_{\mathbf{f}}.$$

Now sandwiching a point $X = e_0 + \mathbf{x}$ yields:



This is indeed the GA form of the familiar Euclidean lensing formula.

HGA Bonus: Equivariance of Versor Mapping

The universality of the versor form allows direct transformation of lines and planes, e.g.

$$(L_{\mathbf{f}}X_1/L_{\mathbf{f}}) \wedge (L_{\mathbf{f}}X_2/L_{\mathbf{f}}) = L_{\mathbf{f}}(X_1 \wedge X_2)/L_{\mathbf{f}}).$$

However, a ray tracing matrix depends on the type of flat:

$$\text{point: } \begin{bmatrix} \mathbf{p} \\ 1 \end{bmatrix} \overset{L_{\mathbf{f}}}{\mapsto} \begin{bmatrix} [1] & \mathbf{0} \\ [\mathbf{f}^{-1}]^\top & 1 \end{bmatrix} \begin{bmatrix} \mathbf{p} \\ 1 \end{bmatrix} \quad \text{line: } \begin{bmatrix} \mathbf{u} \\ \mathbf{p} \times \mathbf{u} \end{bmatrix} \overset{L_{\mathbf{f}}}{\mapsto} \begin{bmatrix} [1] & \mathbf{0} \\ [\mathbf{f}^{-1}]^\times & 1 \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \mathbf{p} \times \mathbf{u} \end{bmatrix} \quad \text{plane: } \begin{bmatrix} \mathbf{n} \\ -\delta \end{bmatrix} \overset{L_{\mathbf{f}}}{\mapsto} \begin{bmatrix} [1] & -[\mathbf{f}^{-1}] \\ \mathbf{0}^\top & 1 \end{bmatrix} \begin{bmatrix} \mathbf{n} \\ -\delta \end{bmatrix}.$$

Explicitly computing the matrices is better left to an HGA-to-LA compiler.

Full paper [1] at:

1.dorst@uva.nl dorst.037@gmail.com (after 2024)

1. L. Dorst, "Paraxial geometric optics in 3D through point-based geometric algebra", in CGI 2023, LNCS 14498, B. Sheng, J. Kim, N. Magnenat-Thalmann, and D. Thalmann, Eds. Springer Verlag, 2024, pp. 340-354. https://dl.acm.org/doi/abs/10.1007/978-3-031-50078-7_27 2. T. Corcovilos, "Beyond the ABCDs: A better matrix method for geometric

optics by using homogeneous coordinates", American Journal of Physics, vol. 91, pp. 449{457, 2023. https://pubs.aip.org/aapt/ajp/article/91/6/449/2891435/ 3. L. Dorst, D. Fontijne, and S. Mann, Geometric Algebra for Computer Science. Morgan Kaufman, 2009. https://www.geometricalgebra.org

4. E. Lengyel, 2022. [Online]. https://projectivegeometricalgebra.org/ 5. C. Gunn, "On the homogeneous model of Euclidean geometry", in Guide to Geometric in Practice, L. Dorst and J. Lasenby, Eds. Springer-Verlag, 2011, pp.

297{327. [Online] https://www.springer.com/gp/book/9780857298102 6. C. Gunn, "Geometric algebras for Euclidean geometry", Advances in Applied Clifford Algebras, vol. 27, pp. 185-208, 2017. https://link.springer.com/article/10.1007/s00006-016-0647-0

Optics Anywhere, via Conformal GA

HGA null vector e_0 for point at optical center is essential for lens versor. But there are no other null points in HGA $\mathbb{R}_{d,0,1}$, so we cannot translate by versors.

CGA $\mathbb{R}_{d+1,1}$ (algebra of spheres) has all points as null vectors: $x = n_o + \mathbf{x} + \frac{1}{2}\mathbf{x}^2 n_{\infty}$. It also has translation versors. So let us embed HGA into CGA at each location!

Changing Center by 'from c' Embedding $X|_c$

Choose any CGA point c as corresponding to the optical center e_0 of HGA. An HGA point X at location \mathbf{x} viewed from this 'origin' \mathbf{c} is embedded as:

'from c' map:
$$X|_c \equiv n_o + \mathbf{x} = n_o \cdot (-n_\infty \wedge x)$$

with c and x CGA points, n_o the CGA origin. You may pronounce $\binom{1}{c}$ as 'from c'.

structure-preserving:
$$x|_c \wedge y|_c = (x \wedge y)|_c$$
.

