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Algebraic and computational interests

Exceptional root systems/geometries,
Trinities and ADE correspondences

Clifford algebras – characteristic MV

Cluster algebras

Viruses: structure, assembly, novel
therapeutic approaches; computational
modelling

Data science, computational algebra,
experimental mathematics
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Clifford Algebra and Reflections

Vector space with an inner product

Why not work with the Clifford algebra?
Geometric product ab ≡ a ·b+a∧b
Inner product is the symmetric part a ·b = 1

2(ab+ba)

Reflections

x = x⊥+ x∥ → x ′ = x⊥−x∥ = x−2x∥ = x−2(x ·n)n =−nxn
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Groups of reflections (Coxeter groups)

Reflection groups from generating reflections

x ′ =−nxn → x ′ =±nk . . .n2n1xn1n2 . . .nk =:±ÃxA

Cartan-Dieudonné theorem

Any orthogonal transformation can be written as the product of
successive reflections.
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Root systems, simple roots and Coxeter element

α1

α2

−α1

−(α1+α2)

α1+α2

−α2

Root system Φ

A set of vectors α in a vector space with
an inner product such that

1. Φ∩Rα = {−α,α} ∀ α ∈ Φ

2. sαΦ= Φ ∀ α ∈ Φ

where the reflections and Coxeter element
are sα : v → sα(v) =−αvα and

w = s1 . . .sn

Vector space + inner product: Clifford

Cartan matrix: a rotational invariant

∼ scalar products between simple roots.
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The Coxeter Plane

Every (for our purposes) Coxeter group has a Coxeter plane.

A way to visualise Coxeter groups in any dimension by
projecting their root system onto the Coxeter plane

Coxeter elements act as rotations in these Coxeter planes
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Classification of Euclidean reflection groups

Links: none = orthogonal (π/2), unlabelled link = π/3, label n =
π/n

Types

crystallographic (Weyl/Lie theory, A-G) vs non-crystallographic (I
& H), simply-laced (ADE) etc
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Classification of ADE diagrams – simply-laced

ADE pattern

Two infinite families and
3 exceptional cases.

Consider the
corresponding adjacency
matrices

The maximal (principal)
eigenvalue of the
adjacency matrix is
< 2⇒ ADE diagrams
(Smith’s theorem).
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Classification of affine ADE diagrams

ADE pattern

Two infinite families and
3 exceptional cases.

Consider the
corresponding adjacency
matrices

The maximal (principal)
eigenvalue of the
adjacency matrix is
= 2⇒ affine ADE
diagrams (Smith’s
theorem).
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Forthcoming ADE book

ADE - patterns in mathematics

Peter Cameron, P-P Dechant, Yang-Hui He, John McKay
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Simplicial Derivatives and Invariants of a linear function f

Let {ak},k = 1, . . . ,m denote a frame; we denote by ak its
reciprocal frame such that ai ·aj = δ i

j . We also define bk = f (ak).

The rth simplicial derivative is defined as

∂(r)f(r) = ∑(ajr ∧·· ·∧aj1)(bj1 ∧·· ·∧bjr )

with sum over 0< j1 < · · ·< jr ≤m.

Simplicial derivatives and characteristic multivectors

Originally explored by David Hestenes and Garret Sobczyk and
more recently by Anthony Lasenby and Joan Lasenby et al
(AGACSE Brno papers).

Pierre-Philippe Dechant Characteristic multivectors of Coxeter transformations give novel insights into the geometry of root systems



Cayley-Hamilton theorem and characteristic polynomial

Characteristic polynomial

Cf (λ ) =
m

∑
s=0

(−λ )m−s
∂(s) ∗ f(s)

* denotes the scalar part of multivectors and ∂(0) ∗ f(0) is
interpreted as 1.

Cayley-Hamilton theorem

m

∑
s=0

(−1)m−s
∂(s) ∗ f(s)f m−s(a) = 0

for any vector a, where f 0(a) is interpreted as a.
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ADE examples in 8D and Coxeter elements f (a) = W̃ aW

A8

D8

E8
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Invariant Patterns

MV parts 0 1 2 3 4 5 6 7 8

Inv0 X

Inv1 X X

Inv2 X X X

Inv3 X X X X

Inv4 X X X X X

Inv5 X X X X

Inv6 X X X

Inv7 X X

Inv8 X
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Bivector Invariants (for an E8 example)

Inv
(1)
(2) =2a1∧a2−2a2∧a3+2a3∧a4−2a4∧a5+2a5∧a6+2a5∧a8−2a6∧a7= Inv

(7)
(2)

Inv
(2)
(2) =−2a1∧a2−2a1∧a4+4a2∧a3+2a2∧a5−4a3∧a4−2a3∧a6−2a3∧a8

+6a4∧a5+2a4∧a7−6a5∧a6−4a5∧a8+2a6∧a7−2a7∧a8 = Inv
(6)
(2)

Inv
(3)
(2) =2a1∧a4+2a1∧a6+2a1∧a8−2a2∧a3−6a2∧a5−2a2∧a7+6a3∧a4+6a3∧a6+4a3∧a8

−10a4∧a5−4a4∧a7+8a5∧a6+6a5∧a8−2a6∧a7+2a7∧a8 = Inv
(5)
(2)

