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Projectile motion

We assume that gravity is a constant acceleration vector

a =
dv
dt

. (1)

As a is constant, we can integrate giving

v − u = at. (2)

where u is the initial velocity. Defining v = ds
dt , and integrating

gives the well known equation

s − ut =
1

2
at2. (3)
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Single governing equation

Combining the last two equations we find

s
t
=

u + v
2

. (4)

Then, multiplying from the left by v − u = at gives

2as = (v − u)(v + u) = v2 − u2 + 2v ∧ u. (5)

This is a general equation for projectile motion that has eliminated
the time variable t, and relates u, v and s and a.

James Chappell (Working with David Berkahn and Derek Abbott, the University of Adelaide)Geometric algebra the mathematics of the future



Introduction
Projectile motion

Spacetime
Chirality

Insights from the governing relation

Expanding the vector product as, we find

a · s =
1

2
v2 − 1

2
u2, (6)

a ∧ s = v ∧ u.

The first equation states that the change in kinetic energy equals
the work done, a statement of the work-energy theorem. We can
see that no work is done orthogonal to the acceleration vector, so
the velocity is constant. The second equation shows that the
parallelogram area v ∧ u equals the parallelogram area a ∧ s. The
first equation magnitude of velocity, the second equation the
direction. The torque equals the rate of change of angular
momentum. In order to minimize the launch velocity u we clearly
need u ⊥ v , a general result.
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The governing equation on level ground

Considering the equations

2a · s = v2 − u2, (7)

a ∧ s = v ∧ u.

For level ground a · s = 0 and hence v = u. The second equation
then implies as = vu sinϕ = u2 sinϕ, where ϕ is defined as the
angle between the initial and final velocities u and v . In order to
minimize u, we require ϕ = 90◦, and so u and v are orthogonal,
and the initial velocity required is u =

√
as.
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Graphical solution: minimal energy trajectories

We first draw a circle of radius s,
and then draw the diameter with
the same slope as the ground. A
vertical diameter for at is then
drawn through the centre of the
circle. As the two diameters are
equal, we have 2s = at2, allowing
us to calculate t =

√
2s/a. The

sides of the parallelogram are of
length ut and v t, which can now
be measured. The diameter 2s
can be rotated around the centre,
which shows the effect of a
different ground slope.
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Graphical solution for the general trajectory

We relax the restriction u ⊥ v ,
for energy optimal trajectories.
The intersection point of ut and
v t, can now be moved up or
down the vertical centre line at2,
forming an ellipse, from which a
new time of flight, based on the
measured length of at2, can be
found. The magnitude of the
initial and final velocities can
now be measured. All angles can
be measured straight from the
diagram.
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Projectile motion in Cℓ(ℜ2)

Geometric Algebra allows a pure vector based approach to
projectile motion, without the need for a coordinate system,
thus satisfying the relativity principle.

The scalars, vectors and bivectors in Cℓ(ℜ2) provide
additional insights, as energy, momentum and torque.

In GA, we can write down a single governing equation for
projectile motion.

A pure vector-based approach allows a single diagram solving
the general projectile problem, on sloping ground.
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Physical space

A key property of our physical world is the existence of three
degrees of spatial freedom.

We observe five regular solids1, which only occurs with exactly
three spatial dimensions, also implied by the inverse square
laws of gravity and electromagnetism, which have been
experimentally verified to high precision2.

At the cosmic scale, spacetime is observed to be flat.

Therefore, it is natural to adopt the formalism of Clifford
geometric algebra (GA) of three dimensions Cℓ(ℜ3) in order
to describe physical space.

