CGA-Based Snake Robot Control Models

Roman Byrtus

Institute of Mathematics Faculty of Mechanical Engineering Brno University of Technology

28. August

1 [Snake robot models in CGA](#page-2-0)

- [2D CGA Model](#page-7-0)
- [3D CGA Model of Planar Motion](#page-9-0)
- [3D CGA Model](#page-17-0)

2 [Control algorithm](#page-24-0)

Conformal Geometric Algebra (CGA)

The Conformal Geometric Algebra (CGA) is the Clifford algebra $Cl_{N+1,1}$ along with the embedding $C: \mathbb{R}^N \ni X \mapsto M \in Cl_{N+1,1}.$ The embedding of the point X in terms of the null basis $\{e_1, \ldots, e_N, e_0, e_\infty\}$ is then given by

$$
X \mapsto x_1 \mathbf{e}_1 + \cdots + x_N \mathbf{e}_N + \frac{1}{2} (x_1^2 + \cdots + x_N^2) \mathbf{e}_\infty + \mathbf{e}_0.
$$
 (1)

Snake robot

Figure: A snake robot in 2D.

Snake robot

- Robotic mechanism inspired by the locomotion of biological snakes.
- The snake robot consists of a series of links, equipped with passive wheels located in the centres, connected by actuated joints.
- \blacksquare The mechanism is nonholonomic, meaning there is a constraint defined on the tangent bundle TQ of the configuration space Q .

Figure: A three-link snake robot.

Kinematics

- **■** The *i*-th link of the robot is represented by the point pair $P_i = A_i \wedge A_{i+1}$.
- Denote the initial configuration as P_i^0 .
- Denote a transformation acting on the links as M_j in the form of $M_j = e^{-\frac{1}{2}L(q(t))},$ where $q(t)$ is a point in the configuration space at time t.
- **Then** the configuration of the mechanism at time t can be represented by the kinematic chain

$$
P_i(t) = \prod_{j=k}^{1} M_j P_i^0 \prod_{j=1}^{k} \tilde{M}_j.
$$
 (2)

Nonholonomic constraint

- The mechanism is subject to the non-slip condition, i.e. the links' wheels are assumed not to slip sideways.
- **Denoting the velocity of the** *i***-th link's centre as** v_i **and the normal of the** *i***-th link** as n_i , the constraint is expressed as

$$
v_i \cdot n_i = 0. \tag{3}
$$

 \blacksquare In CGA, we express the condition as

$$
\dot{p}_i \wedge P_i \wedge \boldsymbol{e}_{\infty} = 0, \qquad (4)
$$

where \dot{p}_i is the velocity of the *i*-th link's centre $p_i = P_i \boldsymbol{e}_{\infty} \tilde{P}_i.$

Differential kinematics

- The nonholonomic constraint can be used to obtain forward or inverse kinematics.
- \blacksquare In the 2D case, results have been obtained before.
- It is possible to express \dot{p}_i as

$$
\dot{p}_i = \sum_{j=1}^k [p_i \cdot \dot{L}_j],\tag{5}
$$

where $\dot{L}_j=\partial_t L_j(\bm{q}(t))=\sum_{i=1}^n(\partial_{\bm{q}_i}L_j)\dot{\bm{q}}_i$ is the derivative of the "axis" of the j -th transformation $M_j = e^{-\frac{1}{2}L(q(t))}$ applied to link P_i in the kinematic chain.

Differential kinematics

Denote $q(t) = [x(t), y(t), \theta(t), \phi_1(t), \phi_2(t)]$ as a point in the configuration space and $\dot q(t) = (\dot x(t), \dot y(t), \dot \theta(t), \dot \phi_1(t), \dot \phi_2(t))$ as a vector in the tangent space. Expanding the nonholonomic constraint in 2D, we would arrive at

$$
\left(\dot{\theta} - 2\dot{x}\sin(\theta) + 2\dot{y}\cos(\theta)\right)\mathbf{I} = 0,\n\left(\dot{\phi}_1 + 2\dot{\theta}\cos(\phi_1) + \dot{\theta} - 2\dot{x}\sin(\phi_1 + \theta) + 2\dot{y}\cos(\phi_1 + \theta)\right)\mathbf{I} = 0,\n\left(2\dot{\phi}_1\cos(\phi_2) + \dot{\phi}_1 + \dot{\phi}_2 + 2\dot{\theta}\cos(\phi_2) + 2\dot{\theta}\cos(\phi_1 + \phi_2) + \dot{\theta} - 2\dot{x}\sin(\phi_1 + \phi_2 + \theta) + 2\dot{y}\cos(\phi_1 + \phi_2 + \theta)\right)\mathbf{I} = 0,
$$
\n(6)

where $I = e_1e_2e_0e_\infty$.

