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Chapter 1

Introduction

Volker Strassen published in 1969 his famous algorithm for multiplying any
two n× n matrices using only O(n2.81) rather than O(n3) arithmetical opera-
tions [Str69]. His discovery marked the beginning of a still ongoing line of research
in the field of algebraic complexity theory; a line of research that by now touches
several fields of mathematics, including algebraic geometry, representation theory,
(quantum) information theory and combinatorics. This dissertation is inspired by
and contributes to this line of research.

No further progress followed for almost 10 years after Strassen’s discovery,
despite the fact that “many scientists understood that discovery as a signal to
attack the problem and to push the exponent further down” [Pan84]. Then in 1978
Pan improved the exponent from 2.81 to 2.79 [Pan78, Pan80]. One year later, Bini,
Capovani, Lotti and Romani improved the exponent to 2.78 by constructing fast
“approximative” algorithms for matrix multiplication and making these algorithms
exact via the method of interpolation [BCRL79, Bin80]. Cast in the language
of tensors, the result of Bini et al. corresponds to what we now call a “border
rank” upper bound. The idea of studying approximative complexity or border
complexity for algebraic problems has nowadays become an important theme in
algebraic complexity theory.

Schönhage then obtained the exponent 2.55 by constructing a fast algorithm
for computing many “disjoint” small matrix multiplications and transforming
this into an algorithm for one large matrix multiplication [Sch81]. The upper
bound was improved shortly after by works of Pan [Pan81], Romani [Rom82],
and Coppersmith and Winograd [CW82], resulting in the exponent 2.50. Then
in 1987 Strassen published the laser method with which he obtained the expo-
nent 2.48 [Str87]. The laser method was used in the same year by Coppersmith
and Winograd to obtain the exponent 2.38 [CW87]. To do this they invented a
method for constructing certain large combinatorial structures. This method, or
actually the extended version that Strassen published in [Str91], we now call the
Coppersmith–Winograd method. All further improvements on upper bounding
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4 Chapter 1. Introduction

the exponent essentially follow the framework of Coppersmith and Winograd,
and the improvements do not affect the first two digits after the decimal point
[CW90, Sto10, Wil12, LG14].

Define ω to be the smallest possible exponent of n in the cost of any matrix
multiplication algorithm. (The precise definition will be given in Section 1.1.) We
call ω the exponent of matrix multiplication. To summarise the above historical
account on upper bounds: ω < 2.38. On the other hand, the only lower bound we
currently have is the trivial lower bound 2 ≤ ω.

The history of upper bounds on the matrix multiplication exponent ω, which
began with Strassen’s algorithm and ended with the Strassen laser method
and Coppersmith–Winograd method, is well-known and well-documented, see
e.g. [BCS97, Section 15.13]. However, there is remarkable work of Strassen on a
theory of lower bounds for ω and similar types of exponents, and this work has
received almost no attention in the literature. This theory of lower bounds is the
theory of asymptotic spectra of tensors and is the topic of a series of papers by
Strassen [Str86, Str87, Str88, Str91, Str05].

In the foregoing, the word tensor has popped up twice—namely, when we
mentioned border rank and just now when we mentioned asymptotic spectra
of tensors—but we have not discussed at all why tensors should be relevant for
understanding the complexity of matrix multiplication. First, we give a mini course
on tensors. A k-tensor t = (ti1,...,ik)i1,...,ik is a k-dimensional array of numbers from
some field, say the complex numbers C. Thus, a 2-tensor is simply a matrix. A
k-tensor is called simple if there exist k vectors v1, . . . , vk such that the entries of t
are given by the products ti1,...,ik = (v1)i1 · · · (vk)ik for all indices ij. The tensor
rank of t is the smallest number r such that t can be written as a sum of r simple
tensors. Thus the tensor rank of a 2-tensor is simply its matrix rank. Returning to
the problem of finding the complexity of matrix multiplication, there is a special
3-tensor, called the matrix multiplication tensor, that encodes the computational
problem of multiplying two 2× 2 matrices. This 3-tensor is commonly denoted
by 〈2, 2, 2〉. It turns out that the matrix multiplication exponent ω is exactly the
asymptotic rate of growth of the tensor rank of the “Kronecker powers” of the
tensor 〈2, 2, 2〉. This important observation follows from the fundamental fact that
the computational problem of multiplying matrices is “self-reducible”. Namely, we
can multiply two matrices by viewing them as block matrices and then performing
matrix multiplication at the level of the blocks.

We wrap up this introductory story. To understand the computational com-
plexity of matrix multiplication, one should understand the asymptotic rate of
growth of the tensor rank of a certain family of tensors, a family that is obtained
by taking powers of a fixed tensor. The theory of asymptotic spectra is the theory
of bounds on such asymptotic parameters of tensors.

The main story line of this dissertation concerns the theory of asymptotic
spectra. In Section 1.1 of this introduction we discuss in more detail the computa-
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tional problem of multiplying matrices. In Section 1.2 we discuss the asymptotic
spectrum of tensors and discuss a new result: an explicit description of infinitely
many elements in the asymptotic spectrum of tensors. In Section 1.3 we consider
a new higher-order Coppersmith–Winograd method.

The theory of asymptotic spectra of tensors is a special case of an abstract
theory of asymptotic spectra of preordered semirings, which we discuss in Sec-
tion 1.4. In Section 1.5 we apply this abstract theory to a new setting, namely
to graphs. By doing this we obtain a new dual characterisation of the Shannon
capacity of graphs.

The second story line of this dissertation is about degeneration, an algebraic
kind of approximation related to the concept of border rank of Bini et al. We discuss
degeneration in the context of tensors in Section 1.6. There is a combinatorial
version of tensor degeneration which we call combinatorial degeneration. We
discuss a new result regarding combinatorial degeneration in Section 1.7. Finally,
Section 1.8 is about a new result concerning degeneration for algebraic branching
programs, an algebraic model of computation.

We finish in Section 1.9 with a discussion of the organisation of this dissertation
into chapters.

1.1 Matrix multiplication

In this section we discuss in more detail the computational problem of multiplying
two matrices.

Algebraic complexity theory studies algebraic algorithms for algebraic problems.
Roughly speaking, algebraic algorithms are algorithms that use only the basic
arithmetical operations + and × over some field, say R or C. For an overview of the
field of algebraic complexity theory the reader should consult [BCS97] and [Sap16].
A fundamental example of an algebraic problem is matrix multiplication.

If we multiply two n×n matrices by computing the inner products between any
row of the first matrix and any column of the second matrix, one by one, we need
roughly 2 · n3 arithmetical operations (+ and ×). For example, we can multiply
two 2×2 matrices with 12 arithmetical operations, namely 8 multiplications and 4
additions:(

a11 a12

a21 a22

)(
b11 b12

b21 b22

)
=

(
a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22

)
.

Since matrix multiplication is a basic operation in linear algebra, it is worthwhile
to see if we can do better than 2 · n3. In 1969 Strassen [Str69] published a better
algorithm. The base routine of Strassen’s algorithm is an algorithm for multiplying
two 2× 2 matrices with 7 multiplications, 18 additions and certain sign changes:(

a11 a12

a21 a22

)(
b11 b12

b21 b22

)
=

(
x1 + x4 − x5 + x7 x3 + x5

x2 + x4 x1 + x3 − x2 + x6

)
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with

x1 = (a11 + a22)(b11 + b22)

x2 = (a21 + a22)b11

x3 = a11(b12 − b22)

x4 = a22(−b11 + b21)

x5 = (a11 + a12)b22

x6 = (−a11 + a21)(b11 + b12)

x7 = (a12 − a22)(b21 + b22).

The general routine of Strassen’s algorithm multiplies two n × n matrices by
recursively dividing the matrices into four blocks and applying the base routine
to multiply the blocks (this is the self-reducibility of matrix multiplication that
we mentioned earlier). The base routine does not assume commutativity of the
variables for correctness, so indeed we can take the variables to be matrices. After
expanding the recurrence we see that Strassen’s algorithm uses 4.7·nlog2 7 ≈ 4.7·n2.81

arithmetical operations. Over the years, Strassen’s algorithm was improved by
many researchers. The best algorithm known today uses C · n2.38 arithmetical
operations where C is some constant [CW90, Sto10, Wil12, LG14]. The exponent
of matrix multiplication ω is defined as the infimum over all real numbers β
such that for some constant Cβ we can multiply, for any n ∈ N, any two n × n
matrices with at most Cβ · nβ arithmetical operations. From the above it follows
that ω ≤ 2.38. From a simple flattening argument it follows that 2 ≤ ω. We are
left with the following well-known open problem: what is the value of the matrix
multiplication exponent ω?

