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Context
Recent experiments measured spin angular momentum

not predicted by standard electromagnetic and acoustic field theories

Our recent work addresses this gap in the theory:
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Spacetime Algebra
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AcousticsElectromagnetism

ρ ∂ +tv P =∇ 0

β ∂ P +t ⋅∇ =v 0

×∇ =v 0

: velocityv

P : pressure

ρ : mass density

β : compressibility

c = : speed of sound
ρβ

1

ϵ ∂ −0 tE ×∇ =H 0

μ ∂ +0 tH ×∇ =E 0

⋅∇ =E ⋅∇ =H 0

: electric fieldE

: magnetic fieldH

ϵ : permittivity0

μ : permeability0

c = : speed of light
ϵ μ0 0

1

Source-free EM & Acoustics

L =ac (ρ −2
1 v2 βP )2L =EM (ϵ −2

1
0E

2 μ )0H
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AcousticsElectromagnetism

ρ ∂ =tv − P∇

β ∂ P =t − ⋅∇ v

×∇ =v 0

ϵ ∂ =0 tE ×∇ H

μ ∂ =0 tH − ×∇ E

⋅∇ =E ⋅∇ =H 0

Spacetime Representations

L =ac (ρ −2
1 v2 βP )2L =EM (ϵ −2

1
0E

2 μ )0H
2

L =ac ⟨p ⟩2
1 2L =EM ⟨F ⟩2

1 2

∇p = 0∇F = 0

p = (P/c+ ρ )γv 0F = /c+E μ I0H

3D

4D 4D

3D

Spacetime Vector

Energy-momentum density

Spacetime Bivector

Gregory et al. (2015)



Acoustic SpinElectromagnetic Spin

Spin Experiments

Shi et al. (2019)Neugebauer et al. (2018)

=SEM Im(ϵ ×4ω
ρ

0E
∗ +E μ ×0H

∗ )H =S Im( ×2ω
ρ v∗ )v



Standard AcousticsStandard Electromagnetism

What does theory predict?

L =EM ⟨∇ ∧2
1 A ∇∧e A ⟩e

∇∧ F = 0 ⟹ F = ∇ ∧Ae

=SEM ϵ ×0E Ae

Noether procedure

L =EM ⟨∇ϕ∇ϕ⟩2
1

∇∧ p = 0 ⟹ p = −∇ϕ

=Sac 0

Noether procedure

=SEM ϵ Im( ×0 E∗ )/2ωE
Missing term

Wrong

Vector potential representation Scalar potential representation

Complexify & cycle average
(monochromatic light wave)



AcousticsElectromagnetism

Non-Standard Representations

L =EM ⟨∇ ⋅2
1 (A I)∇ ⋅m (A I)⟩m

∇ ⋅ F = 0 ⟹ F = ∇ ⋅ (A I)m

=SEM μ ×0H Am

Noether procedure

Complexify & cycle average
(monochromatic sound wave)

L =ac ⟨∇ ⋅2
1 X∇ ⋅X⟩

∇ ⋅ p = 0 ⟹ p = ∇ ⋅ ( +x I )y

=Sac ×x (ρ )v

Noether procedure

=SEM μ Im( ×0 H∗ )/2ωH

Other half!

X

=SEM ρIm( ×v∗ )/2ωv

Correct!*

Burns et al. (2020)

Trivector potential Bivector potential

Complexify & cycle average
(monochromatic light wave)



Dual AcousticsDual Electromagnetism

Dual-Symmetrized Representation

L =EM
dual ⟨∇A∇ ⟩2

1 A

F = ∇A = ∇(A +e A I)/2m

=SEM (ϵ ×2
1

0E +Ae μ ×0H )Am

L =ac
dual ⟨∇ψ∇ ⟩2

1 ψ

=Sac ×2
1x (ρ )v

=SEM Im(ϵ ×0E
∗ +E μ ×0H

∗ )/4ωH =SEM ρIm( ×v∗ )/4ωv

Correct!

p = −∇ψ = −∇(ϕ+X + Iϕ )/2w

Correct!