1Coxeter H S M 1973 Regular Polytopes (Dover Pubns)
2Hoyle C D, Schmidt U, Heckel B R, Adelberger E G, Gundlach J H,

Kapner D J and Swanson H E 2001 Phys. Rev. Lett. 86(8) 1418–1421
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Physical space as Cℓ(ℜ3)

Algebraically, we write a general multivector in Cℓ(ℜ3) as

M = a+ x + jn + jb, (8)

where x = x1e1 + x2e2 + x3e3 a vector, jn a bivector, where
n = n1e1 + n2e2 + n3e3, and j = e1e2e3 trivector, with
a, b, x1, x2, x3, n1, n2, n3 real scalars. We have defined the three
unit elements e1, e2, e3, having a unit square e21 = e22 = e23 = 1,
and are anticommuting, with e1e2 = −e2e1, e1e3 = −e3e1 and
e2e3 = −e3e2. This eight-dimensional object, has complex
numbers, quaternions, polar vectors and axial vectors as subspaces.
The four grades of scalars, vectors, bivector and trivectors
represent the four common geometrical entities of points, lines,
areas and volumes, respectively.

James Chappell (Working with David Berkahn and Derek Abbott, the University of Adelaide)Geometric algebra the mathematics of the future
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What does Cℓ(ℜ3) look like?
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Invariants in Cℓ(ℜ3) and the laws of physics

We define the involution of Clifford conjugation of a multivector M
as

M̄ = a− x − jn + jb. (9)

For two multivectors M,N ∈ Cℓ
(
ℜ3

)
, MN = N̄M̄.

We define the amplitude squared of a multivector M as

|M|2 = MM̄ = a2 − x2 + n2 − b2 + 2j (ab − x · n) (10)

forming a complex-like number, commuting with the rest of the
algebra. We can define the multivector amplitude as
|M| =

√
|M|2, which may be two-valued and complex.

James Chappell (Working with David Berkahn and Derek Abbott, the University of Adelaide)Geometric algebra the mathematics of the future
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A norm in Cℓ(ℜ3)

For two multivectors M1,M2 ∈ Cℓ
(
ℜ3

)
the amplitude squared has

the property

|M1M2|2 = M1M2M̄2M̄1 = M1M̄1M2M̄2 = |M1|2|M2|2. (11)

We can therefore write a norm relation

|M1M2| = |M1||M2|, (12)

provided that the appropriate branch is used when finding the
complex square roots.

James Chappell (Working with David Berkahn and Derek Abbott, the University of Adelaide)Geometric algebra the mathematics of the future
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Group transformations

We define a general bilinear transformation on a multivector M as

M ′ = KML, (13)

where M,K , L ∈ Cℓ(ℜ3). We find the transformed multivector
amplitude

|M ′|2 = KMLKML = KMLL̄M̄K̄ = |K |2|L|2|M|2, (14)

using the crucial commuting property of the amplitude. Hence,
provided we specify a unitary condition |K |2|L|2 = ±1 for these
transformations, then the amplitude |M| will be invariant. This
transformation is then the most general bilinear transformation
that preserves the multivector amplitude and so produces an
invariant distance.

James Chappell (Working with David Berkahn and Derek Abbott, the University of Adelaide)Geometric algebra the mathematics of the future
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The general transformations over Cℓ(ℜ3)

We can therefore write the general transformation operation

M ′ = ep+jqMer+js , (15)

which will leave the multivector amplitude invariant. The four
three-vectors p,q, r , s illustrate that the set of transformations is a
twelve dimensional manifold, thus generalizing the conventional six
dimensional Lorentz group, consisting of boosts and rotations. For
comparison, the conventional Lorentz transformations can be
written as

M ′ = e−p−jqMe−p+jq . (16)

James Chappell (Working with David Berkahn and Derek Abbott, the University of Adelaide)Geometric algebra the mathematics of the future
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Fields

Multivectors formed from a product of two multivectors ĀB
transform as

Ā′B ′ = KALKBL = L̄ĀK̄KBL = L̄ĀBL. (17)

These have a distinct transformation law

F ′ = L̄FL. (18)

We will refer to such quantities as “fields”, as we find this
transformation applies to the electromagnetic field, for example.

