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Conformal Geometric Algebra (CGA)

The Conformal Geometric Algebra (CGA) is the Cli�ord algebra ClN+1,1 along with the

embedding C : RN ∋ X 7→ M ∈ ClN+1,1. The embedding of the point X in terms of

the null basis {e1, . . . , eN , e0, e∞} is then given by

X 7→ x1e1 + · · ·+ xNeN +
1

2
(x21 + · · ·+ x2N)e∞ + e0. (1)
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Snake robot

x

Figure: A snake robot in 2D.
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Snake robot

Robotic mechanism inspired by the locomotion of biological snakes.

The snake robot consists of a series of links, equipped with passive wheels located

in the centres, connected by actuated joints.

The mechanism is nonholonomic, meaning there is a constraint de�ned on the

tangent bundle TQ of the con�guration space Q.
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Figure: A three-link snake robot.
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Kinematics

The i-th link of the robot is represented by the point pair Pi = Ai ∧ Ai+1.

Denote the initial con�guration as P0
i .

Denote a transformation acting on the links as Mj in the form of Mj = e−
1
2
L(q(t)),

where q(t) is a point in the con�guration space at time t.

Then the con�guration of the mechanism at time t can be represented by the

kinematic chain

Pi (t) =
1∏

j=k

MjP
0
i

k∏
j=1

M̃j . (2)
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Nonholonomic constraint

The mechanism is subject to the non-slip condition, i.e. the links' wheels are

assumed not to slip sideways.

Denoting the velocity of the i-th link's centre as vi and the normal of the i-th link

as ni , the constraint is expressed as

vi · ni = 0. (3)

In CGA, we express the condition as

ṗi ∧ Pi ∧ e∞ = 0, (4)

where ṗi is the velocity of the i-th link's centre pi = Pie∞P̃i .
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2D CGA Model

Di�erential kinematics

The nonholonomic constraint can be used to obtain forward or inverse kinematics.

In the 2D case, results have been obtained before.

It is possible to express ṗi as

ṗi =
k∑

j=1

[pi · L̇j ], (5)

where L̇j = ∂tLj(q(t)) =
∑n

i=1(∂qiLj)q̇ i is the derivative of the "axis" of the j-th

transformation Mj = e−
1
2
L(q(t)) applied to link Pi in the kinematic chain.
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2D CGA Model

Di�erential kinematics

Denote q(t) = [x(t), y(t), θ(t), ϕ1(t), ϕ2(t)] as a point in the con�guration space and

q̇(t) = (ẋ(t), ẏ(t), θ̇(t), ϕ̇1(t), ϕ̇2(t)) as a vector in the tangent space. Expanding the

nonholonomic constraint in 2D, we would arrive at(
θ̇ − 2ẋ sin (θ) + 2ẏ cos (θ)

)
I = 0,(

ϕ̇1 + 2θ̇ cos (ϕ1) + θ̇ − 2ẋ sin (ϕ1 + θ) + 2ẏ cos (ϕ1 + θ)
)
I = 0,(

2ϕ̇1 cos (ϕ2) + ϕ̇1 + ϕ̇2 + 2θ̇ cos (ϕ2) + 2θ̇ cos (ϕ1 + ϕ2) + θ̇−

−2ẋ sin (ϕ1 + ϕ2 + θ) + 2ẏ cos (ϕ1 + ϕ2 + θ)) I = 0,

(6)

where I = e1e2e0e∞.
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3D CGA Model of Planar Motion

3D CGA Model of Planar Motion

Moving to the 3D case, the z dimension is added in appropriate places and so we

turn to 3D CGA.

Again, it is useful to utilise ṗi expressed as

ṗi =
k∑

j=1

[pi · L̇j ], (7)
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3D CGA Model of Planar Motion

3D CGA Model of Planar Motion

We proceed by again expanding the nonholonomic condition ṗi ∧ Pi ∧ e∞ = 0 in

order to obtain a set of di�erential equations with multivector coe�cients.

