Multi-algebra
Fluency

Dr Chris Doran
(Cambridge University, Monumo)

AGACSE, 2024

XXX,

APPLICATIONS OF GRASSMANN'S EXTENSIVE
ALGEBRA®*,

I PROPOSE o communicate in & brief form some applications
of Grassmann’s theory which it seems unlikely that I shall find
time to set forth at proper length, though I have waited long
for it. Until recently I was unacquainted with the Ausdeh-
nungslehre, and knew only so much of it as is contained in the
author's geometrical papers in Crelle's Journal and in Hankel's
Lectures on Complex Numbers. 1 may, perhaps, therefore be
permitted to express my profound admiration of that extraordi-
nary work, and my conviction that its principles will exercise a
vast influence upon the future of mathematical science.

M The problem

GA is fragmenting into people advocating one
algebra over another

Also seeing a plethora of different products,
notations etc.

(Nothing new there)
But code exacerbates the problem

Generally, flexible multi-algebra code is slow

Optimised code tends to lock you into a single
algebra

M The problem

Frustrations while working through this book

Need: The Ray Tracer Challenge
. A Test-Driven Guide to Your
° POI nt (X, y’ ZI 'I) First 3D Renderer
* Vector(x, Yy, z) «
* Plane (n_x, n_y, n_z, d) |
* Sphere
* Ray ..

In practice you want to move between (3,0),
(4,0), (4,1) and (3, 0, 1) to be in the optimal
algebra for each step.

Jamis Buck
dited by Bri

rian P. Hogan

B Universal geometric algebra

In: Acta Applicandae Mathematicae, Kluwer Academic Publishers 23: 65-93, (1991).

There is ‘one’ algebra G(n,n)

Here n is as big as you need it to be!
It is a balanced algebra

David called this the ‘'mother’ algebra
Perhaps universal is a better name!

The Design of Linear Algebra and Geometry

David Hestenes

Projective Geometry with Clifford Algebra*

DAVID HESTENES and RENATUS ZIEGLER

Can just implement this, but you miss some
critical optimizations.

In: J. Math. Phys., 34 (8) August 1993 pp. 3642-3669.

Lie groups as spin groups

In practice, may need to implement ¢ or

M M Department of Applied Mathematies and Theoretical Physies, Silver Street, Cam-
something more streamlined. brdas 3 SENY, Unid Kingon,

D. Hestenes
Department of Physics and Astronomy, Arizona State University, Tempe, Arizona
85287

F. Sommen® and N. Van Acker
Department of Mathematical Analysis, University of Gent, Galgaan 2, 9000 Gent,
Belgium

2 Outline

How do we achieve multi-algebra fluency?

1. Understand the different ways larger algebras encompass smaller
ones

2. (optional) Know the matrix representations

We will review these relationships with a view to:
1. Helping us write more efficient code.
2. Designing base units to move smoothly between algebras.

B Matrices? Really?

Suppose we are in CGA and have two even rotors representing some
conformal transformation.

Each has 16 elements, so a naive implementation of their product
would involve 256 multiplication operations.

Representing these as 2x2 matrices of quaternions reduces that down
to 128.

So worthwhile.

Generally, in the algebras between 3D and 6D there are factors of 2 (or
sometimes 4) to be found.

This all supposes we want to be in ‘geometric product first’ setting.

B Why should | care?

This claim is not only dead wrong, but completely absurd. The authors made an error in their calculation of the
number of operations needed to compose two rotors. The correct number is 271 - 27~1 = 22»=2_buyt they thought
the number was just 2". The same mistake is made later on the same page, where they explicitly write

271 % x 2771 = 2" This second instance is listed in the errata, but it doesn’t look like anybody noticed the
first one. It’s clear that while one of the authors was writing this section, he had it stuck in his head that multiplying
2n1 by itself gave 2". These kinds of errors happen, and the fact that something was simply miscalculated is not
my chief complaint. The real problem here is that none of the three authors paused for a second and thought to
themselves, “Wait a minute. It can't be that good because it would tell us there’s something fundamentally
inefficient about linear algebra that we don’t understand.” If the conclusion was correct, then it would open new
avenues of research into exactly why orthogonal matrix transformations are so bad. But that didn’t happen, of
course, because the authors are wrong. The correct numbers are listed in the following table up through five

dimensions.