James Chappell (Working with David Berkahn and Derek Abbott, the University of Adelaide)Geometric algebra the mathematics of the future
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An invariant dot product

Since MM̄ is invariant, then (A+ B)(A+ B) must also be
invariant, where A,B ∈ Cℓ(ℜ3). We have

(A+ B)(A+ B) = AĀ+ BB̄ + AB̄ + BĀ. (19)

Hence, as AĀ,BB̄ are known to be invariant, then we can define a
multivector dot product with the final two terms

A · B̄ =
1

2

(
AB̄ + BĀ

)
= B · Ā. (20)

This is also an invariant, being in the form of a complex-like
number. The invariant dot product thus provides a mechanism to
combine two distinct multivectors, as in the electromagnetic
Lagrangian A · J̄, for example.

James Chappell (Working with David Berkahn and Derek Abbott, the University of Adelaide)Geometric algebra the mathematics of the future
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Constructing simple equations

The product of a multivector with a field XF will transform the
same as a general multivector, X ′F ′ = KXLL̄FL = K (XF )L.
Hence, we can write an invariant equation

XF = X (B̄A) = Y , (21)

where X ,Y transform as multivectors, defined in Eq. (15), and
F = B̄A transforms as a field. Selecting X = ∂, F = ∂̄A and
Y = J, we produce the general form of Maxwell’s equations

∂F = ∂∂̄A = J, (22)

where J represents the sources.
Another elementary equation we could write is ∂F = YF ∗, which is
equivalent to the Dirac equation. The eight-dimensional
multivector F , naturally corresponding with the eight-dimensional
Dirac spinor.

James Chappell (Working with David Berkahn and Derek Abbott, the University of Adelaide)Geometric algebra the mathematics of the future
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The field as the gradient of a potential

The electromagnetic field was defined as F = ∂̄A, as proposed by
Fermi3, as opposed to the conventional F = ∂ ∧ A.

F =

(
∂

∂t
−∇

)
(ϕ− A) (23)

=
∂ϕ

∂t
+∇ · A −∇ϕ− ∂A

∂t
+∇∧ A

= ℓ+ E + jB,

where E = −∇ϕ− ∂A
∂t , jB = ∇∧A = j∇×A and ℓ = ∂ϕ

∂t +∇ ·A.
In order to recover the standard electromagnetic field F = E + jB
we need to adopt the Lorenz gauge with ℓ = 0. The Lorenz gauge
produces a Lorentz invariant form of electromagnetism, enforcing
causality and charge conservation, which is generally assumed to
be a requirement of a physical theory.

3Van Oosten A 2000 The European Physical Journal D 8 9–12
James Chappell (Working with David Berkahn and Derek Abbott, the University of Adelaide)Geometric algebra the mathematics of the future
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Spin in Spacetime

If we consider a Lorentz boost M ′ = e−v̂ϕ/2Me−v̂ϕ/2, on the
multivector M = a+ x∥ + x⊥ + jn∥ + jn⊥ + jb, where we split the
spatial coordinate into components perpendicular and parallel to
the boost direction v̂

M ′ = ae−v̂ϕ + x∥e
−v̂ϕ + x⊥ (24)

+jn∥e
−v̂ϕ + jn⊥ + bje−v̂ϕ

= γ
(
a− vx∥

)
+ γ

(
x∥ − va

)
+ x⊥

+jγ
(
n∥ − vb

)
+ jn⊥ + jγ

(
b − vn∥

)
.

We have two disjoint subspaces, where a+ x can be identified as
conventional spacetime provided we identify the scalar a with the
time t and the second four-vector j (n + b) as four-spin.

James Chappell (Working with David Berkahn and Derek Abbott, the University of Adelaide)Geometric algebra the mathematics of the future
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Eight dimensional spacetime

We have a generalised spacetime event X , in differential form, as

dX = dt + dx + jdn + jdb. (25)

This has amplitude

|dX |2 = dt2 − dx2 + dn2 − db2 + 2j (dtdb − dx · dn) . (26)

Hence, solely based on the requirement for the most general
invariant quantity in Cℓ(ℜ3) we see that the Minkowski line
element dt2 − dx2 has arisen, as well as EM fields and their
transformations.
Clifford conjugation reverses the linear motion and spin directions,
thus appears equivalent to a time reversal on the space. Hence,
spacetime combined with its time reversed copy dXdX̄ , is what
creates the Minkowski spacetime structure.

