Asymptotic spectrum duality
and entanglement polytopes

Jeroen Zuiddam



1. Can we achieve
enonomies of scale? 2. Asymptotic spectrum duality 3. Entanglement polyftopes




1. Economies of scale

Repeated task (computation, communication, ...)
lim f (T )
T®"  (n - o) n—o

T®m+o(n)) > g®n

Computer science: amortization/direct-sum problem

F(T®") = f(ry" 2

>

Sometimes have a simple
characterisation!






o]

\
.
]
|
'
»
1
>
s
.

gL

R

HMS. Agamemnoh
YIng g Aﬂaﬂ‘rlcﬂ.‘.



——— — T — — = -
37, g — ] okt -’; 50 45 35 30 25 10 5 SRR 2 ) 0 A% B
P N AT o TR < ‘y i 4
7 3 NORWAY ( 5
£ GREENLAN L S':X?J& 4 = R
GREENLAND 5o & 3 '} A
Z} ] n i:msu;nl?\;
REFERENCE $ M A P o 2 * had (fistian
S,
Distanze from Bonavista Light to Cape SpearLight | 73.Mil LS -4 POPESHAGH
i B % y OF THE ¢

Fort William

""v,
- tg
A hart for Harboug
_Acean Steamers  Laghty
4
¢

7

7/ HARBOUR OF
ST JOHN'S,

UNDLAND.

NEWF

Ny %(‘ Cod

Sy

St Johais Ve

SConmey Newfoundlargd & St Jgliis S0

clween g and, Boston, Vew York:

LANTIC CABLE (natural size)

65

r Brunswick

AR — § -
1059015 —~ e
A G029+ RS
. b S I
3 @ PR e S T
While = #
W . y m’“'“’ i Rt
CEF | ok ’ ;. EaoTE
JREN & ot gt JohnS_ = imerica
S 2 betwel Cable D
. qpade_ b : a
L o - steamels S ne Tete gl
B s S Submadd

Aef
e
CRaye # NEWFOL

Cape SpearLight to Cape Race Light 5

ot comnimn . J  SUBMARINE TELEGRAPH

Distance betwven $¢Johnis Newfoundl. & Glasgow 1865, 2 NORTH
Southampt. 200, L BETWEEN AMERICA & EUROPE y
Gatway 1647, 5 SE A

Fas WITH ITS VARIOUS COMMUNICATIONS 3
ON THE TWO CONTINENTS.
= Y ; Vew York 1050, e IRC R T
by Ouedec 965, :

Valentia B. 1640 .

Lrverpodl 2010 ,

Boston. 870 ,

¥

AMSTERDA!

The Hagug §
/.

®

x Glasgow| _ ——

o Quebee.

INDT,

Lith. 12 Frankfort St, \.y:

& A EL e R e R e
x —— g ade betweer Srdol 25 Seaie
S Trac e 3
Sydney = 5 T vl g 3
fonil ol § B4y OF
3 x BISCAY
o CRace
OF NEwee A g G
g A NK S UNp, ayonne
AN =
O
‘ ¥ Santander
™
Profile of the bottom of the Aflautic as sounded 1856 by the U. S. Steamer "Arctic.”

; e il T e 8 3 S e 8. s N N g s s 8 ey W N BLE A SP 3

® Rem 8§38 & 8 @ & 8 3 8 3 ) 3 8 N SN s R 2 b 3 N S S * SPAIXN

8§ 3853835 8 .8 B S § 8 N2 e 8 < L S N %8 g s FeRat s R S % I 3 vaienmia BaY oo
e MADRID
60 y % 40 3 B 2 i ) R RSPy SRS R s e SRS B pEs
eaisal). S90S ey 45 i g v 40 35 25 20 15 5
<\’~ = ": a \4 \i




a. Shannon

The Bell System Technical Journal

Vol. XXVII July, 1948 No. 3

A Mathematical Theory of Communication
By C. E. SHANNON

INTRODUCTION

HE recent development of various methods of modulation such as PCM
and PPM which exchange bandwidth for signal-to-noise ratio has in-
tensified the interest in a general theory of communication. A basis for
such a theory is contained in the important papers of Nyquist' and Hartley?
on this subject. In the present paper we will extend the theory to include a

niimher nf nepw fartare in nartienlar the effacrt af nnice in the channal and

« large n (using the channel many times)

() ool .
glooe’ © cooel o « redundancy and error-correction

n



G I"CI p hS zero-error communication, Shannon (1956)

noisy typewriter confusability graph using the channel twice
© " C a(Ce) = 2
{a,c}

n—>0o

[Problem: Determine ©(G) = lim a(G&”)l/n]

a(CgEZ) =5

Lower bounds: mostly ad hoc constructions {(a,a),(c,b),(ec),(b,d),(de)}
Upper bounds: Lovdsz theta, Haemers bound



b. Matrix multiplication

\a \ — \ n? arithmetic operations

no
no
—“' [ |
n l 2 / = ( n’ arithmetic operations ?




Strassen

Standard algorithm:  n® operations
Strassen's algorithm: cn?® operations, better for large n (1969)

cn®
3

Optimal exponent is nhot known 28

2.37...