The constant C for the currently best algorithm is impractically large (for a
discussion of this issue see e.g. [Pan18]). For a practical fast algorithm one should
either improve C or find a balance between C and the exponent of n. We will
ignore the size of C in this dissertation and focus on the exponent ω.

1.2 The asymptotic spectrum of tensors

We now discuss the theory of asymptotic spectra for tensors.
Let s and t be k-tensors over a field F, s ∈ Fn1⊗· · ·⊗Fnk , t ∈ Fm1⊗· · ·⊗Fmk .

We say s restricts to t and write s > t if there are linear maps Ai : Fni → Fmi
such that (A1 ⊗ · · · ⊗ Ak)(s) = t. Let [n] := {1, . . . , n} for n ∈ N. We define
the product s ⊗ t ∈ Fn1m1 ⊗ · · · ⊗ Fnkmk by (s ⊗ t)(i1,j1),...,(ik,jk) = si1,...,iktj1,...,jk
for i ∈ [n1] × · · · [nk] and j ∈ [m1] × · · · × [mk]. This product generalizes the
well-known Kronecker product of matrices. We refer to this product as the tensor
(Kronecker) product. We define the direct sum s ⊕ t ∈ Fn1+m1 ⊗ · · · ⊗ Fnk+mk

by (s ⊕ t)`1,...,`k = s`1,...,`k if ` ∈ [n1] × · · · × [nk], (s ⊕ t)n1+`1,...,nk+`k = t`1,...,`k if
` ∈ [m1]× · · · × [mk] and (s⊕ t)`1,...,`k = 0 for the remaining indices.
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The asymptotic restriction problem asks to compute the infimum of all real
numbers β ≥ 0 such that for all n ∈ N

s⊗βn+o(n) > t⊗n.

We may think of the asymptotic restriction problem as having two directions,
namely to find

1. obstructions, “certificates” that prohibit s⊗βn+o(n) > t⊗n, or

2. constructions, linear maps that carry out s⊗βn+o(n) > t⊗n.

Ideally, we would like to find matching obstructions and constructions so that we
indeed learn the value of β.

What do obstructions look like? We set β equal to one; it turns out that it
is sufficient to understand this case. We say s restricts asymptotically to t and
write s >∼ t if

s⊗n+o(n) > t⊗n.

What do obstructions look like for asymptotic restriction >∼? More precisely: what
do obstructions look like for >∼ restricted to a subset S ⊆ {k-tensors over F}?
Let us assume S is closed under direct sum and tensor product and contains
the diagonal tensors 〈n〉 :=

∑n
i=1 ei ⊗ · · · ⊗ ei for n ∈ N, where e1, . . . , en is the

standard basis of Fn. Let X(S) be the set of all maps φ : S → R≥0 that are

(a) monotone under restriction >,

(b) multiplicative under the tensor Kronecker product ⊗,

(c) additive under the direct sum ⊕,

(d) normalised to φ(〈n〉) = n at the diagonal tensor 〈n〉.

The elements φ ∈ X(S) are called spectral points of S. The set X(S) is called the
asymptotic spectrum of S.

Spectral points φ ∈ X(S) are obstructions! Let s, t ∈ S. If s >∼ t, then
by definition we have a restriction s⊗n+o(n) > t⊗n. Then (a) and (b) imply the
inequality φ(s)n+o(n) = φ(s⊗n+o(n)) > φ(t⊗n) = φ(t)n. This implies φ(s) > φ(t).
We negate that statement: if φ(s) < φ(t) then not s >∼ t. In that case φ is an
obstruction to s >∼ t.

The remarkable fact is that X(S) is a complete set of obstructions for >∼.
Namely, for s, t ∈ S the asymptotic restriction s >∼ t holds if and only if we have
φ(s) > φ(t) for all spectral points φ ∈ X(S). This was proven by Volker Strassen
in [Str86, Str88]. His proof uses a theorem of Becker and Schwarz [BS83] which is
commonly referred to as the Kadison–Dubois theorem (for historical reasons) or
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the real representation theorem. (We will say more about this completeness result
in Section 1.4.)

Let us introduce tensor rank and subrank, and their asymptotic versions. The
tensor rank of t is the size of the smallest diagonal tensor that restricts to t,
R(t) := min{r ∈ N : t 6 〈r〉}, and the subrank of t is the size of the largest
diagonal tensor to which t restricts, Q(t) = max{r ∈ N : 〈r〉 6 t}. Asymptotic
rank is defined as

˜R(t) = lim
n→∞

R(t⊗n)1/n

and asymptotic subrank is defined as

˜Q(t) = lim
n→∞

Q(t⊗n)1/n.

From Fekete’s lemma it follows that ˜Q(t) = supn Q(t⊗n)1/n and ˜R(t) = infn R(t⊗n)1/n.
One easily verifies that every spectral point φ ∈ X(S) is an upper bound on asymp-
totic subrank and a lower bound on asymptotic rank for any tensor t ∈ S,

˜Q(t) ≤ φ(t) ≤ ˜R(t).

Strassen used the completeness of X(S) for 6∼ to prove ˜Q(t) = minφ∈X(S) φ(t) and

˜R(t) = maxφ∈X(S) φ(t). One should think of these expressions as being dual to the
defining expressions for ˜Q and ˜R.

We mentioned that Strassen was motivated to study the asymptotic spectrum
of tensors by the study of the complexity of matrix multiplication. The precise
connection with matrix multiplication is as follows. The matrix multiplication
exponent ω is characterised by the asymptotic rank ˜R(〈2, 2, 2〉) of the matrix
multiplication tensor

〈2, 2, 2〉 :=
∑

i,j,k∈[2]

eij ⊗ ejk ⊗ eki ∈ F4 ⊗ F4 ⊗ F4

via ˜R(〈2, 2, 2〉) = 2ω. We know the trivial lower bound 2 ≤ ω, see Section 4.3. We
know the (nontrivial) upper bound ω ≤ 2.3728639, which is by Coppersmith and
Winograd [CW90] and improvements by Stothers [Sto10], Williams [Wil12] and
Le Gall [LG14]. It may seem that for the study of matrix multiplication only the
asymptotic rank ˜R is of interest, and that the asymptotic subrank ˜Q is just a toy
parameter. Asymptotic subrank, however, plays an important role in the currently
best matrix multiplication algorithms. We will discuss this idea in the context of
the asymptotic subrank of so-called complete graph tensors in Section 5.5.

The important message is: once we understand the asymptotic spectrum of
tensors X(S), we understand asymptotic restriction 6∼, the asymptotic subrank ˜Qand the asymptotic rank ˜R of tensors. Of course we should now find an explicit
description of X(S).
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Our main result regarding the asymptotic spectrum of tensors is the explicit
description of an infinite family of elements in the asymptotic spectrum of all
complex tensors X({complex k-tensors}), which we call the quantum function-
als (Chapter 6). Finding such an infinite family has been an open problem
since the work of Strassen. Moment polytopes (studied under the name en-
tanglement polytopes in quantum information theory [WDGC13]) play a key
role here. To each tensor t is associated a convex polytope P(t) collecting
representation-theoretic information about t, called the moment polytope of t.
(See e.g. [Nes84, Bri87, WDGC13, SOK14].) The moment polytope has two
important equivalent descriptions.

Quantum marginal spectra description. We begin with the description
of P(t) in terms of quantum marginal spectra.

Let V be a (finite-dimensional) Hilbert space. In quantum information theory,
a positive semidefinite hermitian operator ρ : V → V with trace one is called
a density operator. The sequence of eigenvalues of a density operator ρ is a
probability vector. We let spec(ρ) = (p1, . . . , pn) be the sequence of eigenvalues of ρ,
ordered non-increasingly, p1 ≥ · · · ≥ pn. Let V1 and V2 be Hilbert spaces. Given a
density operator ρ on V1 ⊗ V2, the reduced density operator ρ1 = tr2 ρ is uniquely
defined by the property that tr(ρ1X1) = tr(ρ(X1⊗IdV2)) for all operators X1 on V1.
The operator ρ1 is again a density operator. The operation tr2 is called the partial
trace over V2. In an explicit form, ρ1 is given by 〈ei, ρ1(ej)〉 =

∑
`〈ei⊗f`, ρ(ej⊗f`)〉,

where the ei form a basis of V1 and the fi form an orthonormal basis of V2 (the
statement is independent of basis choice).

