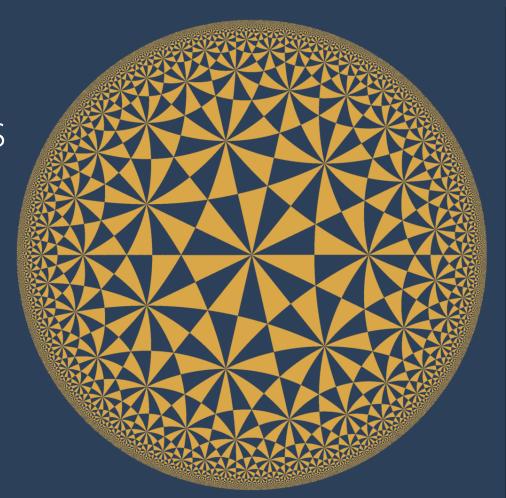
## Projective and Conformal Formulations of Electromagnetism

Dr. Chris Doran

Prof. Anthony Lasenby

AGACSE, 2024



### Outline

Many equations in physics exhibit some form of conformal invariance

- Electromagnetism
- Yang-Mills
- (massless) Dirac equation
- Cauchy-Riemann equations

Been suggested that conformal GA might help in exhibiting this invariance But CGA takes place with a higher dimensional base space.

Can we find a way to make conformal GA (CSTA) useful in field theory?

## Cauchy-Riemann equations

Start with the simplest example in 2D

$$\nabla \psi(x) = 0$$
  $\nabla = e_1 \frac{\partial}{\partial x_1} + e_2 \frac{\partial}{\partial x_2}$   $\psi = u + I_2 v$ 

Get new solutions from old by translation and rotation (active viewpoint)

$$\psi'(x) = \psi(x+a)$$
  
$$\psi'(x) = R\psi(\tilde{R}xR)\tilde{R}$$

Note, have to back-rotate the position dependence. Picture is different in gauge-theory gravity.

### Inversion

Need one further symmetry to generate the conformal group: Inversion

$$x' = f(x) = \frac{-1}{x} = \frac{-x}{x^2}$$

**Transformation** 

$$\underline{f}(a) = a \cdot \nabla f(x)$$

$$= \frac{-a}{x^2} + \frac{2a \cdot x \, x}{x^4}$$

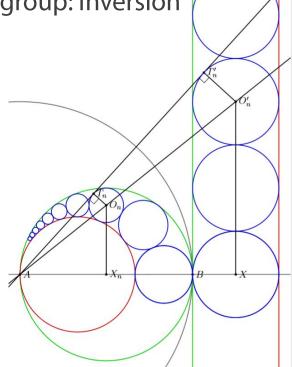
$$xax$$

Directional derivatives

A position-dependent reflection

$$\nabla_{x'} = x \nabla_x \check{x}$$

The check denotes that this term is not differentiated



#### Inversion

Need a single-sided transformation (like a spinor transformation)

$$\psi'(x) = \frac{x}{x^2} \psi(-1/x) e_1$$
 The real axis 
$$\phi'(z) = \frac{1}{z} \phi(1/z^*)^*$$
 Ignore the delta function here! 
$$\nabla \frac{x}{x^2} \psi(-1/x) e_1 = \nabla \left(\frac{x}{x^2}\right) \psi(x') e_1 + \dot{\nabla} \frac{x}{x^2} \dot{\psi}(-1/x) e_1$$
 
$$= \frac{x}{x^4} x \nabla_x \dot{x} \psi(x') e_1$$
 Key derivation 
$$= \frac{x}{x^4} \nabla_{x'} \psi(x') e_1 = 0$$

## Special conformal transformations

Invert / translate / invert

$$x' = \frac{x + tx^2}{1 + 2t \cdot x + x^2 t^2}$$

$$= x \frac{1}{1 + tx}$$

$$= x \frac{1}{1 + tx}$$
Position-dependent rotation and scaling

$$f(a) = \frac{1}{1+xt} a \frac{1}{1+tx}$$

$$R = \frac{1+tx}{(1+2t\cdot x + x^2t^2)^{1/2}}$$

In d dimensions

find:

$$\psi'(x) = \frac{1}{(1 + 2t \cdot x + x^2 t^2)^{(d-1)/2}} R \psi(-1/x)$$

Conformal weight

$$\nabla \frac{1 + xt}{(1 + 2x \cdot t + x^2 t^2)^{d/2}} = 0$$

This makes it all work!

