
Multi-algebra
Fluency

Dr Chris Doran

(Cambridge University, Monumo)

AGACSE, 2024

The problem

GA is fragmenting into people advocating one

algebra over another

Also seeing a plethora of different products,

notations etc.

(Nothing new there)

But code exacerbates the problem

Generally, flexible multi-algebra code is slow

Optimised code tends to lock you into a single

algebra

The problem

Frustrations while working through this book

Need:

• Point (x, y, z, 1)

• Vector(x, y, z)

• Plane (n_x, n_y, n_z, d)

• Sphere

• Ray …

In practice you want to move between (3,0),

(4,0), (4,1) and (3, 0, 1) to be in the optimal

algebra for each step.

Universal geometric algebra

There is ‘one’ algebra G(n,n)

Here n is as big as you need it to be!

It is a balanced algebra

David called this the ‘mother’ algebra

Perhaps universal is a better name!

Can just implement this, but you miss some
critical optimizations.

In practice, may need to implement
something more streamlined.

Outline

How do we achieve multi-algebra fluency?

1. Understand the different ways larger algebras encompass smaller

ones

2. (optional) Know the matrix representations

We will review these relationships with a view to:

1. Helping us write more efficient code.

2. Designing base units to move smoothly between algebras.

Matrices? Really?

Suppose we are in CGA and have two even rotors representing some
conformal transformation.

Each has 16 elements, so a naïve implementation of their product
would involve 256 multiplication operations.

Representing these as 2x2 matrices of quaternions reduces that down
to 128.

So worthwhile.

Generally, in the algebras between 3D and 6D there are factors of 2 (or
sometimes 4) to be found.

This all supposes we want to be in ‘geometric product first’ setting.

Why should l care?

Wrong!

Matrix Representations of G(p,q)

H = quaternions

Null generators

First up, lets dispense with the ‘null’ algebras:

Easy to do. For each null direction introduce a pair of vectors of
opposite signature.

If you want a totally null algebra, you get back the ‘balanced’ algebra

(Also get to a balanced algebra if you combine a vector space and its
dual space. See Lie groups as spin groups …)

The containment implied above is usually via upper / lower triangular
matrices (see PGA later)

Pseudoscalar

In odd-dimensional algebras the pseudoscalar commutes with every

element in the algebra.

Not the case in even dimensions

The sign of the square of the pseudoscalar is critical.

Defines a complex structure

Defines a direct sum structure

Idempotents. Split the algebra in two.

Odd dimensions are
either complex or a
direct sum (alternate)

Division
algebras

Triality / octonions

Matrix Representations of G(p,q)

Efficiency is driven by size of spinor space

Key relations 1
Use these relations together
to reduce algebra down to
remaining Euclidean or anti-
Euclidean bits.

These all commute!
That should be a surprise

Basis representation for G(1,1)

Example

Construct this explicitly with G(2,2)

These generators are trivectors in the base space
Grade is a relative concept.

6 bivectors 4 trivectors4 vectors

Closed

Balanced Algebra

Basic bit-wise implementation goes as (8-bit representation)

Scalar

So, for example

trivector

5-vectors

Balanced Algebra

Result of blade multiplication is still a bitwise XOR.

Due to commutativity, Just need to get the sign correct for each
2x2 block.

So, introduce a factor of -1 if:

1. The first entry contains an f AND

2. The second entry is a vector

Balanced Algebra

Shift left, XOR and AND are all primitive bit-wise operations.

All available in C++, Julia etc.

3 lines of Julia code!

First term contains f:

Second term is a vector:

Shift left

XOR

Keep these terms (AND with vector above)

AND

Issues

This is slow!

You end up performing m*n multiplications for each product.

• OK if the arguments are homogenous

• Inefficient for general elements (such as rotors) – misses the

idempotent idea

After multiplying there is a simplification stage, which involves sorting the

m*n products, and then combining ones with the same blade.

• This can be slow, and not very hardware friendly.

• Some progress with JIT compilers (Brandon Flores
https://github.com/brainandforce)

For small algebras matrix implementations are more efficient for most

operations. If speed not an issue, then just work in G(n,n).

Balanced
algebras

Matrix Representations of G(p,q)

Need to

understand the

outer reps

Key relations 2

We have removed all mixed-signature contributions.

Next consider the identities
Proof is similar to G(1,1)

case.

Main difference is that the

pseudoscalars have negative

square.

Easy to establish.

First appearance of quaternions.

Key relations 3

Build on the previous identities to establish

Need 2 side relations

These ensure everything loops
round with periodicity 8

Generators in smaller space are
5-vectors in larger space

Not totally obvious.

Simple from the matrix rep of quaternions.

Projective Splits and the ESA

G(n,0) ->
G(0,n-1)

Key

relationship 4

How does this work?

Suppose we have a basis:

Define bivectors :

These generate a GA:

(Different variations hold with mixed signatures).

Defines an embedding of G(0,n-1) inside G(n,0).

Different from the ‘obvious’ embedding.

Again ‘grade’ is a subjective concept here. The E_i can be grade 2 or 1.

STA

CSTACGA

Two families

‘Geometry’ family ‘Relativistic’ family

3D Geometry is
quaternionic

Spacetime physics
is complex

Quaternion blocks

Clearly going to use Qvecs
for vectors, and Quats for
points.

Can we use quaternions as basic units

to move between the ‘geometry’

algebras?