Let Vi be a Hilbert space and consider the tensor product V1 ⊗ V2 ⊗ V3.
Associate with t ∈ V1 ⊗ V2 ⊗ V3 the dual element t∗ := 〈t, ·〉 ∈ (V1 ⊗ V2 ⊗ V3)

∗.
Then ρt := tt∗/〈t, t〉 = t〈t, ·〉/〈t, t〉 is a density operator on V1⊗V2⊗V3. Viewing ρt

as a density operator on the regrouped space V1 ⊗ (V2 ⊗ V3) we may take the
partial trace of ρt over V2⊗V3 as described above. We denote the resulting density
operator by ρt1 := tr23 ρ

t. We similarly define ρt2 and ρt3.
Let V = V1⊗V2⊗V3. Let G = GL(V1)×GL(V2)×GL(V3) act naturally on V .

Let t ∈ V \ 0. The moment polytope of t is

P(t) := P(G · t) := {(spec(ρu1), spec(ρu2), spec(ρu3)) : u ∈ G · t \ 0}.

Here G · t denotes the Zariski closure or, equivalently, the Euclidean closure in V
of the orbit G · t = {g · t : g ∈ G}.

Representation-theoretic description. On the other hand, there is a de-
scription of P(t) in terms of non-vanishing of representation-theoretic multiplicities.
We do not state this description here, but stress that it is crucial for our proofs.

Quantum functionals. For any probability vector θ ∈ Rk (i.e.
∑k

i=1 θ(i) = 1
and θ(i) ≥ 0 for all i ∈ [k]) we define the quantum functional F θ as an optimisation
over the moment polytope:

F θ(t) := max
{

2
∑k
i=1 θ(i)H(x(i)) : (x(1), . . . , x(k)) ∈ P(t)

}
.
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Here H(y) denotes Shannon entropy of the probability vector y. We prove that F θ

satisfies properties (a), (b), (c) and (d) for all complex k-tensors:

Theorem (Theorem 6.11). F θ ∈ X({complex k-tensors}).

To put our result into context: Strassen in [Str91] constructed elements in the
asymptotic spectrum of S = {oblique k-tensors over F} with the preorder 6|S.
The set S is a strict and non-generic subset of all k-tensors over F. These elements
we call the (Strassen) support functionals. On oblique tensors over C, the quantum
functionals and the support functionals coincide. An advantage of the support
functionals over the quantum functionals is that they are defined over any field.
In fact, the support functionals are “powerful enough” to reprove the result of
Ellenberg and Gijswijt on cap sets [EG17]. We discuss the support functionals in
Section 4.4.

1.3 Higher-order CW method

Recall that in the asymptotic restriction problem we have an obstruction direction
and a construction direction. The quantum functionals and the support functionals
provide obstructions. Now we look at the construction direction. Constructions
are asymptotic transformations s⊗βn+o(n) > t⊗n. We restrict attention to the case
that t is a diagonal tensor 〈r〉. Constructions in this case essentially correspond
to lower bounds on the asymptotic subrank ˜Q(s). The goal is now to construct
good lower bounds on ˜Q(s).

Strassen solved the problem of computing the asymptotic subrank for so-called
tight 3-tensors with the Coppersmith–Winograd (CW) method and the support
functionals [CW90, Str91]. The CW method is combinatorial. Let us introduce the
combinatorial viewpoint. Let I1, . . . , Ik be finite sets. We call a set D ⊆ I1×· · ·×Ik
a diagonal if any two distinct elements a, b ∈ D differ in all k coordinates. Let
Φ ⊆ I1×· · ·× Ik. We call a diagonal D ⊆ Φ free if D = Φ∩ (D1×· · ·×Dk). Here
Di = {ai : a ∈ D} is the projection of D onto the ith coordinate. The subrank Q(Φ)
of Φ is the size of the largest free diagonal D ⊆ Φ. For two sets Φ ⊆ I1 × · · · × Ik
and Ψ ⊆ J1 × · · · × Jk we define the product Φ×Ψ ⊆ (I1 × J1)× · · · × (Ik × Jk)
by Φ × Ψ := {((a1, b1), . . . , (ak, bk)) : a ∈ Φ, b ∈ Ψ}. The asymptotic subrank
is defined as ˜Q(Φ) := limn→∞Q(Φ×n)1/n. One may think of Φ as a k-partite
hypergraph and of a free diagonal in Φ as an induced k-partite matching.

How does this combinatorial version of subrank relate to the tensor version of
subrank that we defined earlier? Let t ∈ Fn1⊗· · ·⊗Fnk . Expand t in the standard
basis, t =

∑
i∈[n1]×···×[nk] ti ei1 ⊗ · · · ⊗ eik . Let supp(t) be the support of t in the

standard basis, supp(t) := {i ∈ [n1]×· · ·× [nk] : ti 6= 0}. Then Q(supp(t)) ≤ Q(t).
We want to construct large free diagonals. Let Φ ⊆ I1×· · ·×Ik. We call Φ tight

if there are injective maps αi : Ii → Z such that: if a ∈ Φ, then
∑k

i=1 αi(ai) = 0.
For a set X let P(X) be the set of probability distributions on X. For θ ∈ P([k]) let
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Hθ(Φ) := maxP∈P(Φ)

∑k
i=1 θ(i)H(Pi), where H(Pi) denotes the Shannon entropy

of the ith marginal distribution of P . In [Str91] Strassen used the CW method
and the support functionals to characterise the asymptotic subrank ˜Q(Φ) for
tight Φ ⊆ I1 × I2 × I3. He proved the following. Let Φ ⊆ I1 × I2 × I3 be tight.
Then

˜Q(Φ) = min
θ∈P([3])

2Hθ(Φ) = max
P∈P(Φ)

min
i∈[3]

2H(Pi). (1.1)

We study the higher-order regime Φ ⊆ I1 × · · · × Ik, k ≥ 4:

Theorem (Theorem 5.7). Let Φ ⊆ I1 × · · · × Ik be tight. Then ˜Q(Φ) is lower
bounded by an expression that generalizes the right-hand side of (1.1).

Stating the lower bound requires a few definitions, so we do not state it here.
It is not known whether our new lower bound matches the upper bound given by
quantum or support functionals.

Using Theorem 5.7 we managed to exactly determine the asymptotic subranks
of several new examples. These results in turn we used to obtain upper bounds
on the asymptotic rank of so-called complete graph tensors, via a higher-order
Strassen laser method.

1.4 Abstract asymptotic spectra

Strassen mainly studied tensors, but he developed an abstract theory of asymptotic
spectra in a general setting. In the next section we apply this abstract theory to
graphs. We now introduce the abstract theory. One has a semiring S (think of a
semiring as a ring without additive inverses) that contains N and a preorder 6
on S that (1) behaves well with respect to the semiring operations, (2) induces
the natural order on N, and (3) for any a, b ∈ S, b 6= 0 there is an r ∈ N ⊆ S
with a 6 r · b. We call such a preorder a Strassen preorder. The main theorem
is that the asymptotic version 6∼ of the Strassen preorder is characterised by the
monotone semiring homomorphisms S → R≥0. For a, b ∈ S, let a 6∼ b if there is a

sequence xn ∈ NN with x
1/n
n → 1 when n→∞ and an 6 bnxn for all n ∈ N. Let

X := X(S,6) := {φ ∈ Hom(S,R≥0) : ∀a, b ∈ S a 6 b⇒ φ(a) ≤ φ(b)}.

The set X is called the asymptotic spectrum of (S,6).

Theorem (Strassen). a 6∼ b iff ∀φ ∈ X φ(a) ≤ φ(b).