James Chappell (Working with David Berkahn and Derek Abbott, the University of Adelaide)Geometric algebra the mathematics of the future
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Proper time is two-dimensional

Spacetime has an invariant interval

dτ2 = dt2 − dx2 + dn2 − db2 + 2j (dtdb − dx · dn) . (27)

Hence, proper time is two-dimensional, combining scalar and
pseudoscalar properties. Recently, two-dimensional time has been
created within a quantum computer4 and theoretical work has
shown it to be a physically meaningful hypothesis5.
The invariant distance dt2 − dx2 means that each observer will see
a spherically expanding light shell allowing a single number t to
describe its radius. Also, we notice in that an additional
non-squared time factor dtdb arises in the imaginary component,
which breaks the normal symmetry of time.

4Dumitrescu P et al, 2022 Nature 607(7919) 463–467
5Bars I 2001 Classical and Quantum Gravity 18 3113
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Lightlike particles in the general metric

If we specify a null condition |dX |2 = 0, with a light speed particle
dt2 − dx2 = 0, we require db2 = dn2 and dbdt − dx · dn = 0.
Combining these two results gives

v · n̂ = ±c , (28)

where for clarity we introduce the speed of light c. Hence, due to
the nature of the dot product, we can see that it is only satisfied
by a velocity ||v || = c , parallel to the spin axis n̂. That is, based
on the eight-dimensional structure of Cℓ(ℜ3) alone, we find that a
null particle, if traveling at the speed of light c , is required to have
its spin axis parallel to its direction of motion, exactly as observed
for electromagnetic radiation.

James Chappell (Working with David Berkahn and Derek Abbott, the University of Adelaide)Geometric algebra the mathematics of the future
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The action

The invariant distance provides a suitable action integral
S =

∫
|dX |, extremizing the proper time in order to find the

geodesics. Defining ṫ = dt
dτ , ẋ = dx

dτ , ṅ = dn
dτ and ḃ = db

dτ we write

the action as S =
∫ |dX |

dτ dτ implying a Lagrangian

L =
|dX |
dτ

= |V | =
√
ṫ2 − ẋ2 + ṅ2 − ḃ2 = 1. (29)

As we have no explicit coordinate dependence, ∂L
∂ ṫ
, ∂L∂ẋ ,

∂L
∂ṅ and ∂L

∂ḃ
are constants of the motion. The four grades will give the four
conservation laws of energy, linear momentum, angular momentum
and helicity for inertial particles.

James Chappell (Working with David Berkahn and Derek Abbott, the University of Adelaide)Geometric algebra the mathematics of the future
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Particle in an electromagnetic field

We found the Lagrangian for inertial particles L = |V | = |dX |
dτ . The

simplest extension of this Lagrangian, while maintaining invariance
is possibly L = |V + U|, where the multivector U conceptually
represents a ‘flow’ in the background spacetime, perturbing particle
inertial motion V . We thus produce a generalised Lagrangian

L =
1

2
|V + U|2. (30)

Note that we are permitted to use either L = |V + U| or
L = 1

2 |V + U|2, because if a Lagrangian L satisfies the
Euler-Lagrange equations, then in general any function F (L) of
the Lagrangian also satisfies the Euler-Lagrange equations. We can
also add an A · V̄ term for electromagnetic forces.

James Chappell (Working with David Berkahn and Derek Abbott, the University of Adelaide)Geometric algebra the mathematics of the future
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A simple flow field for space

Special case, using a four-vector V = cṫ + ẋ but an
eight-dimensional flow field U = ϕ

c + A + jW + j ψc .
Using the Euler-Lagrange equations, we find

a = E + v × B −∇ξ. (31)

The simplest case U = A, where A = −
√

GM
r r̂ .

We have ξ = −1
2A

2 = −1
2
GM
r . Therefore

a = −∇ξ = −GM

r2
r̂ . (32)

Hence, for an inwardly flowing spacetime flow field A = −
√

GM
r r̂ ,

we reproduce the Newtonian acceleration law in gravity.