## Electromagnetism

Bit different – only get conformal invariance in 4D.

$$A'(x) = \frac{1}{x^4} x A(-1/x) x$$
$$F'(x) = \frac{1}{x^6} x F(-1/x) x$$

Double-sided transformations under inversion

Conformal invariance relies on the identity (unique to bivector in spacetime)

$$\dot{\nabla} x F \dot{x} = 2F x$$

Can include currents and have inversion invariance

$$\nabla F = J \Longrightarrow \nabla F' = J'$$

$$J'(x) = \frac{1}{x^8} x J(-1/x) x$$

Different transformation law for J

### Weyl (dilation) invariance

Picture once gravity is included is a bit different

In GTG picture already have local invariance under rotations and general mappings

All that is left is dilations:

$$g_{\mu\nu}dx^{\mu}dx^{\nu} \mapsto \Omega^{2}(y)g_{\mu\nu}dx^{\mu}dx^{\nu}$$

#### Already invariant

- Dirac theory
- Yang-Mills
- Yukawa coupling (used in Higgs)
- Higgs 4<sup>th</sup> order term

#### $\overline{h} \mapsto \Omega^{-1}\overline{h}$ GTG version

#### Not invariant

- Higgs dynamic term (needs a gauge field)
- Higgs 2<sup>nd</sup> order term
- Gravity Ricci scalar term
- Conformal anomaly

# Conformal geometry

Dirac was first to suggest that the Projective Null Cone (PNC) is the natural space for EM theory.

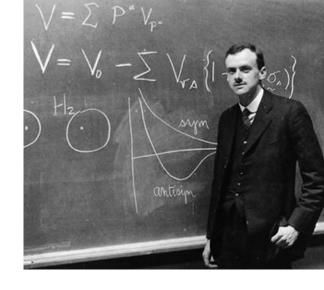
$$X^{2} = 0$$

$$\psi_{c}(\lambda X) = \lambda^{-c} \psi_{c}(X)$$

c is conformal weight

#### Core ideas

- Define a map from PNC back to spacetime
- Find equations on the PNC that reproduce desired equations in spacetime
- Ensure the PNC equations are manifestly covariant



Conformal Invariance and Electrodynamics:
Applications and General Formalism

C. Codirla and H. Osborn\*

Trinity College Cambridge, CB2 1TQ England

hep-th/9701064

### Notation

Working in CSTA, G(2,4)

$$X = P(X) + \frac{1}{2}un + \frac{1}{2}v\bar{n}$$
  $n^2 = \bar{n}^2 = 0$ ,  $n \cdot \bar{n} = 2$ 

$$n^2 = \bar{n}^2 = 0, \qquad n \cdot \bar{n} = 2$$

Derivative in CSTA

#### Projection back to base space

$$u = \bar{n} \cdot X$$
  $v = n \cdot X$ 

$$\nabla_X u = \bar{n}$$
  $\nabla_X v = n$ 

$$\nabla_X = P(\nabla_X) + \bar{n}\partial_u + n\partial_v$$

$$X \cdot \nabla_X = P(X) \cdot \nabla_X + u \partial_u + v \partial_v$$

#### Standard map

$$X(x) = x - \frac{1}{2}\bar{n} + \frac{1}{2}x^2n$$

$$X \cdot \nabla_X \psi_c(X) = -c\psi_c(X)$$

From STA to CSTA

This takes a bit of work to prove

### Scalars

#### Conformal weight 0, so have

$$\phi(x) = \Phi[X(x)]$$
 Restriction of a field to the PNC 
$$\nabla_X(\phi(x)) = \nabla_X \Phi[X(x)]$$
 
$$= P(\nabla_X \Phi(X)) + 2x \partial_u \phi \Big|_N$$
 
$$\nabla_X(\phi(x)) = P(-n \cdot (X \wedge \nabla_X \Phi(X)))$$
 Key projection operation

'Gauge' invariance

$$\Phi \mapsto \Phi + \frac{1}{2}X^2\alpha$$
 This term vanishes on the PNC

$$\nabla_X \Phi_X \Big|_N \mapsto \nabla_X \Phi_X \Big|_N + X\alpha$$
 —This term potentially unknown

## 'Gauge' invariance

See from previous that vectors have are equivalent up to

$$A \mapsto A + X\alpha$$

 $A \mapsto A + X\alpha$  Does not change STA physics

Need operators that commute with  $X^2$ :

$$X \cdot \nabla_X$$

 $X \wedge \nabla_X$ 

Guess what we are going to do with these!