Strassen applies this theorem to study rank and subrank of tensors. We
define an abstract notion of rank R(a) := min{n ∈ N : a 6 n} and an abstract
notion of subrank Q(a) := max{m ∈ N : m 6 a}. We then naturally have an
asymptotic rank ˜R(a) := limn→∞R(an)1/n and (under certain mild conditions) an
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asymptotic subrank ˜Q(a) := limn→∞Q(an)1/n. In fact ˜R(a) = infn R(an)1/n and

˜Q(a) = supn Q(an)1/n by Fekete’s lemma. The theorem implies the following dual
characterisations.

Corollary (Section 2.8). If a ∈ S with ak > 2 for some k ∈ N, then

˜Q(a) = min
φ∈X

φ(a).

If a ∈ S with φ(a) ≥ 1 for some φ ∈ X, then

˜R(a) = max
φ∈X

φ(a).

In Chapter 2 we will discuss the abstract theory of asymptotic spectra. We
will discuss a proof of the above theorem that is obtained by integrating the proofs
of Strassen in [Str88] and the proof of the Kadison–Dubois theorem of Becker
and Schwarz in [BS83]. We will also discuss some basic properties of general
asymptotic spectra.

1.5 The asymptotic spectrum of graphs

In the previous section we have seen the abstract theory of asymptotic spectra.
We now discuss a problem in graph theory where we can apply this abstract
theory. Consider a communication channel with input alphabet {a, b, c, d, e} and
output alphabet {1, 2, 3, 4, 5}. When the sender gives an input to the channel, the
receiver gets an output according to the following diagram, where an outgoing
arrow is picked randomly (say uniformly randomly):

a 1

b 2

c 3

d 4

e 5

Output 2 has an incoming arrow from a and an incoming arrow from b. We
say a and b are confusable, because the receiver cannot know whether a or b
was given as an input to the channel. In this channel the pairs of inputs
{a, b}, {b, c}, {c, d}, {d, e}, {e, a} are confusable. If we restrict the input set to
a subset of pairwise non-confusable letters, say {a, c}, then we can use the channel
to communicate two messages with zero error. It is clear that for this channel any
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non-confusable set of inputs has size at most two. Can we make better use of the
channel if we use the channel twice? Yes: now the input set is the set of two letter
words {aa, ab, ac, ad, ae, ba, bb, . . .}, and we have a set of pairwise non-confusable
words {aa, bc, ce, db, ed}, which has size 5. Thus “per channel use” we can send at
least

√
5 letters! What happens if we use the channel n times?

The situation is concisely described by drawing the confusability graph of the
channel, which has the input letters as vertices and the confusable pairs of input
letters as edges. For the above channel the confusability graph is the 5-cycle C5:

a

b

cd

e

A subset of inputs that are pairwise non-confusable corresponds to a subset of
the vertices in the confusability graph that contains no edges, an independent set.
The independence number of any graph G is the size of the largest independent
set in G, and is denoted by α(G). If G is the confusability graph of some channel,
then the confusability graph for using the channel n times is denoted by G�n (the
graph product � is called the strong graph product). The question of how many
letters we can send asymptotically translates to computing the limit

Θ(G) := lim
n→∞

α(G�n)1/n,

which exists because α is supermultiplicative under �. The parameter Θ(G) was
introduced by Shannon [Sha56] and is called the Shannon capacity of the graph G.
Computing the Shannon capacity is a nontrivial problem already for small graphs.
Lovász in 1979 [Lov79] computed the value Θ(C5) =

√
5 by introducing and

evaluating a new graph parameter ϑ which is now known as the Lovász theta
number. Already for the 7-cycle C7 the Shannon capacity is not known.

Duality theorem. We propose a new application of the abstract theory of
asymptotic spectra to graph theory. The main theorem that results from this is a
dual characterisation of the Shannon capacity of graphs. For graphs G and H we
say G 6 H if there is a graph homomorphism G→ H, i.e. from the complement
of G to the complement of H. We show graphs are a semiring under the strong
graph product � and the disjoint union t, and 6 is a Strassen preorder on
this semiring. The rank in this setting is the clique cover number χ(·) = χ( · ),
i.e. the chromatic number of the complement. The subrank in this setting is the
independence number α(·). Let X(G) be the set of semiring homomorphisms
from graphs to R≥0 that are monotone under 6. From the abstract theory of
asymptotic spectra we derive the following duality theorem.
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Theorem (Theorem 3.1 (ii)). Θ(G) = minφ∈X(G) φ(G).

In Chapter 3 we will prove Theorem 3.1 and we will discuss the known elements
in X(G), which are the Lovász theta number and a family of parameters obtained
by “fractionalising”.

1.6 Tensor degeneration

We move to the second story line that we mentioned earlier: degeneration. Degen-
eration is a prominent theme in algebraic complexity theory. Roughly speaking,
degeneration is an algebraic notion of approximation defined via orbit closures.

For tensors, for example, degeneration is defined as follows. Let V1, V2, V3

be finite-dimensional complex vector spaces and let V = V1 ⊗ V2 ⊗ V3 be the
tensor product space. Let G = GL(V1) × GL(V2) × GL(V3) act naturally on V .
Let s, t ∈ V . Let G · t = {g · t : g ∈ G} be the orbit of t under G. We say t
degenerates to s, and write t� s, if s is an element in the orbit closure G · t. Here
the closure is taken with respect to the Zariski topology, or equivalently with
respect to the Euclidean topology. One should think of this degeneration � as
a topologically closed version of the restriction preorder ≤ for tensors that we
defined earlier. Degeneration is a “larger” preorder than restriction in the sense
that s� t implies s ≤ t.

In several algebraic models of computation, approximative computations cor-
respond to certain degenerations. In some models such an approximative com-
putation can be turned into an exact computation at a small cost, for example
using the method of interpolation. The currently fastest matrix multiplication
algorithms are constructed in this way, for example.

On the other hand, it turns out that if a lower bound technique for an
algebraic measure of complexity is “continuous” then the lower bounds obtained
with this technique are already lower bounds on the approximative version of
the complexity measure. This observation turns approximative complexity and
degeneration into an interesting topic itself. A research program in this direction
is the geometric complexity theory program of Mulmuley and Sohoni towards
separating the algebraic complexity class VP (and related classes) from VNP
[MS01] (see also [Ike13]).

In this section we briefly discuss three results related to degeneration of tensors
that are not discussed further in this dissertation. Then we will discuss results
on combinatorial degeneration in Section 1.7 and algebraic branching program
degeneration in Section 1.8.

Ratio of tensor rank and border rank. The approximative or degenera-
tion version of tensor rank is called border rank and is denoted by R. It has been
known since the work of Bini and Strassen that tensor rank R and border rank R
are different. How much can they be different? In [Zui17] we showed the following
lower bound. Let k ≥ 3. There is a sequence of k-tensors tn in (C2n)⊗k such that
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R(tn)/R(tn) ≥ k − o(1) when n → ∞. This answers a question of Landsberg
and Micha lek [LM16b] and disproves a conjecture of Rhodes [AJRS13]. Further
progress will most likely require the construction of explicit tensors with high
tensor rank, which has implications in formula complexity [Raz13].

Border support rank. Support rank is a variation on tensor rank, which
has its own approximative version called border support rank. A border support
rank upper bound for the matrix multiplication tensor yields an upper bound on
the asymptotic complexity. This was shown by Cohn and Umans in the context
of the group theoretic approach towards fast matrix multiplication [CU13]. They
asked: what is the border support rank of the smallest matrix multiplication
tensor 〈2, 2, 2〉? In [BCZ17a] we showed that it equals seven. Our proof uses
the highest-weight vector technique (see also [HIL13]). Our original motivation
to study support rank is a connection that we found between support rank and
nondeterministic multiparty quantum communication complexity [BCZ17b].

Tensor rank under outer tensor product. We applied degeneration as
a tool to study an outer tensor product ⊗ on tensors. For s ∈ Cn1 ⊗ · · · ⊗ Cnk

and t ∈ Cm1 ⊗ · · · ⊗ Cm` let s ⊗ t be the natural (k + `)-tensor in Cn1 ⊗ · · · ⊗
Cnk ⊗ Cm1 ⊗ · · · ⊗ Cm` . The products ⊗ and ⊗ differ by a regrouping of the
tensor indices. It is well known that tensor rank is not multiplicative under ⊗.
In [CJZ18] we showed that tensor rank is already not multiplicative under ⊗, a
stronger result. Nonmultiplicativity occurs when taking a power of a tensor whose
border rank is strictly smaller than its tensor rank. This answers a question of
Draisma [Dra15] and Saptharishi et al. [CKSV16].