2
1

4

F = ⟨F ⟩ ,∇ =2 A 0 p = ⟨p⟩ ,∇ =1 ψ 0

Bliokh et al. (2013) Burns et al. (2020)

Odd multivector potential Even multivector potential



Observations

In vacuum, physical fields have a degeneracy of potential representations.
 
The dynamical fields varied in a Lagrangian are the potential fields, not the
physical fields.
 
Canonical Noether currents are representation and gauge dependent,
with gauge symmetries determined by representation.
 
Transferrable part of spin is gauge invariant, analogous to the gauge
invariance of voltage differences.
 
Experiments can differentiate between representations with
identical equations of motion through canonical spin measurements.



Dual AcousticsDual Electromagnetism

A Closer Look

F = ⟨∇(A +e A I)/2⟩m 2 p = −⟨∇(ϕ+ +x I +y Iϕ )/2⟩w 1

Burns et al. (2020)

=E − ϕ−∇ ∂ −tAe ×∇ Am

=H − ϕ −∇ m ∂ +tAm ×∇ Ae

P = −∂ ϕ−t ⋅∇ x

ρ =v ϕ+∇ ∂ −tx ×∇ y

=SEM ( ×2
1 E +Ae ×H )Am =Sac ×2

1x ρ )( v

Well studied New!

Dressel et al. (2014)



A Closer Look at Acoustics

p = −⟨∇(ϕ+ +x I +y Iϕ )/2⟩w 1

Microscopic interpretations discussed in Burns et al. (2024)

P = −∂ ϕ−t ⋅∇ x

=v ∂ +tx ϕ−∇ ×∇ cy

=Sac ×2
1x ρ )( v

Linear Displacement

(couples to vector sources)

x

x

Rotational displacement

(couples to vorticity sources)

y

yx ϕw

No contribution to pVelocity potential

(couples to scalar sources)

ϕ

xϕ

ϕ



A Closer Look at Acoustics

p = (P/c+ ρ )γ =v 0 −⟨∇(ϕ+ +x I +y Iϕ )/2⟩w 1

ϕ(r) ↦ ϕ(r) + c

Gauge freedoms

↦x +x ×∇ a

↦y +y ϕ+∇ ∂ta

ϕw

ϕ

ϕ ϕ

x

xx

y y

y ϕw

ϕw

ϕ

Maxwell gauge

p = ∇X = ∇ ⋅ ( +x I )y

Analogy to electromagnetism:

Pressure P ~ Charge Density ρ
Velocity v   ~ Charge Current J
 



A Closer Look at Acoustics

Microscopic interpretations discussed in Burns et al. (2024)

P =V PdV =∫ −ρc ⋅2 ∫ ∇ dV =x −ρc ⋅2 ∮ x da

Example: Linear displacement potential in Maxwell gauge

Displacement of boundary
from equilibrium

Net pressure (particle density)
of a region

Equilibrium

x

↦x +x ×∇ a
Note invariance under

x x



Acoustics with Sources

p = −⟨∇(ϕ+ +x I +y Iϕ )/2⟩w 1yx ϕwϕ Λ = ν + −F I +Ω Iνw

∧∇ =v IΩ

∂ +tv P =∇ F

∂ P +t ⋅∇ =v νp = ∇ψ = ∇ψ

L =ac ⟨ ∇ψ∇ +2
1 ψ ψΛ⟩

νν F Ω νw

Hole in boundary of system

∇ ∇ =ψ ∇p = Λ

ν

F

Ω

Directed speaker

Spinning propeller

Λ

Λ

Λ

⋅∇ =y 0

Vector constraint

∇ϕ =w 0 = νw

Example sources

Microscopic interpretations discussed in Burns et al. (2024)



Why this form of Lagrangian?
L =EM
dual ⟨∇A∇ ⟩?2

1 A

F = ( +E0 I )eB0
Ik⋅x A = (A +e

0 A I)em
0 Ik⋅x

The traditional electromagnetic Lagrangian
fails to predict helicity conservation

L =EM
e ⟨∇ ∧2

1 A ∇∧e A ⟩e

Helicity is conserved in vacuum by virtue of symmetry under duality

J I =χ ( ⋅2
1 Ae −H ⋅Am +E ×E +Ae ×H )γ IAm 0

Evolution is generated by duality transformations

Does not vanish on shell



Why this form of Lagrangian?