Inv
(4)
(2) =2a1∧a2−2a1∧a4−4a1∧a6−2a1∧a8+8a2∧a5+4a2∧a7−6a3∧a4−8a3∧a6−6a3∧a8

+12a4∧a5+4a4∧a7−8a5∧a6−6a5∧a8+2a6∧a7−2a7∧a8

Inv
(5)
(2) =2a1∧a4+2a1∧a6+2a1∧a8−2a2∧a3−6a2∧a5−2a2∧a7+6a3∧a4+6a3∧a6+4a3∧a8

−10a4∧a5−4a4∧a7+8a5∧a6+6a5∧a8−2a6∧a7+2a7∧a8 = Inv
(3)
(2)

Inv
(6)
(2) =−2a1∧a2−2a1∧a4+4a2∧a3+2a2∧a5−4a3∧a4−2a3∧a6−2a3∧a8

+6a4∧a5+2a4∧a7−6a5∧a6−4a5∧a8+2a6∧a7−2a7∧a8 = Inv
(2)
(2)

Inv
(7)
(2) = 2a1∧a2−2a2∧a3+2a3∧a4−2a4∧a5+2a5∧a6+2a5∧a8−2a6∧a7 = Inv

(1)
(2)
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Quadruvector Invariants

Inv
(2)
(4) =4a1∧a2∧a3∧a4−4a1∧a2∧a4∧a5+4a1∧a2∧a5∧a6+4a1∧a2∧a5∧a8−4a1∧a2∧a6∧a7

+4a2∧a3∧a4∧a5−4a2∧a3∧a5∧a6−4a2∧a3∧a5∧a8+4a2∧a3∧a6∧a7+4a3∧a4∧a5∧a6

+4a3∧a4∧a5∧a8−4a3∧a4∧a6∧a7+4a4∧a5∧a6∧a7−4a5∧a6∧a7∧a8 = Inv
(6)
(4)

Inv
(3)
(4) =−4a1∧a2∧a3∧a4−4a1∧a2∧a3∧a6−4a1∧a2∧a3∧a8+12a1∧a2∧a4∧a5+4a1∧a2∧a4∧a7

−12a1∧a2∧a5∧a6−8a1∧a2∧a5∧a8+4a1∧a2∧a6∧a7−4a1∧a2∧a7∧a8−4a1∧a4∧a5∧a6

−4a1∧a4∧a5∧a8+4a1∧a4∧a6∧a7−12a2∧a3∧a4∧a5−4a2∧a3∧a4∧a7

+16a2∧a3∧a5∧a6+12a2∧a3∧a5∧a8−8a2∧a3∧a6∧a7+4a2∧a3∧a7∧a8

−4a2∧a5∧a6∧a7−12a3∧a4∧a5∧a6−8a3∧a4∧a5∧a8+8a3∧a4∧a6∧a7−4a3∧a4∧a7∧a8

+4a3∧a6∧a7∧a8−8a4∧a5∧a6∧a7+4a5∧a6∧a7∧a8 = Inv
(5)
(4)

Inv
(4)
(4) =4a1∧a2∧a3∧a4+8a1∧a2∧a3∧a6+4a1∧a2∧a3∧a8−16a1∧a2∧a4∧a5−8a1∧a2∧a4∧a7

+16a1∧a2∧a5∧a6+12a1∧a2∧a5∧a8−4a1∧a2∧a6∧a7+4a1∧a2∧a7∧a8

+8a1∧a4∧a5∧a6+4a1∧a4∧a5∧a8−4a1∧a4∧a6∧a7+4a1∧a4∧a7∧a8−4a1∧a6∧a7∧a8

+16a2∧a3∧a4∧a5+8a2∧a3∧a4∧a7−24a2∧a3∧a5∧a6−16a2∧a3∧a5∧a8

+8a2∧a3∧a6∧a7−8a2∧a3∧a7∧a8+8a2∧a5∧a6∧a7+16a3∧a4∧a5∧a6

+12a3∧a4∧a5∧a8−12a3∧a4∧a6∧a7+4a3∧a4∧a7∧a8−4a3∧a6∧a7∧a8

+8a4∧a5∧a6∧a7−4a5∧a6∧a7∧a8

Inv
(5)
(4) =−4a1∧a2∧a3∧a4−4a1∧a2∧a3∧a6−4a1∧a2∧a3∧a8+12a1∧a2∧a4∧a5+4a1∧a2∧a4∧a7

−12a1∧a2∧a5∧a6−8a1∧a2∧a5∧a8+4a1∧a2∧a6∧a7−4a1∧a2∧a7∧a8−4a1∧a4∧a5∧a6

−4a1∧a4∧a5∧a8+4a1∧a4∧a6∧a7−12a2∧a3∧a4∧a5−4a2∧a3∧a4∧a7

+16a2∧a3∧a5∧a6+12a2∧a3∧a5∧a8−8a2∧a3∧a6∧a7+4a2∧a3∧a7∧a8

−4a2∧a5∧a6∧a7−12a3∧a4∧a5∧a6−8a3∧a4∧a5∧a8+8a3∧a4∧a6∧a7−4a3∧a4∧a7∧a8

+4a3∧a6∧a7∧a8−8a4∧a5∧a6∧a7+4a5∧a6∧a7∧a8 = Inv
(3)
(4)