1.7 Combinatorial degeneration

In the previous section we introduced the general idea of degeneration and discussed
degeneration of tensors. Combinatorial degeneration is the combinatorial analogue
of tensor degeneration. Consider sets Φ ⊆ Ψ ⊆ I1 × · · · × Ik of k-tuples. We
say Φ is a combinatorial degeneration of Ψ and write Ψ � Φ if there are maps
ui : Ii → Z such that for all α ∈ I1 × · · · × Ik, if α ∈ Ψ \ Φ, then

∑k
i=1 ui(αi) > 0,

and if α ∈ Φ, then
∑k

i=1 ui(αi) = 0. We prove that combinatorial asymptotic
subrank is nonincreasing under combinatorial degeneration:

Theorem (Theorem 5.21). If Ψ � Φ, then ˜Q(Ψ) ≥ ˜Q(Φ).

The analogous statement for subrank of tensors is trivially true. The crucial
point is that Theorem 5.21 is about combinatorial subrank. As an example, Theo-
rem 5.21 combined with the CW method yields an elegant optimal construction
of tri-colored sum-free sets, which are combinatorial objects related to cap sets.
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1.8 Algebraic branching program degeneration

We now consider degeneration in the context of algebraic branching programs. A
central theme in algebraic complexity theory is the study of the power of different
algebraic models of computation and the study of the corresponding complexity
classes. We have already (implicitly) used an algebraic model of computation
when we discussed matrix multiplication: circuits.

• A circuit is a directed acyclic graph G with one or more source vertices
and one sink vertex. Each source vertex is labelled by a variable xi or
a constant α ∈ F. The other vertices are labelled by either + or × and
have in-degree 2 (that is, fan-in 2). Each vertex of G naturally computes
a polynomial. The value of G is the element computed at the sink vertex.
The size of G is the number of vertices. (One may also allow multiple sink
vertices in order to compute multiple polynomials, e.g. to compute matrix
multiplication.) Here is an example of a circuit computing xy + 2x+ y − 1.

−1 2 x y source vertices

× ×

+ +

+ sink vertex

Consider the following two models.

• A formula is a circuit whose graph is a tree.

• An algebraic branching program (abp) is a directed acyclic graph G with
one source vertex s, one sink vertex t and affine linear forms over the base
field F as edge labels. Moreover each vertex is labeled with an integer (its
layer) and the arrows in the abp point from vertices in layer i to vertices in
layer i+ 1. The cardinality of the largest layer we call the width of the abp.
The number of vertices we call the size of the abp. The value of an abp is
the sum of the values of all s–t-paths, where the value of an s–t-path is the
product of its edge labels. We say that an abp computes its value. Here is
an example of a width-3 abp computing xy + 2x+ y − 1.
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s

t

x
2

xy−1

The above models of computation give rise to complexity classes. A complexity
class consists of families of multivariate polynomials (fn)n = (f(x1, . . . , xqn)n)n∈N
over some fixed field F. We say a family of polynomials (fn)n is a p-family if the
degree of fn and the number of variables of fn grow polynomially in n. Let VP
be the class of p-families with polynomially bounded circuit size. Let VPe be the
class of p-families with polynomially bounded formula size. For k ∈ N, let VPk be
the class of families of polynomials computable by width-k abps of polynomially
bounded size. Let VPs be the class of p-families computable by skew circuits
of polynomial size. Skew circuits are a type of circuits between formulas and
general circuits. The class VPs coincides with the class of families of polynomials
computable by abps of polynomially bounded size (see e.g. [Sap16]). Ben-Or
and Cleve proved that VP3 = VP4 = · · · = VPe [BOC92]. Allender and Wang
proved VP2 ( VP3 [AW16]. Thus VP2 ( VP3 = VP4 = · · · = VPe ⊆ VPs.
The following separation problem is one of the many open problems regarding
algebraic complexity classes: Is the inclusion VPe ⊆ VPs strict? Motivated by this
separation problem we study the approximation closure of VPe. We mentioned
that Ben-Or and Cleve proved that formula size is polynomially equivalent to
width-3 abp size [BOC92]. Regarding width-2, there are explicit polynomials that
cannot be computed by any width-2 abp of any size [AW16]. The abp model has
a natural notion of approximation. When we allow approximation in our abps,
the situation changes completely:

Theorem (Theorem 7.8). Any polynomial can be approximated by a width-2 abp
of size polynomial in the formula size.

In terms of complexity classes this means VP2 = VPe, where · denotes the
“approximation closure” of the complexity class. The theorem suggests an ap-
proach regarding the separation of VPe and VPs. Namely, superpolynomial lower
bounds on formula size may be obtained from superpolynomial lower bounds on
approximate width-2 abp size. We moreover study the nondeterminism closure of
complexity classes and prove a new characterisation of the complexity class VNP.
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1.9 Organisation

This dissertation is divided into chapters as follows. We will begin with the abstract
theory of asymptotic spectra in Chapter 2. Then we introduce the asymptotic
spectra of graphs and a new characterisation of the Shannon capacity in Chapter 3.
In Chapter 4 we introduce the asymptotic spectrum of tensors, discuss the support
functionals of Strassen for oblique tensors and a characterisation of asymptotic
slice rank of oblique tensors as the minimum over the support functionals. In
Chapter 5 we discuss tight tensors, the higher-order Coppersmith–Winograd
method, the combinatorial degeneration method and applications to the cap set
problem, type sets and graph tensors. In Chapter 6 we introduce an infinite family
of elements in the asymptotic spectrum of complex k-tensors and characterise the
asymptotic slice rank as the minimum over the quantum functionals. Finally, in
Chapter 7 we study algebraic branching programs, and approximation closure and
nondeterminism closure of algebraic complexity classes.



Chapter 2

The theory of asymptotic spectra

2.1 Introduction

This is an expository chapter about the abstract theory of asymptotic spectra of
Volker Strassen [Str88]. The theory studies semirings S that are endowed with a
preorder 6. The main result Theorem 2.13 is that under certain conditions, the
asymptotic version 6∼ of this preorder is characterised by the semiring homomor-
phisms S → R≥0 that are monotone under 6. These monotone homomorphisms
make up the “asymptotic spectrum” of (S,6). For the elements of S we have
natural notions of rank and subrank, generalising rank and subrank of tensors.
The asymptotic spectrum gives a dual characterisation of the asymptotic versions
of rank and subrank. This dual description may be thought of as a “lower bound”
method in the sense of computational complexity theory. In Chapter 3 and
Chapter 4 we will study two specific pairs (S,6).

2.2 Semirings and preorders

A (commutative) semiring is a set S with a binary addition operation +, a binary
multiplication operation ·, and elements 0, 1 ∈ S, such that for all a, b, c ∈ S

(1) + is associative: (a+ b) + c = a+ (b+ c)

(2) + is commutative: a+ b = b+ a

(3) 0 + a = a

(4) · is associative: (a · b) · c = a · (b · c)

(5) · is commutative: a · b = b · a

(6) 1 · a = a

19



20 Chapter 2. The theory of asymptotic spectra

(7) · distributes over +: a · (b+ c) = (a · b) + (a · c)

(8) 0 · a = 0.

As usual we abbreviate a ·b as ab. We denote the sum of n times the element 1 ∈ S
by n ∈ S. A preorder is a relation 4 on a set X such that for all a, b, c ∈ X

(1) 4 is reflexive: a 4 a

(2) 4 is transitive: a 4 b and b 4 c implies a 4 c.

As usual a 4 b is the same as b < a. Let N := {0, 1, 2, . . . , } be the set of natural
numbers and let N>0 := {1, 2, . . .} be the set of strictly-positive natural numbers.
We write ≤ for the natural order 0 ≤ 1 ≤ 2 ≤ 3 ≤ · · · on N.

2.3 Strassen preorders

Let S be a semiring. A preorder 4 on S is a Strassen preorder if

(1) ∀n,m ∈ N n ≤ m in N iff n 4 m

(2) ∀a, b, c, d ∈ S if a 4 b and c 4 d, then a+ c 4 b+ d and ac 4 bd

(3) ∀a, b ∈ S, b 6= 0 ∃r ∈ N a 4 rb.