In order to simplify the equations obtained, we evaluate the equations in the origin

([x , y , z ] = [0, 0, 0]) (invariance of the velocity w.r.t. the starting position in

space).
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3D CGA Model of Planar Motion

Nonholonomic constraint

For the �rst link we obtain:

(8)

(
θ̇z − 2ẋz sin (θ) + 2ẏ z cos (θ) + 2żx sin (θ)− 2ży cos (θ)

)
e1

∧ e2 ∧ e3 ∧ e∞ +
(
θ̇ − 2ẋ sin (θ) + 2ẏ cos (θ)

)
e1

∧ e2 ∧ e0 ∧ e∞ + 2ż cos (θ)e1 ∧ e3 ∧ e0 ∧ e∞ +

2ż sin (θ)e2 ∧ e3 ∧ e0 ∧ e∞ = 0.
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3D CGA Model of Planar Motion

Nonholonomic constraint

For the second link we obtain:

(9)

(
ϕ̇1z + 2θ̇z cos (ϕ1) + θ̇z − 2ẋz sin (ϕ1 + θ) + 2ẏ z cos (ϕ1 + θ)

+ 2żx sin (ϕ1 + θ)− 2ży cos (ϕ1 + θ) + 2ż sin (ϕ1)
)
e1 ∧ e2 ∧ e3 ∧ e∞

+
(
ϕ̇1 + 2θ̇ cos (ϕ1) + θ̇ − 2ẋ sin (ϕ1 + θ) + 2ẏ cos (ϕ1 + θ)

)
e1

∧ e2 ∧ e0 ∧ e∞ + 2ż cos (ϕ1 + θ)e1 ∧ e3 ∧ e0

∧ e∞ + 2ż sin (ϕ1 + θ)e2 ∧ e3 ∧ e0 ∧ e∞ = 0.
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3D CGA Model of Planar Motion

Nonholonomic constraint

For the third link we obtain:

(10)

(
2ϕ̇1z cos (ϕ2) + ϕ̇1z + ϕ̇2z + 2θ̇z cos (ϕ2) + 2θ̇z cos (ϕ1 + ϕ2) + θ̇z

− 2ẋz sin (ϕ1 + ϕ2 + θ) + 2ẏ z cos (ϕ1 + ϕ2 + θ) + 2żx sin (ϕ1 + ϕ2 + θ)

− 2ży cos (ϕ1 + ϕ2 + θ) + 2ż sin (ϕ2) + 2ż sin (ϕ1 + ϕ2)
)
e1 ∧ e2 ∧ e3

∧ e∞ +
(
2ϕ̇1 cos (ϕ2) + ϕ̇1 + ϕ̇2 + 2θ̇ cos (ϕ2) + 2θ̇ cos (ϕ1 + ϕ2)

+ θ̇ − 2ẋ sin (ϕ1 + ϕ2 + θ) + 2ẏ cos (ϕ1 + ϕ2 + θ)
)
e1

∧ e2 ∧ e0 ∧ e∞ + 2ż cos (ϕ1 + ϕ2 + θ)e1 ∧ e3 ∧ e0

∧ e∞ + 2ż sin (ϕ1 + ϕ2 + θ)e2 ∧ e3 ∧ e0 ∧ e∞ = 0.
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3D CGA Model of Planar Motion

Nonholonomic constraint

We proceed by expanding the nonholonomic condition to ṗi ∧ Pi ∧ e∞ ∧ e j = 0,

j = 1, 2, 3.