Inv
(6)
(4) =4a1∧a2∧a3∧a4−4a1∧a2∧a4∧a5+4a1∧a2∧a5∧a6+4a1∧a2∧a5∧a8−4a1∧a2∧a6∧a7

+4a2∧a3∧a4∧a5−4a2∧a3∧a5∧a6−4a2∧a3∧a5∧a8+4a2∧a3∧a6∧a7+4a3∧a4∧a5∧a6

+4a3∧a4∧a5∧a8−4a3∧a4∧a6∧a7+4a4∧a5∧a6∧a7−4a5∧a6∧a7∧a8 = Inv
(2)
(4)
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Sextuvector Invariants

Inv
(3)
(6) =8a1∧a2∧a3∧a4∧a5∧a6+8a1∧a2∧a3∧a4∧a5∧a8−8a1∧a2∧a3∧a4∧a6∧a7

+8a1∧a2∧a4∧a5∧a6∧a7−8a1∧a2∧a5∧a6∧a7∧a8−8a2∧a3∧a4∧a5∧a6∧a7

+8a2∧a3∧a5∧a6∧a7∧a8−8a3∧a4∧a5∧a6∧a7∧a8 = Inv
(5)
(6)

Inv
(4)
(6) =−16a1∧a2∧a3∧a4∧a5∧a6−8a1∧a2∧a3∧a4∧a5∧a8+8a1∧a2∧a3∧a4∧a6∧a7

−8a1∧a2∧a3∧a4∧a7∧a8+8a1∧a2∧a3∧a6∧a7∧a8−16a1∧a2∧a4∧a5∧a6∧a7

+8a1∧a2∧a5∧a6∧a7∧a8+8a1∧a4∧a5∧a6∧a7∧a8+16a2∧a3∧a4∧a5∧a6∧a7

−16a2∧a3∧a5∧a6∧a7∧a8+8a3∧a4∧a5∧a6∧a7∧a8

Inv
(5)
(6) =8a1∧a2∧a3∧a4∧a5∧a6+8a1∧a2∧a3∧a4∧a5∧a8−8a1∧a2∧a3∧a4∧a6∧a7

+8a1∧a2∧a4∧a5∧a6∧a7−8a1∧a2∧a5∧a6∧a7∧a8−8a2∧a3∧a4∧a5∧a6∧a7

+8a2∧a3∧a5∧a6∧a7∧a8−8a3∧a4∧a5∧a6∧a7∧a8 = Inv
(3)
(6)Pierre-Philippe Dechant Characteristic multivectors of Coxeter transformations give novel insights into the geometry of root systems



Coxeter element and Invariants: W decomposition

The sum of all the invariants is proportional to the Coxeter
element. As can also be seen from the pseudoscalar terms, that

proportionality factor is −16:

∑ Inv
(j)
(i) =−16W

(this includes the scalar contributions we have seen in the context
of the Cayley-Hamilton theorem and the characteristic polynomial).

W̃ Inv
(j)
(i)W = Inv

(j)
(i)
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Cayley-Hamilton theorem and characteristic polynomial

Cayley-Hamilton theorem and characteristic polynomial

Can show that for these examples of 8D Coxeter elements and
their characteristic multivectors

Satisfy the Cayley-Hamilton theorem and give the correct
characteristic polynomial (e.g. for E8)

Pieces are separately invariant under W (eigenMV but not
eigenblades) – effectively a decomposition of W :

W ∝ ∑ Inv cf the Lasenbys (they want to reconstruct an
unknown rotation)

In our case (W , 8D): Inv1 = Inv7, Inv2 = Inv6, Inv3 = Inv5
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E8 geometry in Clifford - complete factorisation

Coxeter transformations are linear functions that have a range
of invariants and invariant subspaces

E.g. E8 has 1,7,11,13,17,19,23,29 as scalar invariants

(exponents - related to degrees of invariant polynomials)

Clifford decomposition gives 4 eigen-planes

W = α1 . . .α8 = exp(
π

30
BC )exp(

7π

30
B2)exp(

11π

30
B3)exp(

13π

30
B4)
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4 BV invariants – not necessarily blades. Relation to
Coxeter planes/invariants?

Inv
(1)
(2) =2a1∧a2−2a2∧a3+2a3∧a4−2a4∧a5+2a5∧a6+2a5∧a8−2a6∧a7= Inv

(7)
(2)

Inv
(2)
(2) =−2a1∧a2−2a1∧a4+4a2∧a3+2a2∧a5−4a3∧a4−2a3∧a6−2a3∧a8

+6a4∧a5+2a4∧a7−6a5∧a6−4a5∧a8+2a6∧a7−2a7∧a8 = Inv
(6)
(2)

Inv
(3)
(2) =2a1∧a4+2a1∧a6+2a1∧a8−2a2∧a3−6a2∧a5−2a2∧a7+6a3∧a4+6a3∧a6+4a3∧a8

−10a4∧a5−4a4∧a7+8a5∧a6+6a5∧a8−2a6∧a7+2a7∧a8 = Inv
(5)
(2)