Recall that for any n ∈ N we denote the sum of n times the element 1 ∈ S
by n ∈ S. Note that condition (1) implies that ∀n,m ∈ N we have n 6= m in N if
and only if n 6= m in S. We thus view N as a subset of S. Note that condition (2)
is equivalent to the condition: ∀a, b, s ∈ S if a 4 b, then a+ s 4 b+ s and as 4 bs.

Let 4 be a Strassen preorder on S. Then 0 4 1 by condition (1). For a ∈ S,
we have a 4 a by reflexivity and thus 0 4 a, by condition (2).

Examples

We give two examples of a semiring with a Strassen preorder. Proofs and formal
definitions are given later.

Graphs. Let S be the set of all (isomorphism classes of) finite simple graphs.
Let G,H ∈ S. Let G t H be the disjoint union of G and H. Let G � H be
the strong graph product of G and H (see Chapter 3). With addition t and
multiplication � the set S becomes a semiring. The 0 in S is the graph with no
vertices and the 1 in S is the graph with a single vertex. Let G be the complement
of G. Define a preorder 6 on S by G 6 H if there is a graph homomorphism
G→ H. Then 6 is a Strassen preorder. We will investigate this semiring further
in Chapter 3.



2.4. Asymptotic preorders 4∼ 21

Tensors. Let F be a field. Let k ∈ N. Let S be the set of all k-tensors over F
with arbitrary format, that is, S = ∪{Fn1 ⊗ · · · ⊗ Fnk : n1, . . . , nk ∈ N}. For
s ∈ Fn1 ⊗ · · · ⊗ Fnk and t ∈ Fm1 ⊗ · · · ⊗ Fmk , let s 6 t if there are linear maps
Ai : Fmi → Fni with (A1⊗· · ·⊗Ak)t = s. We identify any s, t ∈ S for which s 6 t
and t 6 s. Let ⊕ be the direct sum of k-tensors and let ⊗ be the tensor product
of k-tensors (see Chapter 4). With addition ⊕ and multiplication ⊗ the set S
becomes a semiring. The 0 in S is the zero tensor and the 1 in S is the standard
basis element e1⊗ · · · ⊗ e1 ∈ F1⊗ · · · ⊗ F1. The preorder 6 is a Strassen preorder.
We will investigate this semiring further in Chapter 4, Chapter 5, and Chapter 6.

2.4 Asymptotic preorders 4∼
Definition 2.1. Let 4 be a relation on S. Define the relation 4∼ on S by

a2 4∼ a1 if ∃(xN)N ∈ NN ( inf
N∈N

x
1/N
N = 1 and

(
∀N ∈ N aN2 4 aN1 xN

))
. (2.1)

If 4 is a Strassen preorder, then we may in (2.1) replace the infimum infN x
1/N
N

by the limit limN→∞ x
1/N
N , since we may assume xN+M ≤ xNxM (if aN2 4 aN1 xN

and aM2 4 aM1 xM , then aN+M
2 4 aN+M

1 xNxM) and then apply Fekete’s lemma
(Lemma 2.2):

Lemma 2.2 (Fekete’s lemma, see [PS98, No. 98]). Let x1, x2, x3, . . . ∈ R≥0 satisfy
xn+m ≤ xn + xm. Then limn→∞ xn/n = infn xn/n.

Proof. Let y = infn xn/n. Let ε > 0. Let m ∈ N>0 with xm/m < y + ε. Any
n ∈ N can be written in the form n = qm+ r where r is an integer 0 ≤ r ≤ m− 1.
Set x0 = 0. Then xn = xqm+r ≤ xm + xm + · · ·+ xm + xr = qxm + xr. Therefore

xn
n

=
xqm+r

qm+ r
≤ qxm + xr

qm+ r
=
xm
m

qm

qm+ r
+
xr
n
.

Thus

y ≤ xn
n
< (y + ε)

qm

n
+
xr
n
.

The claim follows because xr/n→ 0 and qm/n→ 1 when n→∞.

For a1, a2 ∈ S, if a1 4 a2 then clearly a1 4∼ a2.

Lemma 2.3. Let 4 be a Strassen preorder on S. Then 4∼ is a Strassen preorder
on S.

We call 4∼ the “asymptotic preorder” corresponding to 4.
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Proof. Let a, b, c, d ∈ S. We verify that 4∼ is a preorder.
First, reflexivity. We have a 4 a, so aN 4 aN · 1, so a 4∼ a.
Second, transitivity. Let a 4∼ b and b 4∼ c. This means aN 4 bNxN and

bN 4 cNyN with x
1/N
N → 1 and y

1/N
N → 1. Then aN 4 bNxN 4 cNxNyN . Since

(xNyN)1/N → 1, we conclude a 4∼ c.
We verify condition (1). Let n,m ∈ N. If n ≤ m, then n 4 m, so n 4∼ m. If

n 4∼ m, then nN 4 nMxN , so nN ≤ mNxN , which implies n ≤ m.
We verify condition (2). Let a 4∼ b and c 4∼ d. This means aN 4 bNxN and

cN 4 dNyN . Thus aNcN 4 bNdNxNyN , and so ac 4∼ bd. Assume xN and yN are
nondecreasing (otherwise set xN = maxn≤N xn). Then

(a+ c)N =
N∑
m=0

(
N

m

)
amcN−m 4

N∑
m=0

(
N

m

)
bmdN−mxmyN−m

4
N∑
m=0

(
N

m

)
bmdN−mxNyN = (b+ d)NxNyN .

Thus a+ c 4∼ b+ d.
We verify (3). Let a, b ∈ S, b 6= 0. Then there is an r ∈ N with a 4 rb, and

thus a 4∼ rb.

In the following lemma 4∼∼ denotes the asymptotic preorder associated to the
asymptotic preorder associated to 4.

Lemma 2.4. Let 4 be a Strassen preorder on S. Let a1, a2, b ∈ S.

(i) If a2 + b 4 a1 + b, then a2 4∼ a1.

(ii) If a2b 4 a1b with b 6= 0, then a2 4∼ a1.

(iii) If a2
4∼∼ a1, then a2 4∼ a1.

(iv) If ∃s ∈ S ∀n ∈ N na2 4 na1 + s, then a2 4∼ a1.

Proof. (ii) Let a2b 4 a1b. By an inductive argument similar to the argument we
used to prove (2.4),

∀N ∈ N aN2 b 4 aN1 b. (2.2)

Let m, r ∈ N with 1 4 mb 4 r. (We use b 6= 0.) From (2.2) follows

∀N ∈ N aN2 4 aN2 mb 4 aN1 mb 4 aN1 r.

Thus we conclude a2 4∼ a1.
(iii) Let a2

4∼∼ a1. This means aN2 4∼ aN1 xN with x
1/N
N → 1. This in turn means

that (aN2 )M 4 (aN1 xN)MyN,M with ∀N ∈ N y
1/M
N,M → 1, that is,

aNM2 4 aNM1 xMN yN,M .
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Choose a sequence N 7→MN such that (yN,MN
)1/MN ≤ 2, e.g. given N let MN be

the smallest M for which (yN,M)1/M ≤ 2. Then aNMN
2 4 aNMN

1 xMN
N yN,MN

and

(xMN
N yN,MN

)1/(NMN ) = x
1/N
N (yN,MN

)1/(NMN ) ≤ x
1/N
N 21/N → 1.

We conclude a2 4∼ a1.
(iv) Let s ∈ S with ∀n ∈ N na2 4 na1 + s. We may assume a1 6= 0. Let k ∈ N

with s 4 ka1. Then

∀n ∈ N kna2 4 kna1 + ka1 = ka1(n+ 1). (2.3)

Apply (ii) to (2.3) to get

∀n ∈ N a2n 4∼ a1(n+ 1).

By an inductive argument,

∀N ∈ N aN2 4∼ aN−1
2 a12 4∼ aN−2

2 a2
13 4∼ · · · 4∼ aN1 (N + 1).

Since (N + 1)1/N → 1, a2
4∼∼ a1. From (iii) follows a2 4∼ a1.

