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The problem

GA is fragmenting into people advocating one 

algebra over another

Also seeing a plethora of different products, 

notations etc.

(Nothing new there)

But code exacerbates the problem

Generally, flexible multi-algebra code is slow

Optimised code tends to lock you into a single 

algebra



The problem

Frustrations while working through this book

Need:

• Point (x, y, z, 1)

• Vector(x, y, z)

• Plane (n_x, n_y, n_z, d)

• Sphere

• Ray …

In practice you want to move between (3,0), 

(4,0), (4,1) and (3, 0, 1) to be in the optimal 

algebra for each step.



Universal geometric algebra

There is ‘one’ algebra G(n,n)

Here n is as big as you need it to be!

It is a balanced algebra

David called this the ‘mother’ algebra

Perhaps universal is a better name!

Can just implement this, but you miss some 
critical optimizations.

In practice, may need to implement 
something more streamlined.



Outline

How do we achieve multi-algebra fluency?

1. Understand the different ways larger algebras encompass smaller 

ones

2. (optional) Know the matrix representations

We will review these relationships with a view to:

1. Helping us write more efficient code.

2. Designing base units to move smoothly between algebras.



Matrices? Really?

Suppose we are in CGA and have two even rotors representing some 
conformal transformation. 

Each has 16 elements, so a naïve implementation of their product 
would involve 256 multiplication operations.

Representing these as 2x2 matrices of quaternions reduces that down 
to 128. 

So worthwhile.

Generally, in the algebras between 3D and 6D there are factors of 2 (or 
sometimes 4) to be found.

This all supposes we want to be in ‘geometric product first’ setting. 



Why should l care?

Wrong!



Matrix Representations of G(p,q)

H = quaternions



Null generators

First up, lets dispense with the ‘null’ algebras:

Easy to do. For each null direction introduce a pair of vectors of 
opposite signature.

If you want a totally null algebra, you get back the ‘balanced’ algebra

(Also get to a balanced algebra if you combine a vector space and its 
dual space. See Lie groups as spin groups …)

The containment implied above is usually via upper / lower triangular 
matrices (see PGA later)



Pseudoscalar

In odd-dimensional algebras the pseudoscalar commutes with every 

element in the algebra.

Not the case in even dimensions

The sign of the square of the pseudoscalar is critical.

Defines a complex structure

Defines a direct sum structure

Idempotents. Split the algebra in two.



Odd dimensions are 
either complex or a 
direct sum (alternate)

Division 
algebras

Triality / octonions

Matrix Representations of G(p,q)

Efficiency is driven by size of spinor space



Key relations 1
Use these relations together 
to reduce algebra down to 
remaining Euclidean or anti-
Euclidean bits.

These all commute! 
That should be a surprise 

Basis representation for G(1,1)



Example

Construct this explicitly with G(2,2)

These generators are trivectors in the base space
Grade is a relative concept.

6 bivectors 4 trivectors4 vectors

Closed



Balanced Algebra

Basic bit-wise implementation goes as (8-bit representation)

Scalar

So, for example

trivector

5-vectors



Balanced Algebra

Result of blade multiplication is still a bitwise XOR.

Due to commutativity, Just need to get the sign correct for each 
2x2 block.

So, introduce a factor of -1 if:

1. The first entry contains an f  AND

2. The second entry is a vector



Balanced Algebra

Shift left, XOR and AND are all primitive bit-wise operations.

All available in C++, Julia etc. 

3 lines of Julia code!

First term contains f:

Second term is a vector:

Shift left

XOR

Keep these terms (AND with vector above)

AND



Issues 

This is slow!

You end up performing m*n multiplications for each product. 

• OK if the arguments are homogenous

• Inefficient for general elements (such as rotors) – misses the 

idempotent idea

After multiplying there is a simplification stage, which involves sorting the 

m*n products, and then combining ones with the same blade.

• This can be slow, and not very hardware friendly.

• Some progress with JIT compilers (Brandon Flores 
https://github.com/brainandforce)

For small algebras matrix implementations are more efficient for most 

operations. If speed not an issue, then just work in G(n,n).



Balanced 
algebras

Matrix Representations of G(p,q)

Need to 

understand the 

outer reps



Key relations 2

We have removed all mixed-signature contributions. 

Next consider the identities
Proof is similar to G(1,1) 

case.

Main difference is that the 

pseudoscalars have negative 

square. 

Easy to establish.

First appearance of quaternions.



Key relations 3

Build on the previous identities to establish

Need 2 side relations

These ensure everything loops 
round with periodicity 8

Generators in smaller space are 
5-vectors in larger space

Not totally obvious.

Simple from the matrix rep of quaternions.



Projective Splits and the ESA

G(n,0) -> 
G(0,n-1)

Key 

relationship 4

How does this work?