Pi ∧ e∞ ∧ e j de�nes a plane, which helps us split velocity components.
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3D CGA Model of Planar Motion

Nonholonomic constraint

Expanding ṗi ∧ Pi ∧ e∞ ∧ e3 = 0 we get:(
θ̇ − 2ẋ sin (θ) + 2ẏ cos (θ)

)
e1 ∧ e2 ∧ e3 ∧ e0 ∧ e∞ = 0,(

ϕ̇1 + 2θ̇ cos (ϕ1) + θ̇ − 2ẋ sin (ϕ1 + θ) + 2ẏ cos (ϕ1 + θ)
)
e1 ∧ e2 ∧ e3 ∧ e0 ∧ e∞ = 0,(

2ϕ̇1 cos (ϕ2) + ϕ̇1 + ϕ̇2 + 2θ̇ cos (ϕ2) + 2θ̇ cos (ϕ1 + ϕ2) + θ̇

− 2ẋ sin (ϕ1 + ϕ2 + θ) + 2ẏ cos (ϕ1 + ϕ2 + θ)
)
e1 ∧ e2 ∧ e3 ∧ e0 ∧ e∞,
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3D CGA Model of Planar Motion

Nonholonomic constraint

Expanding ṗi ∧ Pi ∧ e∞ ∧ e2 = 0 we get:

(11a)− 2ż cos (θ)e1 ∧ e2 ∧ e3 ∧ e0 ∧ e∞ = 0,

(11b)−2ż cos (ϕ1 + θ)e1 ∧ e2 ∧ e3 ∧ e0 ∧ e∞ = 0,

(11c)−2ż cos (ϕ1 + ϕ2 + θ)e1 ∧ e2 ∧ e3 ∧ e0 ∧ e∞ = 0,

Expanding ṗi ∧ Pi ∧ e∞ ∧ e1 = 0 we get:

(12a)2ż sin (θ)e1 ∧ e2 ∧ e3 ∧ e0 ∧ e∞ = 0,

(12b)2ż sin (ϕ1 + θ)e1 ∧ e2 ∧ e3 ∧ e0 ∧ e∞ = 0,

(12c)2ż sin (ϕ1 + ϕ2 + θ)e1 ∧ e2 ∧ e3 ∧ e0 ∧ e∞ = 0.
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3D CGA Model

Three DOF Joint Model

In 3D, we need to choose a way to model the joints connecting the mechanism's

links.

The links are connected by spherical joints, thus allowing pitch, yaw and roll.

Denote a rotor representing the spherical joint as Rα = e−
1
2
αL, where

Lα = RαyL1R̃αy = RαyRαxe12R̃αx R̃αy ,

and Rαx = e−
1
2
αxe12 and Rαy = e−

1
2
αyL2 .
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3D CGA Model

Sphere Joint Model
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3D CGA Model

Two DOF Joint Model

In this model, we restrict the motion realised by the joints to yaw and pitch.

An interesting parametrisation is as follows:

The �rst plane of rotation ρ1 for the yaw motion can be represented by the three

points de�ning the two connected links: thus, ρ1 = A1 ∧ A2 ∧ A3 ∧ e∞.

Let l1 and l2 be the lines passing through the �rst and second links.

Then the axis of rotation Li1 for the plane ρ1 can be expressed as

Li1 = l1×l2,

where × is the commutator product.
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3D CGA Model

Two DOF Joint Model

Figure: The axes of rotation axis1, axis2 for the link represented by points A2,A3.
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3D CGA Model

Two DOF Joint Model

The second plane of rotation ρ2 for the yawing motion is the plane containing the

link P2 that is orthogonal to the �rst axis Li1; thus its axis Li2 is given by

Li2 = Li1×l2.

The rotation realised by the 2-DOF joint can then be expressed as

Ri = e−
1
2
ϕiLi ,

with the axis Li given by

Li = ωiLi1 + (1− |ωi |)Li2.
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3D CGA Model

Two DOF Joint Model
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3D CGA Model

Di�culties with the approach

If we were to proceed with the full 3D CGA model, we run into a few di�culties:

So far, all results were obtained using symbolical calculations.

Both the 2 DOF and 3 DOF variants start to be computationally problematic.

Di�culty in determining controllability of the mechanism.
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A Purely Geometry Based Control Algorithm
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A Purely Geometry Based Control Algorithm
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A Purely Geometry Based Control Algorithm
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A Purely Geometry Based Control Algorithm
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A Purely Geometry Based Control Algorithm
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A Purely Geometry Based Control Algorithm
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Thank you for your attention.
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