(i) Let a2 + b 4 a1 + b. We first prove

∀q ∈ N qa2 + b 4 qa1 + b. (2.4)

By assumption the statement is true for q = 1; suppose the statement is true
for q − 1, then

qa2 + b = (q − 1)a2 + (a2 + b) 4 (q − 1)a2 + (a1 + b)

= ((q − 1)a2 + b) + a1 4 ((q − 1)a1 + b) + a1 = qa1 + b,

which proves the statement by induction. Then ∀n ∈ N na2 4 na1 + b. From (iv)
follows a2 4∼ a1.

2.5 Maximal Strassen preorders

Let P be the set of Strassen preorders on S. For 41,42 ∈ P we write 42 ⊆ 41

if for all a, b ∈ S: a 42 b implies a 41 b. (The notation 42 ⊆ 41 is natural if we
think of the relations 4i as sets of pairs (a, b) with a 4i b.)

Lemma 2.5. Let 4 ∈ P with 4 = 4∼ and a2 64 a1. Then there is an element
4a1a2 ∈ P with 4 ⊆ 4a1a2 and a1 4a1a2 a2.

Proof. For x1, x2 ∈ S, let

x1 4a1a2 x2 if ∃s ∈ S x1 + sa2 4 x2 + sa1.
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The relation 4a1a2 is reflexive, since x + 0 · a2 4 x + 0 · a1. The relation 4a1a2

is transitive: if x1 4a1a2 x2 and x2 4a1a2 x3, then x1 + sa2 4 x2 + sa1 and
x2 + ta2 4 x3 + ta1 for some s, t ∈ S, and so x1 + (t + s)a2 4 x2 + ta2 + sa1 4
x3 + ta1 + sa1 = x3 + (t + s)a1. Thus x1 4a1a2 x3. We conclude that 4a1a2 is a
preorder on S.

We prove that 4a1a2 is a Strassen preorder. If x1 4a1a2 x2 and y1 4a1a2 y2,
then clearly x1 + y1 4a1a2 x2 + y2. If x1 4a1a2 x2 and y ∈ S, then x1y 4a1a2 x2y.
From this follows: if x1 4a1a2 x2 and y1 4a1a2 y2, then x1y2 4a1a2 x2y2.

Let n,m ∈ N. If n ≤ m, then n 4 m, so n 4a1a2 m. If n 6≤ m, then n ≥ m+ 1.
Suppose n 4a1a2 m. Let s ∈ S with n+ sa2 4 m+ sa1. Adding m+ 1 4 n gives

m+ 1 + n+ sa2 4 n+m+ sa1.

Since 4 = 4∼ we may apply Lemma 2.4 (i) to obtain

1 + sa2 4 sa1. (2.5)

From (2.5) follows s 6= 0. From (2.5) also follows

sa2 4 sa1. (2.6)

Since 4 = 4∼ we may apply Lemma 2.4 (ii) to (2.6) to obtain the contradiction

a2 4 a1.

Therefore, n 64a1a2 m. We conclude that 4a1a2 is a Strassen preorder, that
is, 4 ∈ P .

Finally, we have a1 4a1a2 a2, since a1 + 1 · a2 4 a2 + 1 · a1. Also, if x1 4 x2,
then x1 + 0 · a2 4 x2 + 0 · a1, that is, 4 ⊆ 4a1a2 .

Let 4 be a Strassen preorder. Let P4 be the set of Strassen preorders
containing 4 ordered by inclusion ⊆. Let C ⊆ P4 be any chain. Then the
union of all preorders in C is an element of P4 and contains all elements of C.
Therefore, by Zorn’s lemma, P4 contains a maximal element (maximal with
respect to inclusion ⊆).

Lemma 2.6. Let 4 be maximal in P. Then 4 = 4∼.

Proof. Trivially 4 ⊆ 4∼. From Lemma 2.3 we know 4∼ ∈ P. From maximality
of 4 follows 4 = 4∼.

A relation 4 on S is total if: for all a, b ∈ S, a 4 b or b 4 a.

Lemma 2.7. Let 4 be maximal in P. Then 4 is total.

Proof. Suppose 4 is not total, say a1 64 a2 and a2 64 a1. By Lemma 2.5 there is an
element 4a1a2∈ P with 4 ⊆ 4a1a2 and a1 4a1a2 a2. Then 4 is strictly contained
in 4a1a2 , which contradicts the maximality of 4. We conclude 4 is total.
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2.6 The asymptotic spectrum X(S,6)

Definition 2.8. Let S be a semiring with N ⊆ S and let 6 be a Strassen preorder
on S. Let

X(S,6) := {φ ∈ Hom(S,R≥0) : a 6 b⇒ φ(a) ≤ φ(b)}.

We call X(S,6) the asymptotic spectrum of (S,6). We call the elements of
X(S,6) spectral points.

Lemma 2.9. Let 4 ∈ P. For a ∈ S define

φ(a) := inf{ r
s

: r, s ∈ N, sa 4 r},
ψ(a) := sup{u

v
: u, v ∈ N, u 4 va}.

Then for a, b ∈ S holds

φ(ab) ≤ φ(a)φ(b),

φ(a+ b) ≤ φ(a) + φ(b),

a 4 b⇒ φ(a) ≤ φ(b),

φ(1) = 1,

φ(0) = 0

and

ψ(ab) ≥ ψ(a)ψ(b),

ψ(a+ b) ≥ ψ(a) + ψ(b),

a 4 b⇒ ψ(a) ≤ ψ(b),

ψ(1) = 1,

ψ(0) = 0.

and

ψ(a) ≤ φ(a).

If 4 is total, then φ = ψ and φ is the unique semiring homomorphism S → R≥0

that is monotone under 4. If 4 is maximal in P, then a 4 b⇔ φ(a) ≤ φ(b).

Proof. Let a, b ∈ S. We prove φ(a + b) ≤ φ(a) + φ(b). Let sa, sb, ra, rb ∈ N.
Suppose saa 4 ra and sbb 4 rb. Then sasba 4 sbra and sasbb 4 sarb. By addition
sasb(a+b) 4 sbra+sarb. Thus φ(a+b) ≤ ra

sa
+ rb

sb
. We prove ψ(a+b) ≥ ψ(a)+ψ(b).

Suppose ua 4 vaa and ub 4 vbb. Then vbua 4 vavba and vaub 4 vavbb. By addition
vbua + vaub 4 vavb(a+ b). Thus ψ(a+ b) ≥ ua

va
+ ub

vb
.
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We prove φ(ab) ≤ φ(a)φ(b). Suppose saa 4 ra and sbb 4 rb. Then sasbab 4
rarb. Thus φ(ab) ≤ ra

sa

rb
sb

. We prove ψ(ab) ≥ ψ(a)ψ(b). Suppose ua 4 vaa and

ub 4 vbb. Then uaub 4 vavbab. Thus ua
va

ub
vb
≤ ψ(ab).

We prove a 4 b ⇒ φ(a) ≤ φ(b). Suppose sbb 4 rb. From a 4 b follows
sba 4 sbb 4 rb. Thus φ(a) ≤ rb

sb
. The proof for ψ is similar.

One verifies directly that φ(1) = 1, ψ(1) = 1, φ(0) = 0 and ψ(0) = 0.

We prove ψ(a) ≤ φ(a). Let r, s, u, v ∈ N. Suppose u 4 va and sa 4 r. Then
follows su 4 vsa 4 vr. Thus u/v ≤ r/s.

Assume that 4 is total.

We prove ψ(a) ≥ φ(a). Suppose ψ(a) < φ(a). Let r, s ∈ N with ψ(a) < r/s <
φ(a). Then sa 64 r. From totality follows sa < r. Thus ψ(a) ≥ r/s, which is a
contradiction. We conclude ψ(a) = φ(a).

We prove the uniqueness of φ. Let φ1, φ2 be semiring homomorphisms S → R≥0

with a 4 b ⇒ φi(a) ≤ φi(b). Suppose φ1(a) < φ2(a). Let u, v ∈ N with
φ1(a) < u

v
< φ2(a). Then va 64 u, so by totality va < u. Thus φ1(a) ≥ u

v
, which

is a contradiction. This proves uniqueness.

Assume 4 is maximal in P. Lemma 2.6 gives 4 = 4∼. Let a 64 b. From
Lemma 2.4 (iv) follows ∃n na 64 nb+ 1. By totality na < nb+ 1. Apply φ to get
φ(a) ≥ φ(b) + 1

n
. In particular, φ(a) > φ(b).

