Asymptotic spectrum duality and entanglement polytopes

Jeroen Zuiddam

1. Can we achieve enonomies of scale?

2. Asymptotic spectrum duality

3. Entanglement polytopes

1. Economies of scale

Repeated task (computation, communication, ...)

 $T^{\otimes n}$ $(n \to \infty)$

$$\lim_{n\to\infty} f(T^{\otimes n})^{1/n}$$

 $T^{\otimes (n+o(n))} \ge S^{\otimes n}$

Sometimes have a simple characterisation!

Computer science: amortization/direct-sum problem

$$f(T^{\otimes n}) = f(T)^n ?$$

H.M.S. Agamemnon Laying the Atlantic Telegraph Cable, 1858

37 39999065653469

a. Shannon

The Bell System Technical Journal

Vol. XXVII

July, 1948

No. 3

A Mathematical Theory of Communication

By C. E. SHANNON

INTRODUCTION

THE recent development of various methods of modulation such as PCM and PPM which exchange bandwidth for signal-to-noise ratio has intensified the interest in a general theory of communication. A basis for such a theory is contained in the important papers of Nyquist¹ and Hartley² on this subject. In the present paper we will extend the theory to include a number of new factors, in particular the effect of noise in the channel, and

01000110 00001110 n

- large n (using the channel many times)
- redundancy and error-correction

Graphs

zero-error communication, Shannon (1956)

noisy typewriter

confusability graph

using the channel twice

Problem: Determine
$$\Theta(G) \coloneqq \lim_{n \to \infty} \alpha (G^{\boxtimes n})^{1/n}$$

Lower bounds: mostly ad hoc constructions Upper bounds: Lovász theta, Haemers bound

 $\alpha(C_5^{\boxtimes 2}) = 5$ {(a, a), (c, b), (e, c), (b, d), (d, e)}

b. Matrix multiplication

 n^2 arithmetic operations

 n^3 arithmetic operations ?

Strassen

Problem: Determine ω

Strassen

2.37....

2000

Upper bounds: various intricate constructions Lower bounds: "flattening rank"

Tensors

matrix multiplication map $M_n: \mathbb{C}^{n \times n} \times \mathbb{C}^{n \times n} \to \mathbb{C}^{n \times n}$ tensor $M_n \in \mathbb{C}^{n^2} \otimes \mathbb{C}^{n^2} \otimes \mathbb{C}^{n^2}$ $M_n = \sum_{i \in [n]} \sum_{j \in [n]} \sum_{k \in [n]} e_{i,j} \otimes e_{j,k} \otimes e_{k,i}$ Problem: Determine R(T)

matrix multiplication algorithms tensor rank decompositions tensor rank $R(M_n)$ $T = \sum_{i=1}^{n} u_i \otimes v_i \otimes w_i$ asymptotic rank $\underline{R}(T) \coloneqq \lim_{n \to \infty} R(T^{\otimes n})^{1/n}$

 $2^{\omega} = R(M_2)$

Asymptotic rank conjecture: equal to "flattening rank"

c. Quantum entanglement

tripartite pure states: $T \in \mathbb{C}^d \otimes \mathbb{C}^d \otimes \mathbb{C}^d$

SLOCC transformation: $T \ge S$ iff $\exists A_1, A_2, A_3, (A_1 \otimes A_2 \otimes A_3)T = S$ (stochastic local operations and classical communication

 $R(T) \le r \text{ iff } T \le I_r \coloneqq \sum_{i=1}^r |i\rangle \otimes |i\rangle \otimes |i\rangle$

asymptotic SLOCC transformation: $T \gtrsim S$ iff $T^{\otimes (n+o(n))} \geq S^{\otimes n}$

Problem: Determine if $T \gtrsim S$

 $\omega = 2 \text{ iff } I_4 \gtrsim M_2$

2. Asymptotic spectrum duality

Strassen (1986–1991) Wigderson–Zuiddam (2025)

Asymptotic spectrum of tensors

Definition

 $X = \text{set of all functions } \phi : \{\text{tensors}\} \rightarrow \mathbb{R}_{\geq 0} \text{ that are}$

 \geq -monotone, \otimes -multiplicative, \oplus -additive, and normalised

Theorem

 $T \gtrsim S \iff \phi(T) \geq \phi(S)$ for every $\phi \in X$

 $\underset{\leftarrow}{R}(T) = \max_{\phi \in X} \phi(T)$

knowing X solves our problems!

analogously defined asymptotic spectrum of graphs characterizes Shannon capacity!

Topological point of view

- $T\mapsto \hat{T}\coloneqq [\phi(T)]_{\phi\in X}\in \mathbb{R}^X$
 - $T \gtrsim S$ iff $\hat{T} \geq \hat{S}$ pointwise
 - $\underline{R}(T)$ is the pointwise max of \widehat{T}

Holy grail: what is X?