Matrix Composition | Rotor Composition
" n® operations 92 operations
2 4+ 4
3 24 * 16
4 64 64
3 125 256

Entries with an asterisk under matrix composition have been reduced by exploiting the orthogonality of the
matrices. Some GA enthusiasts have cried foul when I do this, claiming that it’s somehow not fair that I use the
most efficient method of calculation available, but they don’t hesitate to pat themselves on the back whenever
they’re able to make use of a similar type of optimization that happens to benefit GA. On multiple occasions, I've

seen GA authors purposely compare the best possible implementation of a GA method against the worst possible

implementation of the equivalent matrix method in an attempt to demonstrate superiority that doesn’t actually exist.

An example is highlighted in PGA4CS below.

Wrono

B Matrix Representations of G(p,q)

p+g 8 7 6 5 4 3 2 1 —1 -2 -3 -4 -5 -6 -7 -8
l 0 R

1 R? C
2 M2(R) M2(R) H
3 M2(C) M22(R) M2(C) H?
4 Maz(H) M4(R) M4(R) Maz(H) M2(H)
5 M22(H) Ma4(C) M4?(R) Ma4(C) M22(H) Ma4(C)
6 M4(H) M4(H) Mg(R) Ms(R) M4(H) M4(H) Mg(R)
7 Mg(C) M42(H) Mg(C) Mg?(R) Mg(C) M42(H) Mg(C) Mg?(R)
8 Msg(R) Mg(H) Mg(H) M1e(R) M16(R) Mg(H) Mg(H) M16(R) M1e(R)

3 Nl generators

First up, lets dispense with the 'null” algebras:
G(p,q,r)eG(p+r,q+r)

Easy to do. For each null direction introduce a pair of vectors of
opposite signature.

If you want a totally null algebra, you get back the ‘balanced’ algebra
(Also get to a balanced algebra if you combine a vector space and its
dual space. See Lie groups as spin groups ...)

The containment implied above is usually via upper / lower triangular
matrices (see PGA later)

B Pseudoscalar

In odd-dimensional algebras the pseudoscalar commutes with every
element in the algebra.

Not the case in even dimensions

The sign of the square of the pseudoscalar is critical.

> =-1 Defines a complex structure

E? =1 Defines a direct sum structure

3(1+E), 3(1-E) Idempotents. Split the algebra in two.
(1+E)1-E)=0

o Matrix Representations of G(p,q)

8 7 6 5 3 2 1 0 -1 —2 -4 %) -6 =7 -8
ptq ..

0 R ———— Division

1 R2 c 4 algebras Odd dimensions are
either complex or a

< M2(R) M2(R) H direct sum (alternate)

3 M2(C) M22(R) M2(C) H2

4 M2(H) M4(R) My(R) M2(H) Ma(H)

5 M2?(H) M4(C) M4%(R) Ma(C) M2?(H) M4(C)

6 My(H) My(H) Mg(R) Mg(R) My(H) My(H) Mg(R)

7 Mg(C) M42(H) Mg(C) Mg?(R) Mg(C) M42(H) Mg(C) Mg?(R)

8 M1g(R) Mg(H) Mg(H) M1g6(R) Mige(R) Mg(H) Mg(H) M1e(R) M16(R)

size of spinor spagq

= Key relations 1

Use these relations together

to reduce algebra down to
Glp+1,g+1)=G(p,q) ®G(L 1) remaining Euclidean or anti-

G(1,1) = M>(R) Euclidean bits.