Suppose we have a basis:

Define bivectors :

These generate a GA:

(Different variations hold with mixed signatures).

Defines an embedding of G(0,n-1) inside G(n,0).

Different from the ‘obvious’ embedding.

Again ‘grade’ is a subjective concept here. The E_i can be grade 2 or 1.



STA

CSTACGA



Two families

‘Geometry’ family ‘Relativistic’ family

3D Geometry is 
quaternionic

Spacetime physics 
is complex



Quaternion blocks

Clearly going to use Qvecs 
for vectors, and Quats for 
points.

Can we use quaternions as basic units 

to move  between the ‘geometry’ 

algebras?

Q1

Do quaternion building blocks help us 

produce an efficient implementation?
Q2

Quickly find you need two primitives:

Quaternion vector Qvec(x, y, z) 

Full quaternion Quat(x, y, z, w)

And 2 products: Also need addition, 

multiplication by a scalar…



Projective Geometry G(4,0)

Project each half 

down to a quaternion

Odd element 

u

This is the algebra for  ‘proper’ projective geometry.

Even sub-algebra (ESA) is a 

quaternion pair:

Pseudoscalar has positive square 

and commutes with ESA. Define 

split: 

Product is now simply 2 

quaternion productsMap from odd to even is usual ‘projective split’.

Product:



Projective Geometry G(4,0)

Our generic ‘point’ to 
drop into any algebra

Lines through the origin become bivectors

Implementation in terms of Quats is obvious:

The geometric product of two vectors involves

Only need 

these 12 

products



Speed

project(a*b, 2) 14ns

5ns

Clearly worth implementing dot and wedge products 

separately. Particularly for G(4,0) (projective) geometry, as we 

hardly ever use a full geometric product (rotors not much 

use).

Similar holds for a.B and a^B.

All speed tests carried out Lenovo laptop with Ryzen 6000 mobile CPU.

Timings in Julia using BenchmarkTools package.

 Base result for two full 

quaternion products

Just using Qvec products



Speed

Still a role to play for actual thinking!

Consider the determinant of a 4x4 matrix:

det(M) 240ns

project(a*b*c*4,4) 40ns

dot(project(a*b, 2),project(E_4*c*d, 2)) 40ns

10ns

Using a direct implementation of a^b and Qvecs:

Baseline LinearAlgebra package:

SimpleGA:



Projective and conformal geometry 

• Distance encoded via dot 

product

• Invariance group SO(p+1, q+1)

• Single point at infinity

• Inversion

• Lines and circles unified

• Algebraic duality

Projective and conformal geometries are different!

• Any two planes meet in a single line

• No metric information 

• Invariance group is GL(n+1).

• Affine plane + hyperplane at infinity

• Duality (1825)

Projective geometry Conformal geometry



CGA G(4,1)

Even / odd swap is on pseudoscalar

Point

Line through origin These are trivectors.

See how 3D drops out of 5D

Bivector Speed:

Generic product takes 40ns

A^B for vectors takes 6ns

(Dependent on division by 

2)

Euclidean 

transform 

generator

Null, but not normalised



PGA G(3,0,1)

Point

Qvec The dual plane through the origin

Mixed representation. Bit unusual

Even elements are again a quaternion pair.

See this from the embedding in CGA:

This triangular structure is 

typical of null algebras

Even / odd map is performed with 

Even product involves 3 quaternion 

multiplies. Definitely worth 

implementing a^b directly.



PGA – Points at infinity

Up in CGA this is an un-normalized translator, so

So, this is how the extra points at infinity are smuggled in. As a 

limiting case of un-normalized rotors. Can even  think of the 

point representations as spinors for the translation group!

A puzzle with PGA is how it finds room for all the extra structure at infinity.

One way to think about this is via the embedding:



Grade

Seen the same quaternion vector / line through 

origin in multiple places now:

• As grade-1 generators of G(3,0)

• As grade-2 bivectors in G(4,0)

• As grade-1 vectors in PGA (planes through the origin)

• As spinors (grade 0 + grade 2) for translators in PGA / CGA

• As grade-3 lines in CGA

Do not think too rigidly about 

grade! 



Conclusions

• Everyone should know how to jump between algebras

• Balanced algebras have some neat advantages

• Grade is a fluid concept

• Quaternion-like primitives can help us move between the algebras 

most routinely encountered in practice

• Enables the construction of efficient inner, outer and geometric 

products

• Use matrices for full geometric products to gain some factors of 2

• ToDo: Implement this is SimpleGA 

(https://github.com/MonumoLtd/SimpleGA.jl)



Final words and thanks
There is no way that one can assess the 
contributions that this extraordinary man 
would have made, had he lived to a 
reasonable age. One has to make do with 
what he actually achieved. His heritage is, 
indeed, quite stunning, and we are all his 
beneficiaries.

Roger Penrose
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