$$X \cdot \nabla_X \Phi = 0$$

$$\rightarrow$$

Also have 
$$X \cdot \nabla_X \Phi = 0$$
  $\rightarrow$   $X \cdot \mathcal{A} \Big|_{\mathcal{N}} = 0$ 

Critical to conformal invariance

### Transformations

Want to use linear transformations in CSTA to achieve conformal transformations in STA:

$$\mathcal{A}(X) \mapsto \mathcal{A}'(X) = R\mathcal{A}(\tilde{R}XR)\tilde{R}$$

Lorentz transformations are obvious:

$$A'(x) = P \left( -n \cdot (X \wedge R \mathcal{A}[\tilde{R}XR]\tilde{R}) \right)$$
 R is an STA rotor here 
$$= RP \left( \mathcal{A}[X(x')] + X(x')n \cdot \mathcal{A}[X(x')] \right) \tilde{R}$$
 
$$= RA(\tilde{R}xR)\tilde{R} = RA(x')\tilde{R}$$
 As expected

### **Translations**

#### Slightly more complicated

$$T = 1 + \frac{1}{2}tn$$

$$X' = \tilde{T}X(x)T = X(x+t)$$

$$\mathcal{A}(X) \mapsto \mathcal{A}'(X) = T\mathcal{A}(X')\tilde{T}$$

Basic translation in CSTA

Now 
$$A' = P\left(-Tn \cdot (X' \wedge \mathcal{A}')\tilde{T}\right)$$

$$= -P\left(n \cdot (X' \wedge \mathcal{A}') + (t \wedge n) \cdot (n \cdot (X' \wedge \mathcal{A})) + \frac{1}{4}tnn \cdot (X' \wedge \mathcal{A})nt\right)$$

$$= P\left(-n \cdot (X' \wedge \mathcal{A}')\right)$$

$$= A(x+t)$$
Rely on P(n)=0

### Inversion

Now things get a bit tougher

$$X' = X(-1/x) = -\frac{1}{x^2}\bar{e}X\bar{e}$$

$$\mathcal{A}'(X) = -\bar{e}\mathcal{A}(-\bar{e}X\bar{e})\bar{e} = -\frac{1}{x^2}\bar{e}\mathcal{A}(X')\bar{e}$$

$$A'(x) = P\left(A' + x \, n \cdot A'\right) = -\frac{1}{x^2} P\left(A(X') + x \, \bar{n} \cdot A(X')\right)$$

The e-bar terms cancel and transform an n to n-bar. But result does not look anything like an inverted A field.

Conformal weight 1

### Inversion 2

Need to use the additional constraint

$$X' \cdot \mathcal{A}(X') = (-x^{-1} - \frac{1}{2}\bar{n} + 1/x^2n) \cdot \mathcal{A}(X') = 0$$
$$\bar{n} \cdot \mathcal{A}(X') = \frac{1}{x^2}(-2x + n) \cdot \mathcal{A}(X')$$

Now have

$$\begin{split} A'(x) &= \frac{1}{x^4} P\Big(-x^2 \mathcal{A}(X') + 2x \, x \cdot \mathcal{A}(X') - x \, n \cdot \mathcal{A}(X')\Big) \\ &= \frac{1}{x^4} P\Big(x \mathcal{A}(X') x - x \, n \cdot \mathcal{A}(X')\Big) \\ &= \frac{1}{x^4} x A(-1/x) x \quad \checkmark \quad \text{Almost magical!} \end{split}$$

### **Bivectors**

Before constructing field equations, need the map for bivectors

$$F = \nabla \wedge A = P\Big(\nabla_x \wedge \mathcal{A}[X(x)] - x \wedge \nabla_x (n \cdot \mathcal{A}[X(x)]\Big)$$

$$= P\Big(\nabla_X \wedge \mathcal{A} + 2x \wedge \partial_u \mathcal{A} - x \wedge \nabla_X (n \cdot \mathcal{A}\Big)$$

$$= P\Big(\mathcal{F} + X \wedge (n \cdot \nabla_X \mathcal{A}) - X \wedge \nabla_X (n \cdot \mathcal{A})\Big)$$

$$= P\Big(\mathcal{F} + X \wedge (n \cdot \mathcal{F})\Big)$$

$$= P\Big(-n \cdot (X \wedge \mathcal{F})\Big)$$
General transformation law

## 'Gauge' invariance 2

Even more invariance on PNC now

$$\mathcal{A} \mapsto \mathcal{A} + \frac{1}{2}X^2\mathcal{B}$$
  $\mathcal{F} \mapsto \mathcal{F} + X \wedge \mathcal{B}$ 

Better to work with invariant quantities and operators

$$X \wedge \mathcal{F} = X \wedge \nabla \wedge \mathcal{A}$$

Contains all physical information

Can also show 
$$X \cdot \mathcal{F} \Big|_{N} = \phi X$$

$$\nabla \cdot (X \cdot \mathcal{F}) = 2\phi$$

$$\phi \mapsto \phi - X \cdot \mathcal{B}$$

Another gauge field!