Arbitrary HGA element X (point, line, plane, direction element) is represented as viewed 'from c' by:

$$X \mapsto X|_c = c \cdot (-n_\infty \wedge X)$$

The 'from c' mapping is 'neopotent':

last application counts:
$$(X|_{c_1})|_{c_2} = X|_{c_2}$$
.

We can therefore always re-represent a re-represented element. In a concatenation of lenses, there is no need to revert from X_c to HGA X before the next step.

> Jumping to a new optical center c is not a relative translation, but an absolute teleportation.

The Lens Versor at Another Optical Center

HGA lens versor $\exp(e_0 \wedge \mathbf{f}^{-1}/2)$ at origin e_0 , move to C? No HGA versor! CGA lens versor $\exp(n_o \wedge \mathbf{f}^{-1}/2)$ at location n_o , move to c? Have CGA versor!

CGA tangent vector $n_o \wedge \mathbf{f}^{-1}$ at n_o moves to: $c \wedge (\mathbf{f}^{-1} + (\mathbf{f}^{-1} \cdot \mathbf{c}) n_\infty)$. With some algebra, we can rewrite this translated tangent multiplicatively:

$$T_c(n_o \wedge \mathbf{f}^{-1}) T_c^{-1} = c/(c \wedge n_\infty \wedge \mathbf{f}) = c/(c \wedge n_\infty \wedge f),$$

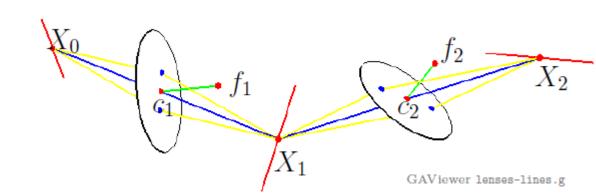
f focal point, and f relative vector from c to f. Indifferent to F-specification!

With that CGA tangent vector, the CGA lens versor with optical center c is:

versor
$$L_{c,f}$$
 of lens at c with focal point f : $L_{c,f} = \exp(c/(c \wedge n_{\infty} \wedge f)/2)$

Apply the 'at c' versor $L_{c,f}$ to elements in the 'from c' representation.

Concatenation of Elements



1. Lenses with centers at points c_i , focal points at f_i (or use \mathbf{f}_i). Form lens versors:

$$L_i \equiv \exp(\frac{1}{2}c_i/(c_i \wedge n_\infty \wedge f_i)) = 1 + \frac{1}{2}c_i/(c_i \wedge n_\infty \wedge f_i)$$

or the spherical mirror $R_i = c_i - 2(c_i \wedge n_\infty) \cdot (c_i \wedge n_\infty \wedge f_i)$, or the planar mirror $M_i = (c_i \wedge n_\infty) \cdot (c_i \wedge n_\infty \wedge f_i)$.

2. Embed the HGA element X into CGA by replacing its e_0 by n_o . Then iterate:

$$X_0 = X$$
, $X_i = \underline{L_i}[X_{i-1}|_{c_i}] = L_i \left(c_i \cdot (-n_{\infty} \wedge X_{i-1})\right) L_i^{-1}$ for $i = 1, \dots, n$ or similarly for $R_i[]$ and $M_i[]$, remembering to include the grade involution.

3. Final result may be expressed as $X' = n_o \cdot (-n_\infty \wedge X_n)$ relative to an origin point n_o . It can be converted back to HGA by replacing n_o by e_0 .

Generating Ray Transfer System Matrices

- The HGA/CGA lens versor specification lenses any flat geometric primitive.
- The 'from c' re-representation prepares it for the next optical element.
- Any flat element can be propagated through the optical system, so easy to find the total homogeneous transfer matrix for a composition of optical elements:
- Simply process appropriate *i*-th basis element by the iterative algorithm and denote the resulting components as i-th column of the transformation matrix. (E.g., matrix for imaging of arbitrary 3D line uses Plücker coordinate basis $\{e_{01}, e_{02}, e_{03}, e_{23}, e_{31}, e_{12}\}$.)
- Specification is immediately geometrical with (c_i, f_i) or (c_i, \mathbf{f}_i) pairs. Due to neopotent teleportation, no intermediate 'relative Euclidean transformations'.
- This extends the 2D homogeneous matrix techniques of Corcovilos [2] to n-D.