James Chappell (Working with David Berkahn and Derek Abbott, the University of Adelaide)Geometric algebra the mathematics of the future
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The Gullstrand–Painlevé coordinates

The Schwarzschild solution around a stationary, non-rotating mass
is

ds2 =
(
1− β2

)
c2dt2 −

(
1− β2

)−1
dr2 − r2dΩ2, (33)

where β = v
c =

√
rs
r is the escape velocity at a distance r , where

rs =
√

2GM
c2

is the Schwarzschild radius.

Making the coordinate transformation dt = dT − β
1−β2 , the line

element becomes

ds2 = c2dT 2 − (dr + βcdT )2 − r2dΩ2, (34)

which are the Gullstrand–Painlevé coordinates.
dr + βcdT = dr + vedT , describes a flow of spacetime towards the
gravitating mass at the escape velocity β. The local time
coordinate T is now equal to the proper time of a free-falling
observer from infinity and space is flat.

James Chappell (Working with David Berkahn and Derek Abbott, the University of Adelaide)Geometric algebra the mathematics of the future
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The speed of light

Electromagnetic radiation satisfies ds2 = 0, giving the equation
(cdT + (dr + βcdT )) (cdT − (dr + βcdT )) = 0, indicating two
solutions. Dividing through by dT , we find

vEM =
dr

dT
= c (±1− β) = ±c − vesc = c

(
±1−

√
rs
r

)
. (35)

Hence, at the event horizon, with r = rs , the outbound light
velocity is zero, as it is balanced by the inflow velocity of space.
The Gullstrand–Painlevé coordinates, describes the velocity of
inflowing space at a given radius r and thus also corresponds to
the free-fall observer from infinity in gravity. With dT = 0 the
observer views a flat space.

James Chappell (Working with David Berkahn and Derek Abbott, the University of Adelaide)Geometric algebra the mathematics of the future
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Kerr metric

The Schwarzschild solution can be generalized to the Kerr solution
for rotating black holes. Surprising, in terms of the flow model,
this involves adding a bivector twist term to the inflowing space6.
With a velocity/twist field at each point thus implies a multivector
field v + jw .
Hence, we can view the electromagnetic field as operating in an
inertial space, but when this space flows due to the presence of
mass, this appears as gravity. The space itself is transformed using
the Galilean transforms, whereas within the space we have the
Lorentz transformations.

6Andrew JS Hamilton and Jason P Lisle. The river model of black holes.
American Journal of Physics, 76(6):519–532, 2008.
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Conclusions of generalized spacetime

We show Minkowski spacetime is an emergent property of
physical space, when modeled with Cℓ(ℜ3).

We produce a generalised invariant interval, the nature of null
particles, generalised Lorentz transformations as well as
Maxwell’s equations, directly from the algebra.

We can include a description of gravity as a flow of this
generalized spacetime.

The 8D framework predicts a range of new physical effects.

Time becomes two-dimensional, and the metric now includes
an arrow to time.

Einstein acknowledged that SR was a theory of principle
rather than a preferable constructive theory. With the starting
assumption of Cℓ(ℜ3) we can construct the Minkowski
spacetime arena of SR.

James Chappell (Working with David Berkahn and Derek Abbott, the University of Adelaide)Geometric algebra the mathematics of the future
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Chirality-a fundamental symmetry of nature

Pasteur discovered molecular chirality in 1848, which was
further elucidated by Lord Kelvin in 1894 [1]

Chirality is the geometric distinction between two
mirror-image forms of a structure that cannot be
superimposed onto one another. This word originates from
the Greek word ”cheir”, meaning hand, reflecting the classic
example of the left and right human hands.
Chirality is central to the weak interaction in the Standard
Model, with all known neutrinos being left-handed. This
property also found in quarks.
Objects in the plane can be flipped using 3D, so can the
chirality of 3D objects be flipped by rotating using a fourth
dimension?

7

7Michel Petitjean. Chirality in geometric algebra. Mathematics, 9(13):1521,
2021James Chappell (Working with David Berkahn and Derek Abbott, the University of Adelaide)Geometric algebra the mathematics of the future
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mirror-image forms of a structure that cannot be
superimposed onto one another. This word originates from
the Greek word ”cheir”, meaning hand, reflecting the classic
example of the left and right human hands.