Q1

Do quaternion building blocks help us

produce an efficient implementation?
Q2

Quickly find you need two primitives:

Quaternion vector Qvec(x, y, z)

Full quaternion Quat(x, y, z, w)

And 2 products: Also need addition,

multiplication by a scalar…

Projective Geometry G(4,0)

Project each half

down to a quaternion

Odd element

u

This is the algebra for ‘proper’ projective geometry.

Even sub-algebra (ESA) is a

quaternion pair:

Pseudoscalar has positive square

and commutes with ESA. Define

split:

Product is now simply 2

quaternion productsMap from odd to even is usual ‘projective split’.

Product:

Projective Geometry G(4,0)

Our generic ‘point’ to
drop into any algebra

Lines through the origin become bivectors

Implementation in terms of Quats is obvious:

The geometric product of two vectors involves

Only need

these 12

products

Speed

project(a*b, 2) 14ns

5ns

Clearly worth implementing dot and wedge products

separately. Particularly for G(4,0) (projective) geometry, as we

hardly ever use a full geometric product (rotors not much

use).

Similar holds for a.B and a^B.

All speed tests carried out Lenovo laptop with Ryzen 6000 mobile CPU.

Timings in Julia using BenchmarkTools package.

 Base result for two full

quaternion products

Just using Qvec products

Speed

Still a role to play for actual thinking!

Consider the determinant of a 4x4 matrix:

det(M) 240ns

project(a*b*c*4,4) 40ns

dot(project(a*b, 2),project(E_4*c*d, 2)) 40ns

10ns

Using a direct implementation of a^b and Qvecs:

Baseline LinearAlgebra package:

SimpleGA:

Projective and conformal geometry

• Distance encoded via dot

product

• Invariance group SO(p+1, q+1)

• Single point at infinity

• Inversion

• Lines and circles unified

• Algebraic duality

Projective and conformal geometries are different!

• Any two planes meet in a single line

• No metric information

• Invariance group is GL(n+1).

• Affine plane + hyperplane at infinity

• Duality (1825)

Projective geometry Conformal geometry

CGA G(4,1)

Even / odd swap is on pseudoscalar

Point

Line through origin These are trivectors.

See how 3D drops out of 5D

Bivector Speed:

Generic product takes 40ns

A^B for vectors takes 6ns

(Dependent on division by

2)

Euclidean

transform

generator

Null, but not normalised

PGA G(3,0,1)

Point

Qvec The dual plane through the origin

Mixed representation. Bit unusual

Even elements are again a quaternion pair.

See this from the embedding in CGA:

This triangular structure is

typical of null algebras

Even / odd map is performed with

Even product involves 3 quaternion

multiplies. Definitely worth

implementing a^b directly.

PGA – Points at infinity

Up in CGA this is an un-normalized translator, so

So, this is how the extra points at infinity are smuggled in. As a

limiting case of un-normalized rotors. Can even think of the

point representations as spinors for the translation group!

A puzzle with PGA is how it finds room for all the extra structure at infinity.

One way to think about this is via the embedding:

Grade

Seen the same quaternion vector / line through

origin in multiple places now:

• As grade-1 generators of G(3,0)

• As grade-2 bivectors in G(4,0)

• As grade-1 vectors in PGA (planes through the origin)

• As spinors (grade 0 + grade 2) for translators in PGA / CGA

• As grade-3 lines in CGA

Do not think too rigidly about

grade!

Conclusions

• Everyone should know how to jump between algebras

• Balanced algebras have some neat advantages

• Grade is a fluid concept

• Quaternion-like primitives can help us move between the algebras

most routinely encountered in practice

• Enables the construction of efficient inner, outer and geometric

products

• Use matrices for full geometric products to gain some factors of 2

• ToDo: Implement this is SimpleGA

(https://github.com/MonumoLtd/SimpleGA.jl)

Final words and thanks
There is no way that one can assess the
contributions that this extraordinary man
would have made, had he lived to a
reasonable age. One has to make do with
what he actually achieved. His heritage is,
indeed, quite stunning, and we are all his
beneficiaries.

Roger Penrose

	Slide 1
	Slide 2
	Slide 3: The problem
	Slide 4: The problem
	Slide 5: Universal geometric algebra
	Slide 6: Outline
	Slide 7: Matrices? Really?
	Slide 8: Why should l care?
	Slide 9: Matrix Representations of G(p,q)
	Slide 10: Null generators
	Slide 11: Pseudoscalar
	Slide 12: Matrix Representations of G(p,q)
	Slide 13: Key relations 1
	Slide 14: Example
	Slide 15: Balanced Algebra
	Slide 16: Balanced Algebra
	Slide 17: Balanced Algebra
	Slide 18: Issues
	Slide 19: Matrix Representations of G(p,q)
	Slide 20: Key relations 2
	Slide 21: Key relations 3
	Slide 22: Projective Splits and the ESA
	Slide 23
	Slide 24: Two families
	Slide 25: Quaternion blocks
	Slide 26: Projective Geometry G(4,0)
	Slide 27: Projective Geometry G(4,0)
	Slide 28: Speed
	Slide 29: Speed
	Slide 30: Projective and conformal geometry
	Slide 31: CGA G(4,1)
	Slide 32: PGA G(3,0,1)
	Slide 33: PGA – Points at infinity
	Slide 34: Grade
	Slide 35: Conclusions
	Slide 36: Final words and thanks