Inv
(4)
(2) =2a1∧a2−2a1∧a4−4a1∧a6−2a1∧a8+8a2∧a5+4a2∧a7−6a3∧a4−8a3∧a6−6a3∧a8

+12a4∧a5+4a4∧a7−8a5∧a6−6a5∧a8+2a6∧a7−2a7∧a8

Pierre-Philippe Dechant Characteristic multivectors of Coxeter transformations give novel insights into the geometry of root systems



4 BV invariants: decomposition into commuting blades?

Inv(1)(2), Inv(2)(2), Inv(3)(2), Inv(4)(2) give 4 orthogonal bivectors

But not simple blades. Possible relation with the Coxeter planes
and the decomposition in terms of commuting bivectors by
Hestenes and Sobczyk / Martin Roelfs and Steven de Keninck
(Graded symmetry groups: plane and simple, AACA 2023),
Shirokov?
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Characteristic polynomials – invariants across Coxeter
elements

Inv(1)(2), Inv(2)(2), Inv(3)(2), Inv(4)(2) give 4 orthogonal bivectors with

‘characteristic polynomial’ (Hestenes)

0 =
k

∑
m=0

⟨W 2
m⟩0(−λi )

k−m

Inv
(1)
(2) : λ

4+7λ
3+14λ

2+8λ +1

Inv
(2)
(2) : λ

4+8λ
3+14λ

2+7λ +1

Inv
(3)
(2) : λ

4+7λ
3+14λ

2+8λ +1

Inv
(4)
(2) : λ

4+28λ
3+134λ

2+92λ +1
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Reexpress in terms of Coxeter bivectors (non-trivial!)

−Inv
(1)
(2) = 1.98904BC +0.415823B2+0.81347B3+1.4862B4

−Inv
(2)
(2) =−2.40486BC −1.22929B2+0.67281B3+0.502754B4

−Inv
(3)
(2) =−1.4862BC +1.98904B2+0.41582B3−0.813473B4

−Inv
(4)
(2) = 4.70463BC −2.2460B2+0.90040B3−0.105104B4

Exact solutions in terms of eigenvectors of the Cartan matrix

−Inv
(1)
(2) =2cos

π

30
BC+2cos

13π

30
B2+2cos

11π

30
B3+2cos

7π

30
B4

−Inv
(3)
(2) =−2cos

7π

30
BC+2cos

π

30
B2+2cos

13π

30
B3−2cos

11π

30
B4

The sums of squares of these coefficients add to 7,8,7,28 –
first term in characteristic polynomials (size); others?
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Novel explicit connection between Coxeter exponents and
characteristic multivectors

Inv(1)(2), Inv(2)(2), Inv(3)(2), Inv(4)(2) give 4 orthogonal bivectors with

‘characteristic polynomial’ – the first coefficient is just B2

Inv
(1)
(2) : λ

4+7λ
3+14λ

2+8λ +1

Inv
(2)
(2) : λ

4+8λ
3+14λ

2+7λ +1

Inv
(3)
(2) : λ

4+7λ
3+14λ

2+8λ +1

Inv
(4)
(2) : λ

4+28λ
3+134λ

2+92λ +1
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Solutions to characteristic polynomials E8

Inv
(1)
(2) : λ

4+7λ
3+14λ

2+8λ +1

λ =
1

4

(
−7±

√
5±

√
30−6

√
5

)
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Ito Coxeter BV D8 (exponents 1, 3, 5, 7, 7, 9, 11, 13)

−Inv
(1)
(2) = 1.9499B1−1.5637B2−0.8678B3

−Inv
(2)
(2) =−2.818B1−0.3862B2+2.4314B3

−Inv
(3)
(2) =−0.696B1+1.082B2−3.513B3

−Inv
(4)
(2) = 3.127B1+1.735B2+3.900B3

Exact solutions in terms of eigenvectors of the Cartan matrix

−Inv
(1)
(2) = 2cos

1π

14
B1−2cos

3π

14
B2−2cos

5π

14
B3

−1

2
Inv

(4)
(2) = 2cos

3π

14
B1+2cos

5π

14
B2+2cos

1π

14
B3

The sums of squares of these coefficients add to 7,14,14,28 –
first term in characteristic polynomials (size); others?
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Characteristic polynomials D8

Inv(1)(2), Inv(2)(2), Inv(3)(2), Inv(4)(2) give 4 orthogonal bivectors with

‘characteristic polynomial’ (Hestenes)

0 =
k

∑
m=0

⟨W 2
m⟩0(−λi )

k−m

Inv
(1)
(2) : λ

4+7λ
3+14λ

2+7λ

Inv
(2)
(2) : λ

4+14λ
3+49λ

2+7λ

Inv
(3)
(2) : λ

4+14λ
3+21λ

2+7λ

Inv
(4)
(2) : λ

4+28λ
3+224λ

2+448λ
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Ito Coxeter BV A8 (exponents 1, 2, 3, 4, 5, 6, 7, 8)

−Inv
(1)
(2) =

√
3B1−0.684B2+1.9696B3−1.2856B4

−Inv
(2)
(2) =−0.6015B2−2.653B3+3.255B4

−Inv
(3)
(2) =−1.1305B2+0.9216B3−4.987B4

−Inv
(4)
(2) =−

√
3B1−0.839B2+0.364B3+5.671B4

Exact solutions in terms of eigenvectors of the Cartan matrix

−Inv
(1)
(2) = 2cos

3π

18
B1−2cos

7π

18
B2+2cos

1π

18
B3−2cos

5π

18
B4

The sums of squares of these coefficients add to 9,18,27,36 –
first term in characteristic polynomials (size); others?
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Characteristic polynomials A8