L =EM
dual ⟨∇A∇ ⟩2

1 A L =ac
dual ⟨∇ψ∇ ⟩2

1 ψ

∇(Me )∇Iβ (Me )Iβ = ∇Me eIβ∇̇ IβṀ

= ∇Me e ∇Iβ −Iβ M

= ∇M∇M

Dual symmetric for all multivector fields M.



Why this form of Lagrangian?

L =EM
dual ⟨∇A∇ ⟩2

1 A L =ac
dual ⟨∇ψ∇ ⟩2

1 ψ

Duality (massless) constraint does heavy lifting:

Forces Lagrangian to vanish on shell, and restricts # of DOFs, ∇A = ⟨∇A⟩₂ in EM.

∇ =A 0
⟺

∇A =e ∇A Im

∇ =ψ 0
⟺

∇( +x I ) =y ∇(ϕ+ Iϕ )w
Bliokh et al. (2013)
Dressel et al. (2014)



Dual Lagrangians

Equations of motion

∇M∇ = 0 = ∇ ∇M

L = ⟨∇M∇ ⟩M

Grade restrictions yield standard wave equation

∇M = ⟨∇M⟩ ⟹n ∇M = ± ∇ ⟹M ∇ M =2 ∇ =2M 0

More generally, coupling between grades.



AcousticsElectromagnetism

L =EM
dual ⟨∇A∇ ⟩2

1 A

F =+ ∇A =W +e F + IWm

L =ac
dual ⟨∇ψ∇ ⟩2

1 ψ

p =− −∇ψ = p+ wI

Odd potential A Even potential ψ

Grade-Complementary Theories

Even field F =+ ∇A Odd field p =− −∇ψ

We Wm w



AcousticsElectromagnetism

L =EM
dual ⟨∇A∇ ⟩2

1 A

F =+ ∇A =W +e F + IWm

L =ac
dual ⟨∇ψ∇ ⟩2

1 ψ

p =− −∇ψ = p+ wI

Odd potential A Even potential ψ

Grade-Complementary Theories

Even field F =+ ∇A Odd field p =− −∇ψ

We Wm w

∇ =A 0 ⟹ W +e IW =m 0
Note: Duality/massless condition

Otherwise,          contributes a new term proportional to velocity in Lorentz forceWeWe Wm
We



Conclusions 
Acoustic fields can carry intrinsic spin, and we can now represent it theoretically.

 
Geometric algebra highlights fruitful analogies between electromagnetism and acoustics.

 
Geometric algebra simplifies reasoning about representation degeneracy.

 
Experimental measurements of Noether currents can differentiate between representations.

 
Dual symmetric representations are necessary and understudied.

 
Future lightcone: investigate geometrically admitted extensions

(e.g. pseudoscalar acoustic sources, scalar EM fields)

Burns, Bliokh, Nori, Dressel, New J Physics 22 053050 (2020)

Burns, Daniel, Alexander, Dressel, Quantum Stud.: Math. Found. 11, 27–67 (2024).

Dressel, Bliokh, Nori, Physics Reports Phys. Rep. 589, 1–71 (2015).



L =EM
dual ⟨∇A∇ ⟩2

1 A L =ac
dual ⟨∇ψ∇ ⟩2

1 ψ

p =− p+ wI = −∇ψ

Helicity is conserved in vacuum where dual symmetry is present.

A↦ AeIβ ψ ↦ ψeIβ

Jχ = ⟨I (∇A)⟩
2
1

A 1

= (W A −W A + (IF ) ⋅A − F ⋅A )
4
1

m e e m e m

Jχ = ⟨I (∇ψ)⟩
2
1

ψ 1

= (ϕw − ϕ p+ ⋅ p− ⋅ w − I( ∧ p+ ∧ w))
2
1

w y x x y

F =+ W +e F + IW =m ∇AWmWe w

Helicity
Added fields from geometric completion

longitudinal longitudinal

Burns et al. (2024)

Wm

WeWm
w ww



T (n) = ⟨∇An ∇+2
1 A ∇ nA∇⟩A

Belinfante Momentum

T (n) = ⟨∇ψn ∇+2
1 ψ ∇ nψ∇⟩ψ