### Field equations

One of the two equations is immediate:

$$X \wedge \nabla \wedge \mathcal{F} = 0$$
 Covariant equation 
$$\nabla_x \wedge F(x) = P(-n \cdot (X \wedge \nabla \wedge \mathcal{F})) = 0$$

Want to find a second covariant equation. Will then check it is correct. Key identity is

$$X\nabla(XM_3) = 6XM_3 + X\dot{\nabla}X\dot{M}_3$$
$$= 6XM_3 + 2XX\cdot\nabla M_3 = 0$$

For any field of weight 3

Now  $\mathcal{F} \mapsto \mathcal{F} + X \wedge \mathcal{B}$  Weight 3. We could eliminate this using above if we found a term going as  $X \cdot \mathcal{B}$ 

## Field equations

But we know  $\phi \mapsto \phi - X \cdot \mathcal{B}$ 

Look at 
$$X\nabla(\mathcal{F}-\phi)$$
 Pure bivector  $\langle X\nabla\mathcal{F}\rangle=\phi$  Killed by  $X=X\wedge\mathcal{J}$ 

$$X\nabla(\mathcal{F} - \phi) = X \wedge \mathcal{J}$$

Maxwell equations in CSTA

Note 
$$X \cdot \mathcal{J} = 0$$

$$\mathcal{J} \mapsto \mathcal{J} + \alpha X$$

Note  $X \cdot \mathcal{J} = 0$   $\mathcal{J} \mapsto \mathcal{J} + \alpha X$  Yet another gauge field!

To eliminate  $\phi$  need second order equation (surprising)

$$X\nabla^2(X\wedge\mathcal{F}) = 2X\nabla(\mathcal{F} - \phi) = 2X\wedge\mathcal{J}$$

## Spacetime equations

Still need to verify that our covariant equation reproduces the Maxwell equations. Have

$$\nabla_x \cdot F = P\Big((n \wedge \nabla_x) \cdot (X \wedge \mathcal{F})\Big)$$
 
$$n \wedge \nabla_x = n \wedge (-n \cdot (X \wedge \nabla_X))$$
 Requires a short proof

Find

$$\nabla \cdot F = \frac{1}{2} P \langle nX\nabla (nX \wedge \mathcal{F}) \rangle_1$$
$$= n \cdot X P \langle n \cdot (X \wedge \mathcal{J}) \rangle_1 = J \quad \checkmark$$

All working as expected. Back in spacetime know we must have current conservation. Oddly this is harder to establish in CSTA.

### Current conservation

Need a covariant expression of this.

Find

$$\nabla_x \cdot J(x) = -(n \cdot X)^2 (X \wedge \nabla_X) \cdot \left(\frac{\mathcal{J} \wedge n}{X \cdot n}\right)$$

$$X\nabla(X\wedge\mathcal{J})=0$$
 Direct consequence of CSTA Maxwell equations

Together, these require

$$(X \wedge \nabla) \cdot \mathcal{J} = \mathcal{J}$$

CSTA current conservation

The current is an eigenstate of the CSTA angular momentum operator! Now have a complete set of equations.

### STA or CSTA?

#### Maxwell equations in CSTA

$$X\nabla(\mathcal{F} - \phi) = X \wedge \mathcal{J}$$

$$X \cdot \mathcal{F} \Big|_{N} = \phi X$$

$$\nabla \cdot (X \cdot \mathcal{F}) = 2\phi$$

$$(X \wedge \nabla) \cdot \mathcal{J} = \mathcal{J}$$

$$X \cdot \mathcal{J} = 0$$

#### Maxwell equations in STA

$$\nabla F = J$$

Making conformal invariance explicit comes at some cost!