3D CGA Model of Planar Motion

- \blacksquare Moving to the 3D case, the z dimension is added in appropriate places and so we turn to 3D CGA.
- Again, it is useful to utilise \dot{p}_i expressed as

$$
\dot{p}_i = \sum_{j=1}^k [p_i \cdot \dot{L}_j],\tag{7}
$$

3D CGA Model of Planar Motion

- We proceed by again expanding the nonholonomic condition $\dot{p}_i \wedge P_i \wedge \mathbf{e}_{\infty} = 0$ in order to obtain a set of differential equations with multivector coefficients.
- In order to simplify the equations obtained, we evaluate the equations in the origin $([x, y, z] = [0, 0, 0])$ (invariance of the velocity w.r.t. the starting position in space).

Nonholonomic constraint

For the first link we obtain:

$$
\begin{aligned}\n\left(\dot{\theta}z - 2\dot{x}z\sin\left(\theta\right) + 2\dot{y}z\cos\left(\theta\right) + 2\dot{z}x\sin\left(\theta\right) - 2\dot{z}y\cos\left(\theta\right)\right)\mathbf{e}_1 \\
\wedge \mathbf{e}_2 \wedge \mathbf{e}_3 \wedge \mathbf{e}_\infty + \left(\dot{\theta} - 2\dot{x}\sin\left(\theta\right) + 2\dot{y}\cos\left(\theta\right)\right)\mathbf{e}_1 \\
\wedge \mathbf{e}_2 \wedge \mathbf{e}_0 \wedge \mathbf{e}_\infty + 2\dot{z}\cos\left(\theta\right)\mathbf{e}_1 \wedge \mathbf{e}_3 \wedge \mathbf{e}_0 \wedge \mathbf{e}_\infty + \\
2\dot{z}\sin\left(\theta\right)\mathbf{e}_2 \wedge \mathbf{e}_3 \wedge \mathbf{e}_0 \wedge \mathbf{e}_\infty = 0.\n\end{aligned}
$$
\n(8)

Nonholonomic constraint

For the second link we obtain:

$$
\begin{aligned}\n&\left(\dot{\phi}_1 z + 2\dot{\theta} z \cos(\phi_1) + \dot{\theta} z - 2\dot{x} z \sin(\phi_1 + \theta) + 2\dot{y} z \cos(\phi_1 + \theta) \right. \\
&\left. + 2\dot{z} x \sin(\phi_1 + \theta) - 2\dot{z} y \cos(\phi_1 + \theta) + 2\dot{z} \sin(\phi_1)\right) \mathbf{e}_1 \wedge \mathbf{e}_2 \wedge \mathbf{e}_3 \wedge \mathbf{e}_\infty \\
&+ \left(\dot{\phi}_1 + 2\dot{\theta} \cos(\phi_1) + \dot{\theta} - 2\dot{x} \sin(\phi_1 + \theta) + 2\dot{y} \cos(\phi_1 + \theta)\right) \mathbf{e}_1 \\
&\wedge \mathbf{e}_2 \wedge \mathbf{e}_0 \wedge \mathbf{e}_\infty + 2\dot{z} \cos(\phi_1 + \theta) \mathbf{e}_1 \wedge \mathbf{e}_3 \wedge \mathbf{e}_0 \\
&\wedge \mathbf{e}_\infty + 2\dot{z} \sin(\phi_1 + \theta) \mathbf{e}_2 \wedge \mathbf{e}_3 \wedge \mathbf{e}_0 \wedge \mathbf{e}_\infty = 0.\n\end{aligned}
$$
\n
$$
(9)
$$