Inv(1)(2), Inv(2)(2), Inv(3)(2), Inv(4)(2) give 4 orthogonal bivectors with

‘characteristic polynomial’ (Hestenes)

0 =
k

∑
m=0

⟨W 2
m⟩0(−λi )

k−m

Inv
(1)
(2) : λ

4+9λ
3+27λ

2+30λ +9

Inv
(2)
(2) : λ

4+18λ
3+81λ

2+27λ

Inv
(3)
(2) : λ

4+27λ
3+54λ

2+27λ

Inv
(4)
(2) : λ

4+36λ
3+126λ

2+84λ +9
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Characteristic polynomials and invariants E6 (1, 4, 5, 7, 8,
11)

Inv
(1)
(2) : λ

3+5λ
2+7λ +3

Inv
(2)
(2) : λ

3+8λ
2+4λ

Inv
(3)
(2) : λ

3+17λ
2+43λ +3

−Inv
(1)
(2) = 2cos

2π

12
B̂1+ B̂2+ B̂3

−Inv
(2)
(2) = (−1+2cos

2π

12
)B̂2+(−1−2cos

2π

12
)B̂3

−Inv
(3)
(2) =−2cos

2π

12
B̂1+(2−2cos

2π

12
)B̂2+(2+2cos

2π

12
)B̂3
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Solutions to characteristic polynomials E6

Inv
(1)
(2) : λ

3+5λ
2+7λ +3 = (λ +3)(λ +1)2

⇒ λ =−3,−1,−1

Inv
(2)
(2) : λ

3+8λ
2+4λ = λ (λ +4+2

√
3)(λ +4−2

√
3)

⇒ λ =−4−2
√
3,−4+2

√
3,0

Inv
(3)
(2) : λ

3+17λ
2+43λ +3 = (λ +3)(λ +7+4

√
3)(λ +7−4

√
3)

⇒ λ =−7−4
√
3,−3,−7+4

√
3
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Characteristic polynomials and invariants A6 (1, 2, 3, 4, 5,
6)

Inv
(1)
(2) : λ

3+7λ
2+14λ +7

Inv
(2)
(2) : λ

3+14λ
2+21λ +7

Inv
(3)
(2) : λ

3+21λ
2+35λ +7

−Inv
(1)
(2) = 2cos

3π

14
B̂1+2cos

1π

14
B̂2+2cos

5π

14
B̂3
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Characteristic polynomials and invariants D6 (1, 3, 5, 5, 7,
9)

2Inv
(1)
(2) +2Inv

(2)
(2) + Inv

(3)
(2) = 0

Inv
(1)
(2) : λ

3+5λ
2+5λ ⇒ λ = 0,−2− τ,−2−σ

Inv
(2)
(2) : λ

3+10λ
2+5λ ⇒ λ = 0,−3−4τ,−3−4σ

Inv
(3)
(2) : λ

3+20λ
2+80λ ⇒ λ = 0,−8−4τ,−8−4σ

Indicative of the D6-diagram folding to H3 – two H3-invariant
subspaces.

−Inv
(1)
(2) = 2cos

1π

10
B1−2cos

3π

10
B3
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Characteristic multivectors of Bivector exponentials: 3D

B a general unit bivector

W = cosθ +sinθB

a bivector exponential

Inv
(1)
(2) = 2sin(2θ)B = Inv

(2)
(2)

Inv
(1)
(0) = 3cos2 θ − sin2 θ
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Characteristic multivectors of Bivector exponentials: 4D

Inv
(1)
(2) = 2sin(2θ)B = Inv

(3)
(2)

Inv
(2)
(2) = 4sin(2θ)(B+B · (B ∧B)sin2 θ)

Pierre-Philippe Dechant Characteristic multivectors of Coxeter transformations give novel insights into the geometry of root systems



Characteristic multivectors of Bivector exponentials: 5D

Inv
(1)
(2) = 2sin(2θ)B

Inv
(2)
(2) = 2sin(2θ)(−3cos2θB+2B · (B ∧B)sin2 θ)

also in 8D...
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Characteristic multivectors of Bivector exponentials: in
general

Why does it seem that Inv
(1)
(2) = 2sin(2θ)B?

Easy to prove in general

∂1f1 = ∑e iW̃ eiW = ∑e i (cosθ − sinθB)ei (cosθ +sinθB)

∂1f1 = ncos2 θ − (n−4)sin2 θ(B|B+B ∧B)

+
1

2
((4−n)+n)sin(2θ)B

So indeed

Inv
(1)
(2) = 2sin(2θ)B

in generality.
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Orthogonal blades

For a transformation corresponding to orthogonal blades

W = exp(θB1+φB2+ξB3)

= (cosθ +sinθB1)(cosφ +sinφB2)(cosξ +sinξB3)

the invariants are analogously

Inv
(1)
(2) = 2sin(2θ)B1+2sin(2φ)B2+2sin(2ξ )B3

and so on, tying in with the factorisation of the Coxeter versor and
its computed invariants.
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ICCA 2020 – Yang-Hui He plenary speaker