[ Problem: Determine a)]

o B
Upper bounds: various intricate constructions 1969 2000
Lower bounds: “flattening rank” Strassen



Tensors

matrix multiplication map
< Mn : (Cnxn X (Cnxn N (Cnxn

tensor
M,eC” ®C" QC"

Mn:y 7 yei,j®ej,k®ek,i /\
I€[n] jE[n] k€[n]

(" )

[ Problem: Defermine B(T)J

Asymptotic rank conjecture: equal to “flattening rank”

Survey: Bldaser, Fast matrix multiplication

matrix multiplication algorithms

tfensor rank decompositions

\/ tensor rank R(M,,)
r
T=>u®vew
i=1

asymptotic rank R(T) = limR(T®n)1/”

n—>00

29 = B(Mz)



c. Quantum entanglement

tripartite pure states: T € C* ® C* ® C“

SLOCC transformation: T = S iff 3A,,A,, A3, (A @ A, Q A;)T =S

stochastic local operations
and classical communication

R(T) <riff T <1, = X_11)) ® |i) ® |i)

asymptotic SLOCC transformation: T = S iff T®M+o(m) > g®n

[Problem: Determine if T = S] w=2Iiff [, = M,




2. Asym p'|'()'|'| C S pec'h"u m dual |-|-y Strassen (1986-1991)

Wigderson-Zuiddam (2025)

Shannon capacity Asymptotic tfensor rank Asymptotic SLOCC
0(G) R(T) >

~

N— _/
v

overarching theory

Economies of scale ——> Relations between problems ——> Well-behaved functions —> Topological/geometric structure and distance

( )

Can we achieve ‘
economies of scale? + Asymptotic spectrum ‘ ‘ “ ‘

:
' Disconnected Connected Convex
< ' Asymptotic specftrum distance '

Strong duality theorem (asympotic spectrum duality)

~




Asymptotic spectrum of tensors

Definition

X = set of all functions ¢ : {tensors} = R,y that are

>-monotone, @-multiplicative, @-additive, and normalised

Theorem

T=z=S & ¢(T)=¢(S) forevery p € X

R(T) = rqr;ggf/)(T)

> knowing X solves our problems!

analogously defined asymptotic spectrum
of graphs characterizes Shannon capacity!



Topological point of view

I T = [$(D)]gex € RY N

« T=Siff T>S pointwise
 R(T) is the pointwise max of T >
U

< 5

compact topological space



Holy grail: what is X7

Flaftening ranks
TEC'RCIRCH w T, eC?RCIRCY w Ry(T):=R(Ty)

Lemma
R; € X for every i = 1,2,3

Question
Is this all of X? (If so, then w = 2 and many more consequences.)

No! We can make more using quantum information



3. Enfanglement polytopes

How can we classify entanglement in C¢ ® C* ® C% ?

U-, GL-orbifs Entanglement polytopes

coarser
ﬁ




3. Enfanglement polytopes reci®c? @ c?

Quantum information Representation theory
T €C QR (C*®CH Schur-Weyl duality
T ®
ri(T) — Spec% ((Cd (1% ca (1% (Cd) n_ @)LV;L
A(T) = {(11(5),12(8),13(5)) : S € GL - T} A(T) = closure {A/n : P; T®" % 0}

Theorem \ marginals reachable by approximative SLOCC

* These descriptions coincide
 A(T) is a boundedconvex polytope with rational coefficients
« IfSe€GL-T then A(S) € A(T)



Quantum functionals Christandl, Vrana, Zuiddam (QIP, JAMS, STOC 2018)

‘Interpolate” between the flattening ranks {R4, R,, R3} € X
Fo(T) := exp max {6,H(p1) + 0,H(pz) + 63H(p3) : p € A(T)}

Lemma
R4 (T) =F (1,0,0) (T)

Theorem
Fy € X for every probability vector 6

There are numerical algorithms (tfensor scaling) to approximate Fg(T)

Applications: barriers for matrix multiplication algorithms.



RQCQ n-l- WO rk van den Berg et al. (STOCC 2025)

Algorithm for computing entfanglement polyfopes

e Based on a characterization of Franz

A(T) =n, convsupp (u-g-T)

* Not efficient, but practical for 3x3x3 and 4x4x4 tensors
* Several applications



Polyfopes of all 3x3x3 tensors

With the algorithm we defermined the entanglement polytopes of
all 3x3x3 tensors

Previously: 2x2x2

T4 N

New: 3x3x3

25 polytopes in dimension 2+2+2
https://github.com/qi-rub/explicit-tensor-moment-polytopes



—ntanglement polyfope separation

* Observed with algorithm

* Proved a separation between moment polytopes of
matrix multiplication tensors and diagonal tensors

M, -77 yel,®e,k®ekl L=) a®a®e

i€[n] jE[n te[r]

Theorem
A(l,2) is not contained in A(My,) (more generally true for I, with n? —n + 1 < ¢)

* That is, [,,2 can reach marginal spectra that cannot be reached from M,
« Limitation on expressibility of tensor networks (bond dimension)



Explicit hon-free fensors

Freeness plays an important role on the theory of tfensors

* Any set A € [d]? is called free if every two elements differ in at least two
coordinates, eg. {(1,1,2),(1,2,1), (2,1,1)} is free

e Atensor T € C? ® C* ® C% is called free if its support is free for in some
basis

* Freeness is easy to certify, but only existence of non-free tensors was known

Theorem

1 00 0{0 0O O0O0O|0O0O0OO0|[0O10O0 O]
000o0lo100looooloo 1 ol isnotfree(and this extends to nxnxn)
O 00 0lOOOO0OIOOT1TO0/00O01
0001000100010000- Proof via moment polytopes



Open problems

1. What is the asymptotic spectrum of tensors?
2. What is its structure (convexity)?
3. What information can we get from entanglement polytopes?

4. Determine the entanglement polytope of matrix multiplication
tfensors, diagonal tensors