Nonholonomic constraint

For the third link we obtain:

$$
\left(2\dot{\phi}_1 z \cos(\phi_2) + \dot{\phi}_1 z + \dot{\phi}_2 z + 2\dot{\theta} z \cos(\phi_2) + 2\dot{\theta} z \cos(\phi_1 + \phi_2) + \dot{\theta} z \n- 2\dot{x} z \sin(\phi_1 + \phi_2 + \theta) + 2\dot{y} z \cos(\phi_1 + \phi_2 + \theta) + 2\dot{z} x \sin(\phi_1 + \phi_2 + \theta) \n- 2\dot{z} y \cos(\phi_1 + \phi_2 + \theta) + 2\dot{z} \sin(\phi_2) + 2\dot{z} \sin(\phi_1 + \phi_2) \right) \mathbf{e}_1 \wedge \mathbf{e}_2 \wedge \mathbf{e}_3 \n\wedge \mathbf{e}_\infty + \left(2\dot{\phi}_1 \cos(\phi_2) + \dot{\phi}_1 + \dot{\phi}_2 + 2\dot{\theta} \cos(\phi_2) + 2\dot{\theta} \cos(\phi_1 + \phi_2) \n+ \dot{\theta} - 2\dot{x} \sin(\phi_1 + \phi_2 + \theta) + 2\dot{y} \cos(\phi_1 + \phi_2 + \theta) \right) \mathbf{e}_1 \n\wedge \mathbf{e}_2 \wedge \mathbf{e}_0 \wedge \mathbf{e}_\infty + 2\dot{z} \cos(\phi_1 + \phi_2 + \theta) \mathbf{e}_1 \wedge \mathbf{e}_3 \wedge \mathbf{e}_0 \n\wedge \mathbf{e}_\infty + 2\dot{z} \sin(\phi_1 + \phi_2 + \theta) \mathbf{e}_2 \wedge \mathbf{e}_3 \wedge \mathbf{e}_0 \wedge \mathbf{e}_\infty = 0.
$$
\n(10)

Nonholonomic constraint

- We proceed by expanding the nonholonomic condition to $\dot{p}_i \wedge P_i \wedge \mathbf{e}_{\infty} \wedge \mathbf{e}_i = 0$, $j = 1, 2, 3$.
- **■** $P_i \wedge \mathbf{e}_{\infty} \wedge \mathbf{e}_i$ defines a plane, which helps us split velocity components.

Nonholonomic constraint

Expanding $\dot{p}_i \wedge P_i \wedge \mathbf{e}_{\infty} \wedge \mathbf{e}_3 = 0$ we get:

$$
\begin{aligned}\n&\left(\dot{\theta}-2\dot{x}\sin\left(\theta\right)+2\dot{y}\cos\left(\theta\right)\right)\mathbf{e}_{1}\wedge\mathbf{e}_{2}\wedge\mathbf{e}_{3}\wedge\mathbf{e}_{0}\wedge\mathbf{e}_{\infty}=0,\\
&\left(\dot{\phi}_{1}+2\dot{\theta}\cos\left(\phi_{1}\right)+\dot{\theta}-2\dot{x}\sin\left(\phi_{1}+\theta\right)+2\dot{y}\cos\left(\phi_{1}+\theta\right)\right)\mathbf{e}_{1}\wedge\mathbf{e}_{2}\wedge\mathbf{e}_{3}\wedge\mathbf{e}_{0}\wedge\mathbf{e}_{\infty}=0,\\
&\left(2\dot{\phi}_{1}\cos\left(\phi_{2}\right)+\dot{\phi}_{1}+\dot{\phi}_{2}+2\dot{\theta}\cos\left(\phi_{2}\right)+2\dot{\theta}\cos\left(\phi_{1}+\phi_{2}\right)+\dot{\theta}\\
&-2\dot{x}\sin\left(\phi_{1}+\phi_{2}+\theta\right)+2\dot{y}\cos\left(\phi_{1}+\phi_{2}+\theta\right)\right)\mathbf{e}_{1}\wedge\mathbf{e}_{2}\wedge\mathbf{e}_{3}\wedge\mathbf{e}_{0}\wedge\mathbf{e}_{\infty},\n\end{aligned}
$$