0 1 0 -1
e] = (1 0) f1= (1 0) Basis representation for G(1,1)

Gn,n)=G(1,H)®G(1,1)--- @ G(1,1) These all commute! .
That should be a surprise

B Example

Construct this explicitly with G(2,2)
{e1, fi.e2, o}, erer=erea=1 fifi=fifo=-1

el, e e1exe1frnerfi =N e1 N2, f1N>
| 1e2,e1 /2, e1 fi 1 i E= NN
f1, 2 fif fiez,eafo = No ea N1, foN
{L,e1, fi, N1} ® {1, e2Ny, /LNy, N2} eaN1 LN = e oNI Ny
f =e)fr

These generators are trivectors in the base space

Grade is a relative concept. Closed

B Balanced Algebra

Basic bit-wise implementation goes as (8-bit representation)

00000000 & 1 |l

00000001 < e
00000010 « f;

00000100 < e, N; <__M

00001000 < f£oN;
00010000 <> e3N| N2

00100000 < f3N; N> 4__m

So, for example f3 & 00101111

%W

B Balanced Algebra

Result of blade multiplication is still a bitwise XOR.

Due to commutativity, Just need to get the sign correct for each
2x2 block.
1 e i eah

1 1 el fi e1fi

e el 1 etfi N
h h el
erfi | e1h 1

So, introduce a factor of -1 if:
1. The first entry contains an f AND
2. The second entry is a vector

B Balanced Algebra

+ KLl 10101010

10011100

11010010 XOR
VY ov oy

Keep these terms (AND with vector above)

Shift left, XOR and AND are all primitive bit-wise operations.
All available in C++, Julia etc.
3 lines of Julia code!

. Issues

This is slow!
You end up performing m*n multiplications for each product.
« OK if the arguments are homogenous

 Inefficient for general elements (such as rotors) — misses the
idempotent idea

After multiplying there is a simplification stage, which involves sorting the
m*n products, and then combining ones with the same blade.

* This can be slow, and not very hardware friendly.

e Some progress with JIT compilers (Brandon Flores
https://github.com/brainandforce)

For small algebras matrix implementations are more efficient for most
operations. If speed not an issue, then just work in G(n,n).

B Matrix Representations of G(p,q)

p+yq

lo

1

o N o o B~ wWwN

8 7 6 5 - 3 2

M2P(H)
My(H) M4(H)

Mg(C) Mgf(H) Mg(C)

M16(R) Mg(H) Mg(H) M1s(R)

G(p+1,q+1)=G(p,q) ® M2(R)

i —1 —2 =3 -4 -5 -6 =7
G

M2(R)

M2(C)
M4(R) M2(H)

M4(C)
Mg(R) My(H) Ma(H) Mg(R)

Mg(C) M4%(H) Mg(C) Mg%(R)
M1¢(R) Mg(H) Ms(H) M16(R)

algebras

M1g(R)

= Key relations 2

We have removed all mixed-signature contributions.

Next consider the identities o
Proof is similar to G(1,1)

G(g+2,p)=G(p,q)®G(20) case.

G(g,p +2) =G(p,q)® G(0,2) Main difference is that thg
pseudoscalars have negative

square.

G(2,0) = M>r(R) Fasy to establish.
G(0,2) = Q First appearance of quaternions

B Key relations 3

Build on the previous identities to establish

G(p+4,0)=G(p,0) ® M»(Q) Generators in smaller space are
G0, p +4) = G(0,p) ® My(Q) S-vectors in larger space

Need 2 side relations

Q®Q=MyR) REREEIRINICIE

X OEN\Y LY(OJII Simple from the matrix rep of quaterniong

G(p +38,0) = G(p,0) ® Mg(R) These ensure everything loops
G(0,qg + 8) = G(0, g) ® Mg(R) round with periodicity 8

B Projective Splits and the ESA

G(p,q)" = Glg.p—1)=G(p,q - 1) ey
relationship 4

How does this work?

Suppose we have a basis: {er.e2,..., en}

Define bivectors : Ei=eje, i=1...n-1
These generate a GA:

EiEj + EjEi = ejepeje, +ejepeie, = —(el-ej + ejei) = _26ij

(Different variations hold with mixed signatures).