Universes as Big Data: Superstrings, Calabi-Yau Manifolds and ML

Topical Collection: Machine-learning mathematical structures

Editors: Y-H He, A Kasprzik, A Lukas, P-P Dechant, AACA

ICCA 2023 session: To machine learning and beyond – data
science in mathematics, physics and engineering

Sebastià Xambó-Descamps, Isiah Zaplana Agut, YHH, PPD
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Motivation: the Topical Collection
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Motivation: the Topical Collection
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Motivation: the Topical Collection
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A datamining pipeline

Computational Algebra

Use computational approaches (python, Sage etc) to calculate
example cases. Use high-performance computing (HPC) to
‘generate algebraic big data’ either by

sampling a subset of examples randomly (shotgun)

calculating all cases exhaustively

⇓
Dataset

⇓

Data Science tool kit

Use standard data science tools such as NN, PCA, clustering,
network analysis etc to find patterns in the data, formulate/test
hypotheses etc.
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Team ML – cluster algebras and Clifford algebras

Siqi Chen, Stony Brook University

Mandy Cheung, Kavli IPMU, Japan

Pierre-Philippe Dechant, University of Leeds

Yang-Hui He, London Institute for Mathematical Sciences

Elli Heyes, City/Imperial

Edward Hirst, Queen Mary, University of London

Jian Rong Li, University of Vienna

Dmitrii Riabchenko, City, University of London
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ML geometric invariants in Clifford algebra

Input: a permutation of 8 vectors in
8D giving rise to a linear
transformation e.g. a1 to a8

Output: a set of geometric invariants
of that linear transformation: nine
256D vectors

Computational: computational algebra
code computations (python, Clifford
algebra package)

Data Science: EDA, PCA, NN

A8

D8

E8
Code on GitHub

Machine Learning Clifford invariants of ADE Coxeter elements

Chen S, Dechant P-P, He Y-H, Heyes E, Hirst E, Riabchenko D,
arXiv preprint arXiv:2310.00041 and Advances in Applied Clifford
Algebras 34, 20 (2024)
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Computational algebra, experimental mathematics, high
performance computing and machine learning

W = α1α3α5α7α2α4α6α8 = S•S•

An ML problem / computational algebra and HPC

The Coxeter elements can be computed in GA

There are in principle 8! = 40320 permutations = ‘big data’

Calculate their invariants (galgebra package in python)

Data Science – can we machine learn the input to output mapping?

Machine Learning and Neural Network classification

Principal Component Analysis and Clustering

Other computational/experimental aspects such as principal
eigenvalue spectra
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Machine learning

The ML problem

Three sets of 40320 input vectors of format ’permutation’
[0,1,2,3,4,5,6,7] (could use flattened root vectors instead)

Output: 28 = 256 multivector components (half redundant
due to evenness) – 9 times!

Expect great degeneracy and very good performance

Data Science results: near-perfect, low loss

Machine Learning: near-perfect prediction of output

Neural Network classification: near-perfect ternary
classification even for a simple 3-layer perceptron
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ML prediction accuracy for invariants and subinvariants
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Gradient saliency for invariants and subinvariants
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Results - PCA of Invariants

Perform PCA on the data set of invariants

Generally 2-fold reflection / rotation symmetry (Hodge
duality?)

Characteristic elbow drop of principal values at quite high n
(but characteristic of A/D/E)
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Results - PCA A8

Project all invariants in the same plot.
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Results - PCA D8

Project all invariants in the same plot.
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Results - PCA E8

Project all invariants in the same plot.
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Results - PCA Elbows

Characteristic elbow drop of principal values at quite high n
(but characteristic of A/D/E)
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Results - frequencies E8 (max 1511)

In fact, only 128 different sets of invariants

Corresponding to 256 inequivalent permutations, as bipartite and
(anti)commutative properties mean there is an equivalence relation
amongst permutations that yield the same Coxeter versor.
Computations have shown analytic insights. Mostly doublets.
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Results - frequencies A8 (max 1385)

In fact, only 128 different sets of invariants (two unique)

Mostly quadruplets.
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Results - frequencies D8 (max 1582)

In fact, only 128 different sets of invariants

Half doublets and half quadruplets.
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Results – lowest bivector

Lowest BV encodes the Dynkin diagram (for bipartite W = s•s•)

Inv(1)(2) = 2a1∧a2−2a2∧a3+2a3∧a4−2a4∧a5+2a5∧a6+ . . .

For other W permutations – get other types of diagrams
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Results – lowest bivector

Lowest BV encodes the Dynkin diagram (for bipartite W = s•s•)

Inv(1)(2) = 2a1∧a2−2a2∧a3+2a3∧a4−2a4∧a5+2a5∧a6+ . . .

For other W permutations – get other types of diagrams
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Results – other BV invariants: eigenvector centrality

The second BV invariant is

Inv(2)(2) =−2a1∧a2−2a1∧a4+4a2∧a3+2a2∧a5−4a3∧a4+ . . .