Nonholonomic constraint

Expanding $p_i \wedge P_i \wedge e_{\infty} \wedge e_2 = 0$ we get:

$$
-2\dot{z}\cos(\theta)\boldsymbol{e}_1\wedge \boldsymbol{e}_2\wedge \boldsymbol{e}_3\wedge \boldsymbol{e}_0\wedge \boldsymbol{e}_{\infty}=0, \qquad (11a)
$$

$$
-2\dot{z}\cos(\phi_1+\theta)\mathbf{e}_1\wedge\mathbf{e}_2\wedge\mathbf{e}_3\wedge\mathbf{e}_0\wedge\mathbf{e}_{\infty}=0, \qquad (11b)-2\dot{z}\cos(\phi_1+\phi_2+\theta)\mathbf{e}_1\wedge\mathbf{e}_2\wedge\mathbf{e}_3\wedge\mathbf{e}_0\wedge\mathbf{e}_{\infty}=0, \qquad (11c)
$$

Expanding $\dot{p}_i \wedge P_i \wedge \mathbf{e}_{\infty} \wedge \mathbf{e}_1 = 0$ we get:

$$
2\dot{z}\sin(\theta)\mathbf{e}_1\wedge\mathbf{e}_2\wedge\mathbf{e}_3\wedge\mathbf{e}_0\wedge\mathbf{e}_{\infty}=0, \qquad (12a)
$$

$$
2\dot{z}\sin\left(\phi_1+\theta\right)\mathbf{e}_1\wedge\mathbf{e}_2\wedge\mathbf{e}_3\wedge\mathbf{e}_0\wedge\mathbf{e}_{\infty}=0,\tag{12b}
$$

$$
2\dot{z}\sin\left(\phi_1+\phi_2+\theta\right)\mathbf{e}_1\wedge\mathbf{e}_2\wedge\mathbf{e}_3\wedge\mathbf{e}_0\wedge\mathbf{e}_{\infty}=0. \hspace{1cm} (12c)
$$

Three DOF Joint Model

- In 3D, we need to choose a way to model the joints connecting the mechanism's links.
- The links are connected by spherical joints, thus allowing pitch, yaw and roll. Denote a rotor representing the spherical joint as $R_\alpha = e^{-\frac{1}{2}\alpha L}$, where

$$
\mathit{L}_{\alpha}=R_{\alpha_y}\mathit{L}_1\tilde{R}_{\alpha_y}=R_{\alpha_y}R_{\alpha_x}\bm{e}_{12}\tilde{R}_{\alpha_x}\tilde{R}_{\alpha_y},
$$

and $R_{\alpha_{\mathsf{x}}}=e^{-\frac{1}{2}\alpha_{\mathsf{x}} \boldsymbol{e}_{\boldsymbol{12}}}$ and $R_{\alpha_{\mathsf{y}}}=e^{-\frac{1}{2}\alpha_{\mathsf{y}} L_2}$.

Sphere Joint Model

Two DOF Joint Model

- In this model, we restrict the motion realised by the joints to yaw and pitch.
- An interesting parametrisation is as follows:
- The first plane of rotation ρ_1 for the yaw motion can be represented by the three points defining the two connected links: thus, $\rho_1 = A_1 \wedge A_2 \wedge A_3 \wedge \mathbf{e}_{\infty}$.
- Let l_1 and l_2 be the lines passing through the first and second links.
- **Then the axis of rotation** L_{i1} **for the plane** ρ_1 **can be expressed as**

$$
L_{i1}=I_1\times I_2,
$$

where \times is the commutator product.

Two DOF Joint Model

Figure: The axes of rotation *axis1*, *axis2* for the link represented by points A_2 , A_3 .

Two DOF Joint Model

The second plane of rotation ρ_2 for the yawing motion is the plane containing the link P_2 that is orthogonal to the first axis L_{i1} ; thus its axis L_{i2} is given by

$$
L_{i2}=L_{i1}\times I_2.
$$

The rotation realised by the 2-DOF joint can then be expressed as

$$
R_i = e^{-\frac{1}{2}\phi_i L_i},
$$

with the axis L_i given by

$$
L_i=\omega_i L_{i1}+(1-|\omega_i|)L_{i2}.
$$

Two DOF Joint Model

Difficulties with the approach

If we were to proceed with the full 3D CGA model, we run into a few difficulties:

- So far, all results were obtained using symbolical calculations.
- Both the 2 DOF and 3 DOF variants start to be computationally problematic.
- \blacksquare Difficulty in determining controllability of the mechanism.

Thank you for your attention.