Defines an embedding of G(0,n-1) inside G(n,0).

Different from the ‘obvious’ embedding.

Again ‘grade’ is a subjective concept here. The E_i can be grade 2 or 1.

. G(p,q)" =G(g,p-1)=G(p,g-1)

P-q
p+qg 8 7 6 5 4 3) 1 4 -2 -3 -4 -5 -6 -7 -8

0 =

1 R2 c

2 M2(R) /Mzm)v H STA

3 MZ«:M /

4 Ma(H) 2(R) M4(R) My(H) Mo(H) CSTA

5 M2?(H) M4(C) M42(R) M4(C) M2?(H) My(C)

6 Ms(H) My(H) Mg(R) Mg(R) ™ M4(H) My(H) Ms(R)

7 Mg(C) M42(H) Mg(C) Mg?(R) Mg(C) M42(H) Mg(C) Mg?(R)

8 M1s(R) Mg(H) Mg(H) M16(R) M1e(R) Mg(H) Mg(H) M1e(R) M1e(R)

B Two families

'‘Geometry’ family

G3,0)t=¢

G(4.0)" = (q.9)
G(3,0,1)" = (q.9)

G4.1)"=(q.9.9.9)

‘Relativistic’ family

G*(2,0) = ¢
G*(1,3) = Ma(c)
G*(2,4) = M4(c)

o Quaternion blocks

Q1 Can we use quaternions as basic units
to move between the ‘geometry’

Do quaternion building blocks help us
produce an efficient implementation?

Q2

Quickly find you need two primitives:

Quaternion vector (SO HEEED Clearly going to use Qvecs

for vectors, and Quats for

Full quaternion REMCSINTIESID) points.

And 2 products: 41 X g2, q1q> Also .ne.ed gddition,
multiplication by a scalar...

- Projective Geometry G(4,0)

1

oroper’ projective

This is the algebra for

Even sub-algebra (ESA) is a {1,eie;, E4}, Es = ejerezey

quaternion pair: (E4)* = (e1e2e1€2) (e3eqezeq) = +1
Ey=3(1+Es), E-=3(1-Ey)

Pseudoscalar has.positive square /

and commutes with ESA. Define M = ME, + Me-

split: Product: MN = MyN,E, + M_N_E-

Product is now simply 2

Map from odd to even is usual ‘projective split’. quaternion products

W/RERTTYE Odd element

o Projective Geometry G(4,0)
Implementation in terms of Quats is obvious: N—
_ . Our generic ‘point’ to
a = aeq = (q(a),q(a))
Lines through the origin become bivectors

a— (g(a),—q(a)) Only need
these 12
The geometric product of two vectors involves

ab = aegesbey qo(a)q(b)

= (q(a),q(a)) x (4(D),q(b) q0(b)gq(a)
= (q(a)4(b), G(a)q(b)) q(a) xq(b)

= Speed

All speed tests carried out Lenovo laptop with Ryzen 6000 mobile CPU.
Timings in Julia using BenchmarkTools package.

project(a*b, 2) Base result for two full
quaternion products
q0(a)q(D)
qo(b)gq(a) —» Just using Qvec products
q(a) x q(b)

Similar holds for a.B and a”B.
Clearly worth implementing dot and wedge products

separately. Particularly for G(4,0) (projective) geometry, as we

hardly ever use a full geometric product (rotors not much
use)

= Speed

Still a role to play for actual thinking!
Consider the determinant of a 4x4 matrix;

Baseline LinearAlgebra package: det(M)
SimpleGA: project(a*b*c*4,4)

dot(project(a*b, 2),project(E_4*c*d, 2))

Using a direct implementation of a*b and Qvecs:

((anb)Es(cAd))

= Projective and conformal geometry

Projective and conformal geometries are differe

Projective geometry

* Any two planes meet in a single line
* No metric information

 Invariance group is GL(n+1).