## Point charge

Can always lift objects into the 'obvious' gauge

$$\mathcal{F} = \frac{X \cdot (n \wedge F)}{(X \cdot n)^3}$$
 Has correct conformal weight

For a point charge at rest at the origin  $F = \frac{1}{4\pi m^3}x \wedge \gamma_0$ 

$$F = \frac{1}{4\pi r^3} x \wedge \gamma_0$$

$$\mathcal{F} = \frac{1}{4\pi (X \cdot n \, r)^3} X \cdot (n \wedge x \wedge \gamma_0)$$

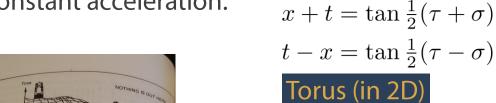
Gauge equivalent to 
$$\mathcal{F} = -\frac{X \cdot L}{4\pi |X \wedge L|^3} \qquad \qquad L = N \gamma_0$$

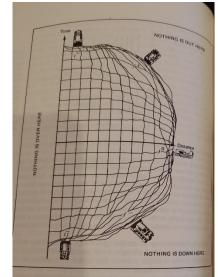
$$L = N \gamma_0$$
 Worldline of the particle

### Constant acceleration

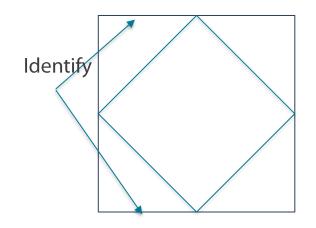
A special conformal transformation takes a line to a hyperbola.

Trajectory of a particle with constant acceleration.





W. J. Kaufmann



All of CSTA space

#### From Codirla & Osborn

## Spinors

$$\hat{a}|\psi\rangle\mapsto a\psi\gamma_0$$

$$\Psi = \Psi_{\frac{1}{2}}(1+N)$$

$$= (\psi_1 + e\psi_2\gamma_0)_{\frac{1}{2}}(1+N)$$

Pair of Dirac spinors

$$P(\Psi) = \psi_1$$
$$P(n\Psi\gamma_0) = 0$$

**Ensures translation works** 

All spacetime transformations work. Just need inversion for full conformal symmetry

## Spinor inversion

Inversions takes 
$$\Psi(X)\mapsto \Psi'(X)=\bar{e}\Psi(-\bar{e}X\bar{e})\gamma_0$$
  $X'=-\frac{1}{x^2}\bar{e}X\bar{e}$  Single-sided spinor action

So 
$$P(\Psi') = \frac{1}{(x^2)^c} \psi_2(-1/x)$$

To make this all work, need 
$$\psi_2=x\psi_1\gamma_0$$
 
$$\Psi=(\psi_1+ex\psi_1)\tfrac{1}{2}(1+N)$$
 
$$=Xn\psi_1\tfrac{1}{2}(1+N)$$

Get our restriction 
$$X\Psi \Big|_{N} = 0$$
 Manifestly covariant in CSTA

## Spinor inversion

$$\psi'(x) = -P\left(\frac{1}{(x^2)^c}\bar{n}/2\Psi(X')\gamma_0\right)$$

$$= \frac{x}{(x^2)^{c+1}}\psi(-1/x)\gamma_0$$
 Works provided c=1

Also

$$X\nabla(X\Psi) = 0$$
  $aX\Psi = 0$ 

X sandwich, so only bivector remains

$$X \nabla (aX\Psi) = -4Xa\Psi + X\dot{\nabla}aX\dot{\Psi}$$
  $= -4Xa\Psi - Xa\dot{\nabla}X\dot{\Psi}$  Now use c=1  $= Xa(-2\Psi + X\nabla\Psi)$  This must equal zero for all a

$$X\nabla\Psi=2\Psi$$
 Curious!

### Twistors / CSTA

Can make thing more natural if we define

$$\Psi_1 = \frac{Xn}{((X \cdot n)^2)} \Psi$$



This has  $X\nabla\Psi_1=0$ 

If the projected psi is monogenic, have  $n\nabla\Psi_1=0$ 

Together

 $\nabla \Psi_1 = 0$ 

Massless Dirac equation in CSTA

$$|\Psi\rangle = \begin{pmatrix} \psi \\ x\psi\gamma_0 \end{pmatrix}$$
 Looks a lot like a twistor!

$$T = 1 - xn/2$$
$$T\{\gamma_{\mu}, -\bar{n}/2\}\tilde{T}$$

Base translator

Fixed frame

G(1,3,1

### Summary / thanks

- You can do field theory in conformal GA, if the underlying theory is conformally invariant
- Need to stick to the null cone
- Need to take care with derivatives due to effects off the cone
- Get equations that have manifest conformal invariance
- But there are a lot of side-relations
- Spinors can be included into this framework
- Maybe a more natural setting for twistors?
- But ultimately, physics does not appear to respect conformal invariance.