Adjacency matrix

Interpret more broadly as a diagram - can study the principal
eigenvalue distribution.
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Results principal eigenvalues – A8

1 2 3 4 5 6 7
Max Eigenvalue

0

2000

4000

6000

8000

10000

12000

Fr
eq

ue
nc

y

Order 1
Order 2
Order 3
Order 4

For all the BV adjacency matrices, consider the principal eigenvalue

These principal eigenvalues cluster pretty well according to which
invariant it came from (largely connectivity?).
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Results principal eigenvalues – A8

Smith’s theorem cf earlier: the only diagrams with principal
eigenvalue < 2 should be ADE – so the only one is A8 as expected.
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Results principal eigenvalues – D8

1 2 3 4 5 6 7
Max Eigenvalue

0

1000

2000

3000

4000
Fr

eq
ue

nc
y

Order 1
Order 2
Order 3
Order 4

For all the BV adjacency matrices, consider the principal eigenvalue

Some principal eigenvalues cluster and separate pretty well
according to which invariant it came from.
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Results principal eigenvalues – D8

Smith’s theorem cf earlier: the only diagrams with principal
eigenvalue < 2 should be ADE – so the only one is D8 as expected.
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Results principal eigenvalues – E8

1 2 3 4 5 6 7
Max Eigenvalue

0

2000

4000

6000

8000
Fr
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nc
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Order 0
Order 1
Order 2
Order 3

For all the BV adjacency matrices, consider the principal eigenvalue

At least the lowest invariant’s principal eigenvalues cluster and
separate very clearly.
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Results principal eigenvalues – E8

Smith’s theorem cf earlier: the only diagrams with principal
eigenvalue < 2 should be ADE – so the only one is E8 as expected.
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Topical Collection

Topical Collection: Machine-learning mathematical structures

Editors: Y-H He, A Kasprzik, A Lukas, P-P Dechant, AACA
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Conclusions

Clifford algebra provides a very general way of doing
(reflection) group theory (Cartan-Dieudonné)

Clifford algebra provides a better way of understanding the
geometry of Coxeter planes and invariants (degrees and
exponents)

Characteristic multivectors from simplicial derivatives of
Coxeter elements – geometric interpretation

Some new results on invariants of bivector exponentials in
general and the Coxeter plane geometry in particular

Computational algebra, data science and experimental
mathematics can be used to guide intuition, extend our reach,
and help formulate hypotheses
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Conclusions

Thank you!

Some papers with further details

Dechant P-P, From the Trinity (A3,B3,H3) to an ADE
correspondence, PRSA 474 (2220), 20180034

Dechant P-P. Clifford Spinors and Root System Induction: H4

and the Grand Antiprism. AACA. 2021 Jul;31(3):57.

Chen S, Dechant P-P, He Y-H, Heyes E, Hirst E, Riabchenko
D, Machine Learning Clifford invariants of ADE Coxeter
elements, AACA 2024

P-P Dechant, Y-H He, Machine-learning a virus assembly
fitness landscape, PLoS ONE 16(5): 2021

Dechant P-P, He YH, Heyes E, Hirst E. Cluster Algebras:
Network Science and Machine Learning, J. Comp. Alg 2023

Cheung MW, Dechant P-P, He YH, Heyes E, Hirst E, Li JR.
Clustering Cluster Algebras with Clusters. ATMP 2024
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Clifford algebra: no need for complexification

Turns out in Clifford algebra we can factorise W into
orthogonal (commuting/anticommuting) components

W = α1 . . .αn =W1 . . .Wn with Wi = exp(πmiBi/h)

Here, Bi is a bivector describing a plane with B2
i =−1

For v orthogonal to the plane described by Ii we have

v → W̃ivWi = W̃iWiv = v so cancels out

For v in the plane we have

v → wvW̃ivWi = W̃ 2
i v = exp(2πmiBi/h)v

Thus if we decompose W into orthogonal eigenspaces, in the
eigenvector equation all orthogonal bits cancel out and one
gets the complex eigenvalue from the respective eigenspace
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8D case: E8

E.g. H4 has exponents 1,11,19,29, E8 has

1,7,11,13,17,19,23,29

Coxeter versor decomposes into orthogonal components

W = α1 . . .α8 = exp(
π

30
BC )exp(

7π

30
B2)exp(

11π

30
B3)exp(

13π

30
B4)
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The Coxeter Plane

Every (for our purposes) Coxeter group has a Coxeter plane.

A way to visualise Coxeter groups in any dimension by
projecting their root system onto the Coxeter plane
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Coxeter Elements, Degrees and Exponents

Standard exposition

“In order to bring the eigenvalues of the Coxeter element w into
the picture, we have to complexify the situation”.

The Coxeter element has complex eigenvalues of the form

exp(2πmi/h) where m are called exponents

Standard theory complexifies the real Coxeter group setting in
order to find complex eigenvalues, then takes real sections
again.