« Affine plane + hyperplane at infinity
» Duality (1825)

Conformal geometry

Distance encoded via dot
product

Invariance group SO(p+1, g+1)
Single point at infinity
Inversion |
Lines and circlesu’ /. |/
Algebraic duality 7 /[\/

JBEPBY

Htr0) |

B CGA G(41)

Even / odd swap is on pseudoscalar

g(x) — (x%(fx)o —:1)8:)) Null, but not normalised

Line throuah oriain i T (g 0) These are trivectors.
q

See how 3D drops out of 5D

(‘“ 1) Speed:

e —n Generic product takes 40ns

Euclidean q O AAB for vectors takes 6ns
transform a ¢ (Dependent on division by

2)

B PGA G(3,0,1)

Even elements are again a quaternion pair.
See this from the embedding in CGA:

g1 O) This triangular structure is

=q1+q[zn <«—
Vol (fh g1 typical of null algebras

Even / odd map is performed withI; = e;ezes

g(a) = (qo.q(a)) Mixed representation. Bit unusual
g(a) — (q(a),0) The dual plane through the origin

Even product involves 3 quaternion
multiplies. Definitely worth o = (qin) + (qir2 + qari)lzn
implementing a”b directly.

Bl PGA — Points at infinity

A puzzle with PGA is how it finds room for all the extra structure at infinity.
One way to think about this is via the embedding:

a0 0 _ 10
9(a) (q qo)_qo(q/qo 1)

Up in CGA this is an un-normalized translator, so
q(a) — qoT(q/qo)

So, this is how the extra points at infinity are smuggled in. As a
limiting case of un-normalized rotors. Can even think of the
point representations as spinors for the translation group!

W Grade

Seen the same quaternion vector / line through
origin in multiple places now:

* As grade-1 generators of G(3,0)

* As grade-2 bivectors in G(4,0)

« As grade-1 vectors in PGA (planes through the origin)

* As spinors (grade 0 + grade 2) for translators in PGA / CGA
« As grade-3 lines in CGA

Do not think too rigidly about

B Conclusions

* Everyone should know how to jump between algebras
« Balanced algebras have some neat advantages
* Grade is a fluid concept

* Quaternion-like primitives can help us move between the algebras
most routinely encountered in practice

« Enables the construction of efficient inner, outer and geometric
products

« Use matrices for full geometric products to gain some factors of 2

« ToDo: Implement this is SimpleGA
(https://github.com/MonumolLtd/SimpleGA jl)

W Final words and thanks

There is no way that one can assess the
contributions that this extraordinary man
would have made, had he lived to a
reasonable age. One has to make do with
what he actually achieved. His heritage is,
indeed, quite stunning, and we are all his
beneficiaries.

Roger Penrose

MmMONAUMO

	Slide 1
	Slide 2
	Slide 3: The problem
	Slide 4: The problem
	Slide 5: Universal geometric algebra
	Slide 6: Outline
	Slide 7: Matrices? Really?
	Slide 8: Why should l care?
	Slide 9: Matrix Representations of G(p,q)
	Slide 10: Null generators
	Slide 11: Pseudoscalar
	Slide 12: Matrix Representations of G(p,q)
	Slide 13: Key relations 1
	Slide 14: Example
	Slide 15: Balanced Algebra
	Slide 16: Balanced Algebra
	Slide 17: Balanced Algebra
	Slide 18: Issues
	Slide 19: Matrix Representations of G(p,q)
	Slide 20: Key relations 2
	Slide 21: Key relations 3
	Slide 22: Projective Splits and the ESA
	Slide 23
	Slide 24: Two families
	Slide 25: Quaternion blocks
	Slide 26: Projective Geometry G(4,0)
	Slide 27: Projective Geometry G(4,0)
	Slide 28: Speed
	Slide 29: Speed
	Slide 30: Projective and conformal geometry
	Slide 31: CGA G(4,1)
	Slide 32: PGA G(3,0,1)
	Slide 33: PGA – Points at infinity
	Slide 34: Grade
	Slide 35: Conclusions
	Slide 36: Final words and thanks