Chirality is central to the weak interaction in the Standard
Model, with all known neutrinos being left-handed. This
property also found in quarks.
Objects in the plane can be flipped using 3D, so can the
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A signed unit area e1e2 represents chirality in the plane

Figure: A mirror image of a unit area about the line e1 is equivalent to a
rotation about the e1 axis by 180 degrees, using a third dimension. The
rotation direction flips from anti-clockwise to clockwise.
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The mirror image

A reflection of a geometric object M, about an axis m̂ is given by

v ′ = m̂vm̂, (36)

where m̂ is unit vector.
For our unit area Â = e1e2, if we reflect this about the vector e1,
we find

Â′ = e1Âe1 = e1(e1e2)e1 = −e1e2 = e2e1. (37)

Hence, the chirality of the unit area flips under a reflection, as
expected.
Note that this reflection operation only works to flip the chirality in
even dimensions.

James Chappell (Working with David Berkahn and Derek Abbott, the University of Adelaide)Geometric algebra the mathematics of the future
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Reflections equal to rotation in an extra dimension

In n dimensions, we have a general rotation formula

v ′ = e−Bθ/2v eBθ/2, (38)

where B is a unit bivector describing the plane of rotation.
So for our shape e1e2, rotating in the e1e3 plane by 180 degrees,
we have

v ′ = e−e1e3π/2e1e2e
e1e3π/2 = e1e2e

e1e3π = −e1e2, (39)

using the standard result ee1e3π = −1, flipping the chirality as
expected.
If we image a 1D number line, then flipping the direction of a
vector is also equivalent to a rotation in the plane by 180 degrees.

James Chappell (Working with David Berkahn and Derek Abbott, the University of Adelaide)Geometric algebra the mathematics of the future
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Chirality in 3D

The trivector represents chirality in 3D

j = e1e2e3, (40)

describing a signed volume.
If we exploit a higher dimension e4, rotating in the e1e4 plane by π
radians, we find

v ′ = e−e1e4π/2e1e2e3e
e1e4π/2 = e1e2e3e

e1e4π = −e1e2e3, (41)

Hence, this indeed flips the chirality, as hoped.

James Chappell (Working with David Berkahn and Derek Abbott, the University of Adelaide)Geometric algebra the mathematics of the future
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Chirality in four dimensions

In four dimensions we have the chiral object, the quadvector

k = e1e2e3e4. (42)

Utilizing the higher dimension e5, we can rotate in the e1e5 plane
by π radians, giving

v ′ = e−e1e5π/2e1e2e3e4e
e1e5π/2 = e1e2e3e4e

e1e5π = −e1e2e3e4,
(43)

Hence, this also flips the chirality, as required.

James Chappell (Working with David Berkahn and Derek Abbott, the University of Adelaide)Geometric algebra the mathematics of the future
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Chirality in n dimensions

We define the chiral object, the pseudoscalar of n dimensions

z = e1e2e3 . . . en. (44)

Rotating in the e1en+1 plane by π radians, we would have

v ′ = e−e1en+1π/2e1e2e3 . . . ene
e1en+1π/2 = e1e2e3 . . . ene

e1en+1π = −e1e2e3 . . . en,
(45)

Hence, this also flips the chirality in n dimensions, as hoped.

James Chappell (Working with David Berkahn and Derek Abbott, the University of Adelaide)Geometric algebra the mathematics of the future
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Flipping the chiral trefoil knot in 4D
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The Möbius strip: a chiral object
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Flipping the chiral Möbius strip using 4D
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The Klein bottle

The Klein bottle is an intrinsically 4D object, with two chiral
versions and an achiral one. Need 5D to invert chirality.

James Chappell (Working with David Berkahn and Derek Abbott, the University of Adelaide)Geometric algebra the mathematics of the future



Introduction
Projectile motion

Spacetime
Chirality

Conclusion

Exploring chirality from one to n dimensions, we show how it
can be inverted through rotations utilizing one higher
dimension.

GA provides a very simple and general rotation formula
applying to any number of dimensions.
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