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Losses in three-phase power system
We are dealing with three-phase power system. The currents ia, ib , ic at
these phases can be represented as a vector i = iae1 + ibe2 + ice3 or a point
I . Similarly the voltage can be seen as a vector v = vae1 + vbe2 + vce3 or a
point V .
Real part of power is given by p = v · i and losses of such (4-wire) system
depend on current losses (i ) = i · i + (ia + ib + ic )2.
We are given some current iorig (Iorig ) and voltage v . We seek I that would
be optimal. It means that I preserves the original power p = v · iorig and
gives the minimal losses.

Figure: Ideal three-phase power system



Classical approach - method of Lagrange multipliers

We are looking for i = iae1 + ibe2 + ice3 such that we minimize:

mini {i · i + (ia + ib + ic )2}

under the constraint
i · v = p,

where p and v = vae1 + vbe2 + vce3 are given.
Lagrange function

L(i , 𝜆) = i · i + (ia + ib + ic )2 − 𝜆(i · v − p)

Defining n = 1/
√

3(e1 + e2 + e3), the conditions for i are:

L′i = 2i + 6(n · i )n − 𝜆v = 0, (1)
L′
𝜆
= i · v − p = 0. (2)



Classical approach - method of Lagrange multipliers

Pn denotes orthogonal projection of i onto n.

2(Id + 3Pn)i = 𝜆v

i = 1/2𝜆(Id + 3Pn)−1v

To avoid the inverse, we use (Id + 3Pn)−1 = 1/4(Id + 3P𝜌 ), where P𝜌 is
projection onto the plane 𝜌 perpendicular to n.

i = 1/8𝜆(Id + 3P𝜌 )v

To find 𝜆 we use the second condition:

i · v = p

1/8𝜆(Id + 3P𝜌 )v · v = p

𝜆 =
8p

((Id + 3P𝜌 )v) · v



Classical approach - method of Lagrange multipliers
Finally, we get

i = p
(Id + 3P𝜌 )v

((Id + 3P𝜌 )v) · v
.

Pn = nnT
= 1/3


1 1 1
1 1 1
1 1 1


P𝜌 = Id − Pn = 1/3


2 −1 −1
−1 2 −1
−1 −1 2


i = p


3 −1 −1
−1 3 −1
−1 −1 3

 v

vT


3 −1 −1
−1 3 −1
−1 −1 3

 v

= p


3 −1 −1
−1 3 −1
−1 −1 3



va
vb
vc

[
va vb vc

] 
3 −1 −1
−1 3 −1
−1 −1 3



va
vb
vc





Adding a dimension
We are looking for i = iae1 + ibe2 + ice3 such that we minimize:

mini {i · i + (ia + ib + ic )2}

under the constraint
i · v = p.

We switch to ℝ4. We encode the sum of coordinates into the fourth
dimension. So we will seek the current in a form

i4D = i − (ia + ib + ic )e4

Then all points that are relevant lie in the plane 𝜌4D with the normal
n4D = e1 + e2 + e3 + e4. Reformulation: We minimize i2

4D under the
constraint

i4D · v = p.

That gives us the hyperplane 𝜏4D . We are looking for the minimum on the
intersection of 𝜌4D and 𝜏4D . To minimize the norm we use orthogonal
projection of the origin.



PGA as a suitable algebra

We need hyperplanes, intersections and orthogonal projection. We seek a
point

I4D = (i − (ia + ib + ic )e4 + e0)∗.
The solution has to lie on 𝜌4D = e1 + e2 + e3 + e4. Feasible solutions lie on
the plane 𝜏4D = v + pe0. So we seek the minimum of a set

k4D = 𝜌4D ∧ 𝜏4D .

Clearly losses can be expressed as a square of i4D (the distance from
origin to I4D) losses (i ) = i4D · i4D . I4D we get by orthogonal projection of
origin to the k4D:

I4D = (k4D · e1234) ∧ k4D .

After omitting the fourth coordinate:

i = p
(3va − vb − vc )e1 + (3vb − va − vc )e2 + (3vc − va − vb)e3

3(v2
a + v2

b + v2
c ) − 2(vavb + vbvc + vavc )

∈ ℝ3.



Three-phase power system in time
We consider the harmonic three-phase voltage input:

va (t) =Vmax cos(𝜔t)

vb (t) =Vmax cos
(
𝜔t + 2

3
𝜋

)
vc (t) =Vmax cos

(
𝜔t − 2

3
𝜋

)
The original current is the same, just delayed by angle 𝜑 and instead of
Vmax we have Imax . In that case, I is simply projection of the origin onto
plane 𝜏 .

Figure: Three-phase power system



Compensation
If we use translation it is time-depending. Combination of DR is constant.
We use 3D CGA.
We rotate in the plane 𝜌 the angle of rotation is 𝜑 and then shrink circle
(of Iorig (t)) to circle (of I (t)). The ratio of their radius is cos (𝜑).

R = cos(𝜑/2) − sin(𝜑/2) ne123

∥n∥

D = 1 + 1 − | cos(𝜑) |
1 + | cos(𝜑) | e∞ ∧ e0

I = DRIorigR−1D−1

It can be useful to express in terms of exp():

R = exp
(
−1

2
𝜑

e23 + e31 + e12√
3

)
D = exp(−0.5ln( |cos (𝜑) |)e∞ ∧ e0)

This holds for |𝜑 | < 𝜋/2.



Four-phase system

We want to transform

i1(t) =Imcos (t𝜔), i2(t) = Imsin(t𝜔),
i3(t) = − Imcos (t𝜔), i4(t) = −Imsin(t𝜔) (3)

to the signal

i ′1(t) =I ′mcos (t𝜔 + 𝜑), i ′2(t) = I ′msin(t𝜔 + 𝜑),
i ′3(t) = − I ′mcos (t𝜔 + 𝜑), i ′4(t) = −I ′msin(t𝜔 + 𝜑) . (4)

We want to transform points I (t) = [i1(t), i2(t), i3(t), i4(t)] from circle(3)
to points I ′ (t) = [i ′1(t), i ′2(t), i ′3(t), i ′4(t)] from circle (4) for any time t.



Compensation

Using the ideas above, in 4D CGA that transformation can be represented
as composition of two commutative rotations

R = R𝜎R𝜋 ,

where the angle of rotation is 𝜑:

R𝜋 = cos(𝜑/2) − sin(𝜑/2)e12,

R𝜎 = cos(𝜑/2) − sin(𝜑/2)e34,

so

R =R𝜋R𝜎 = R𝜎R𝜋 = (cos(𝜑/2) − sin(𝜑/2)e12) (cos(𝜑/2) − sin(𝜑/2)e34)
= cos2(𝜑/2) − cos(𝜑/2) sin(𝜑/2) (e12 + e34) + sin2(𝜑/2)e1234.

And also the dilation.
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Thank you for your attention.