Flattening ranks $T \in \mathbb{C}^d \otimes \mathbb{C}^d \otimes \mathbb{C}^d \longrightarrow T_1 \in \mathbb{C}^d \otimes (\mathbb{C}^d \otimes \mathbb{C}^d) \longrightarrow R_1(T) := R(T_1)$

Lemma $R_i \in X$ for every i = 1,2,3

Question

Is this all of X? (If so, then $\omega = 2$ and many more consequences.)

No! We can make more using quantum information

3. Entanglement polytopes

How can we classify entanglement in $\mathbb{C}^d \otimes \mathbb{C}^d \otimes \mathbb{C}^d$?

3. Entanglement polytopes $T \in \mathbb{C}^d \otimes \mathbb{C}^d \otimes \mathbb{C}^d$

Quantum information

 $T_1 \in \mathbb{C}^d \otimes (\mathbb{C}^d \otimes \mathbb{C}^d)$ $r_i(T) = \operatorname{spec} \frac{T_i T_i^*}{\|T_i T_i^*\|}$

Representation theory

Schur-Weyl duality $\left(\mathbb{C}^d \otimes \mathbb{C}^d \otimes \mathbb{C}^d\right)^{\otimes n} = \bigoplus_{\lambda} V_{\lambda}$

 $\Delta(T) = \text{closure } \{\lambda/n : P_{\lambda} T^{\otimes n} \neq 0\}$

 $\Delta(T) = \{ \left(r_1(S), r_2(S), r_3(S) \right) : S \in \overline{\operatorname{GL} \cdot T} \}$

— marginals reachable by approximative SLOCC

Theorem

- These descriptions coincide
- $\Delta(T)$ is a bounded convex polytope with rational coefficients
- If $S \in \overline{\operatorname{GL} \cdot T}$ then $\Delta(S) \subseteq \Delta(T)$

Quantum functionals

Christandl, Vrana, Zuiddam (QIP, JAMS, STOC 2018)

"Interpolate" between the flattening ranks $\{R_1, R_2, R_3\} \subseteq X$

 $F_{\theta}(T) \coloneqq \exp \max \left\{ \theta_1 H(p_1) + \theta_2 H(p_2) + \theta_3 H(p_3) : p \in \Delta(T) \right\}$

Lemma

 $R_1(T) = F_{(1,0,0)}(T)$

Theorem $F_{\theta} \in X$ for every probability vector θ

There are numerical algorithms (tensor scaling) to approximate $F_{\theta}(T)$

Applications: barriers for matrix multiplication algorithms.

Recent work

van den Berg et al. (STOCC 2025)

Algorithm for computing entanglement polytopes

Based on a characterization of Franz

$$\Delta(T) = \cap_u \operatorname{conv} \operatorname{supp} \left(u \cdot g \cdot T \right)$$

- Not efficient, but practical for 3x3x3 and 4x4x4 tensors
- Several applications

Polytopes of all 3x3x3 tensors

With the algorithm we determined the entanglement polytopes of all 3x3x3 tensors

Previously: 2x2x2

New: 3x3x3

25 polytopes in dimension 2+2+2

https://github.com/qi-rub/explicit-tensor-moment-polytopes

Entanglement polytope separation

- Observed with algorithm
- Proved a separation between moment polytopes of matrix multiplication tensors and diagonal tensors

$$M_n = \sum_{i \in [n]} \sum_{j \in [n]} \sum_{k \in [n]} e_{i,j} \otimes e_{j,k} \otimes e_{k,i} \qquad I_r = \sum_{i \in [r]} e_i \otimes e_i \otimes e_i$$

Theorem

 $\Delta(I_{n^2})$ is not contained in $\Delta(M_n)$

(more generally true for I_c with $n^2 - n + 1 < c$)

- That is, I_{n^2} can reach marginal spectra that cannot be reached from M_n
- Limitation on expressibility of tensor networks (bond dimension)

Explicit non-free tensors

Freeness plays an important role on the theory of tensors

- Any set $A \subseteq [d]^3$ is called free if every two elements differ in at least two coordinates, e.g. $\{(1,1,2), (1,2,1), (2,1,1)\}$ is free
- A tensor $T \in \mathbb{C}^d \otimes \mathbb{C}^d \otimes \mathbb{C}^d$ is called free if its support is free for in some basis
- Freeness is easy to certify, but only existence of non-free tensors was known

Theorem

is not free (and this extends to nxnxn)

Proof via moment polytopes

Open problems

- 1. What is the asymptotic spectrum of tensors?
- 2. What is its structure (convexity)?
- 3. What information can we get from entanglement polytopes?
- 4. Determine the entanglement polytope of matrix multiplication tensors, diagonal tensors