In particular, 1 and h−1 are always exponents

Turns out that actually exponents and degrees are intimately
related ( m = d −1 ). The construction is slightly roundabout
but uniform, and uses the Coxeter plane.
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Sums of powers of coeffs – obvious from cyclotomic stuff?

power 2 4 6 8 10

E
(1)
8 7 21 73 269 1022

E
(2)
8 8 36 197 1124 6478

E
(3)
8 7 21 73 269 1022

E
(4)
8 28 516 10972 240644 5315228

D
(1)
8 7 21 70 245 882

D
(2)
8 14 98 707 5194 38759

D
(3)
8 14 154 1883 23226 286699

D
(4)
8 28 336 4480 62720 903168

A
(1)
8 9 27 90 315 1134

A
(2)
8 18 162 1539 15066 150903

A
(3)
8 27 621 15390 382725 9519282

A
(4)
8 36 1044 33300 1070244 34420356
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The Coxeter Plane

In particular, can show every (for our purposes) Coxeter group
has a Coxeter plane

Existence relies on the fact that all groups in question have
tree-like Dynkin diagrams, and thus admit an alternate
colouring

Essentially just gives two sets of mutually commuting
generators

α1 α2 α3 α4 α5 α6 α7

α8
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The Coxeter Plane

Essentially just gives two sets of orthogonal = mutually
commuting generators but anticommuting root vectors αw

and αb (duals ω or αb and αw )

Cartan matrices are positive definite, and thus have a
Perron-Frobenius (all positive) eigenvector λi (principal
eigenvalue).

Take linear combinations of components of this eigenvector as
coefficients of two
vectors from the orthogonal sets vw =∑λwαw and vb =∑λbαb

vw = λ1α
1+λ7α

7+λ3α
3+λ5α

5,vb = λ2α
2+λ6α

6+λ4α
4+λ8α

8

Their outer product/Coxeter plane bivector BC = vb ∧vw
describes an invariant plane where w acts by rotation by 2π/h.
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Coxeter rotor W decomposition

8W(2)=−a1∧a2+a1∧a4−a1∧a8−a3∧a4+a3∧a8−a5∧a8+a6∧a7+a7∧a8

4W(4) =−a1∧a2∧a3∧a4+a1∧a2∧a3∧a8−a1∧a2∧a5∧a8+a1∧a2∧a6∧a7+a1∧a2∧a7∧a8

+a1∧a4∧a5∧a8−a1∧a4∧a6∧a7−a1∧a4∧a7∧a8+a1∧a6∧a7∧a8−a3∧a4∧a5∧a8

+a3∧a4∧a6∧a7+a3∧a4∧a7∧a8−a3∧a6∧a7∧a8+a5∧a6∧a7∧a8

2W(6) =−a1∧a2∧a3∧a4∧a5∧a8+a1∧a2∧a3∧a4∧a6∧a7+a1∧a2∧a3∧a4∧a7∧a8

−a1∧a2∧a3∧a6∧a7∧a8+a1∧a2∧a5∧a6∧a7∧a8−a1∧a4∧a5∧a6∧a7∧a8

+a3∧a4∧a5∧a6∧a7∧a8

W(8) = a1∧a2∧a3∧a4∧a5∧a6∧a7∧a8
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8D case: E8

Turns out instead of just taking Perron-Frobenius eigenvector,
can just take the other eigenvectors of the Cartan matrix too

These give 4 orthogonal planes

W = α1 . . .α8 = exp(
π

30
BC )exp(

7π

30
B2)exp(

11π

30
B3)exp(

13π

30
B4)

Related to the Lasenbys’ Brno talks about eigenbivectors of
matrices from complex eigenvectors.
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Solutions to characteristic polynomials E8

Inv
(2)
(2) : λ

4+8λ
3+14λ

2+7λ +1

λ =
1

2

(
−4±

√
5±

√
15−6

√
5

)
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Solutions to characteristic polynomials E8

Inv
(4)
(2) : λ

4+28λ
3+134λ

2+92λ +1

λ =−7±2
√
5±2

√
15−6

√
5
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Solutions to characteristic polynomials D8

Inv
(1)
(2) : λ

4+7λ
3+14λ

2+7λ

⇒ λ
3+7λ

2+14λ +7

λ = 0,−3.8019,−2.4450,−0.75302
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Solutions to characteristic polynomials D8

Inv
(2)
(2) : λ

4+14λ
3+49λ

2+7λ

λ = 0,−7.9390,−5.9119,−0.14914
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Solutions to characteristic polynomials D8

Inv
(3)
(2) : λ

4+14λ
3+21λ

2+7λ

λ = 0,−12.345,−1.17092,−0.48427
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Solutions to characteristic polynomials D8

Inv
(4)
(2) : λ

4+28λ
3+224λ

2+448λ

λ = 0,−15.208,−9.7802,−3.0121
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Solutions to characteristic polynomials A8

Inv
(1)
(2) : λ

4+9λ
3+27λ

2+30λ +9

A mess in terms of cubic roots of one

λ =−3,−3.8794,−1.6527,−0.46791
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Solutions to characteristic polynomials A8

Inv
(2)
(2) : λ

4+18λ
3+81λ

2+27λ

λ = 0,−10.596,−7.0419,−0.36184

Pierre-Philippe Dechant Characteristic multivectors of Coxeter transformations give novel insights into the geometry of root systems



Solutions to characteristic polynomials A8

Inv
(3)
(2) : λ

4+27λ
3+54λ

2+27λ

λ = 0,−24.873,−1.2781,−0.84936

(some square roots of 37!)

Pierre-Philippe Dechant Characteristic multivectors of Coxeter transformations give novel insights into the geometry of root systems



Solutions to characteristic polynomials A8

Inv
(4)
(2) : λ

4+36λ
3+126λ

2+84λ +9

λ =−3,−32.163,−0.70409,−0.13247

Pierre-Philippe Dechant Characteristic multivectors of Coxeter transformations give novel insights into the geometry of root systems