Remark 2.10. Regarding Lemma 2.9, if 4 is not total, then in general φ 6= ψ.
For example, let S = C({1, 2},R≥0) be the semiring of functions from {1, 2} to
the nonnegative reals with pointwise addition and multiplication, and let 4 be
the pointwise preorder on S. Then for a ∈ S we have that ψ(a) = min(a) and
φ(a) = max(a) so ψ 6= φ.

Lemma 2.11. The map

X(S,6)→ {maximal elements in P6} : φ 7→ 4φ

with 4φ defined by a 4φ b iff φ(a) ≤ φ(b), is a bijection.

Proof. Let φ ∈ X(S,6). One verifies that 4φ is a Strassen preorder and 6 ⊆ 6∼ ⊆
4φ. Let 4 be maximal in P4φ . Lemma 2.7 says that 4 is total. By Lemma 2.9
there is a ψ ∈ X(S,6) with 4 ⊆ 4ψ. Clearly 4φ ⊆ 4ψ. The uniqueness statement
of Lemma 2.9 implies φ = ψ. This means 4φ = 4, that is, 4φ is maximal. We
conclude that the map is well defined.

Let 4 maximal in P6. Then 4 is total. By Lemma 2.9 there is a φ ∈ X(S,6)
with 4 ⊆ 4φ. We conclude the map is surjective.

Let φ, ψ ∈ X(S,6) with 4φ = 4ψ. From Lemma 2.9 follows φ = ψ. We
conclude the map is injective.

Lemma 2.12. Let a, b ∈ S. Then a 6∼ b iff a 4 b for all maximal 4 ∈ P6.
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Proof. Let 4 ∈ P6 be maximal. Then 6∼ ⊆ 4∼ = 4 by Lemma 2.6, so a 6∼ b
implies a 4 b.

Suppose a 66∼ b. Let n ∈ N≥1 with na 66∼ nb+1 (Lemma 2.4 (iv)). By Lemma 2.5
there is an element 4nb+1,na ∈ P with 6∼ ⊆ 4nb+1,na and we may assume 4nb+1,na

is maximal. Then nb+ 1 4nb+1,na na and so a 64nb+1,na b.

2.7 The representation theorem

The following theorem is the main theorem.

Theorem 2.13 ([Str88, Th. 2.4]). Let S be a commutative semiring with N ⊆ S
and let 6 be a Strassen preorder on S. Let X = X(S,6) be the set of 6-monotone
semiring homomorphisms from S to R≥0,

X = X(S,6) = {φ ∈ Hom(S,R≥0) : ∀a, b ∈ S a 6 b⇒ φ(a) ≤ φ(b)}.

For a, b ∈ S let a 6∼ b if there is a sequence (xN) ∈ NN with x
1/N
N → 1 when

N →∞ such that ∀N ∈ N aN 6 bNxN . Then

∀a, b ∈ S a 6∼ b iff ∀φ ∈ X φ(a) ≤ φ(b).

Proof. Let a, b ∈ S. Suppose a 6∼ b. Then clearly for all φ ∈ X we have
φ(a) ≤ φ(b). Suppose a 66∼ b. By Lemma 2.12 there is a maximal 4∈ P6 with
a 64 b. By Lemma 2.11 there is a φ ∈ X with φ(a) > φ(b).

2.8 Abstract rank and subrank R,Q

We generalise the notions of rank and subrank for tensors to arbitrary semirings
with a Strassen preorder. Let a ∈ S. Define the rank

R(a) := min{r ∈ N : a 6 r}

and the subrank

Q(a) := max{r ∈ N : r 6 a}.

Then Q(a) ≤ R(a). Define the asymptotic rank

˜R(a) := lim
N→∞

R(aN)1/N .

Define the asymptotic subrank

˜Q(a) := lim
N→∞

Q(aN)1/N .
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By Fekete’s lemma (Lemma 2.2), asymptotic rank is an infimum and asymptotic
subrank is a supremum as follows,

˜R(a) = inf
N

R(aN)1/N

˜Q(a) = sup
N

Q(aN)1/N when a = 0 or a ≥ 1.

Theorem 2.13 implies that the asymptotic rank and asymptotic subrank have the
following dual characterisation in terms of the asymptotic spectrum. (This is a
straightforward generalisation of [Str88, Th. 3.8].)

Corollary 2.14 (cf. [Str88, Th. 3.8]). For any a ∈ S for which there exists an
element φ ∈ X such that φ(a) ≥ 1, holds

˜R(a) = max
φ∈X

φ(a).

Proof. Let φ ∈ X. For N ∈ N, R(aN) ≥ φ(a)N . Therefore ˜R(a) ≥ φ(a),
and so ˜R(a) ≥ maxφ∈X φ(a). It remains to prove ˜R(a) ≤ maxφ∈X φ(a). We
let x := maxφ∈X φ(a). By assumption x ≥ 1. By definition of x we have

∀φ ∈ X φ(a) ≤ x.

Take the mth power on both sides,

∀φ ∈ X,m ∈ N φ(am) ≤ xm.

Take the ceiling on the right-hand side,

∀φ ∈ X,m ∈ N φ(am) ≤ dxme.

Apply Theorem 2.13 to get asymptotic preorders

∀m ∈ N am 6∼ dx
me.

Then by definition of asymptotic preorder

∀m,N ∈ N amN 6 dxmeN2εm,N for some εm,N ∈ o(N).

Then

∀m,N ∈ N R(amN)1/mN ≤ dxme1/m2εm,N/mN .

From x ≥ 1 follows dxme1/m → x when m → ∞. Choose m = m(N) with
m(N)→∞ as N →∞ and εm(N),N ∈ o(N) to get ˜R(a) = infN R(aN )1/N ≤ x.

Corollary 2.15 (cf. [Str88, Th. 3.8]). For a ∈ S with ∃k ∈ N ak > 2,

˜Q(a) = min
φ∈X

φ(a).
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Proof. Let φ ∈ X. For N ∈ N, Q(aN ) ≤ φ(a)N . Therefore ˜Q(a) ≤ φ(a), so ˜Q(a) ≤
minφ∈X φ(a). It remains to prove ˜Q(a) ≥ minφ∈X φ(a). Let y := minφ∈X φ(a).

From the assumption ak > 2 follows y > 1. By definition of y we have

∀φ ∈ X φ(a) ≥ y.

Take the mth power on both sides,

∀φ ∈ X,m ∈ N φ(am) ≥ ym.

Take the floor on the right-hand side,

∀φ ∈ X,m ∈ N φ(am) ≥ bymc.

Apply Theorem 2.13 to get asymptotic preorders

∀m ∈ N am >∼ by
mc.

Then by definition of asymptotic preorder

∀m,N ∈ N amN2εm,N > bymcN for some εm,N ∈ o(N).

Now we use ak > 2 to get

∀m,N ∈ N amN+kεm,N > bymcN .

Then

∀m,N ∈ N Q(amN+kεm,N )
1

mN+kεm,N ≥ bymc
N

mN+kεm,N .

Choose m = m(N) with m(N) → ∞ as N → ∞ and εm(N),N ∈ o(N) to obtain

˜Q(a) = supN Q(aN)1/N ≥ y.

2.9 Topological aspects

Theorem 2.13 does not tell the full story. Namely, there is also a topological
component, which we will now discuss. Let S be a semiring with N ⊆ S. Let 6 be
a Strassen preorder on S. Let X = X(S,6) be the asymptotic spectrum of (S,6).
For a ∈ S, let

â : X→ R≥0 : φ 7→ φ(a). (2.7)

The map â simply evaluates a given homomorphism φ at a. One may think of â
as the collection (φ(a))φ∈X of all evaluations of the elements of X at a. Let R≥0

have the Euclidean topology. Endow X with the weak topology with respect to
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the family of functions â, a ∈ S. That is, endow X with the coarsest topology
such that each â becomes continuous.

Let C(X,R≥0) be the semiring of continuous functions X→ R≥0 with addition
and multiplication defined pointwise on X, that is, (f + g)(x) = f(x) + g(x)
and (f · g)(x) = f(x)g(x) for f, g ∈ C(X,R≥0) and x ∈ X. Define the semiring
homomorphism

Φ : S → C(X,R≥0) : a 7→ â,

which maps a to the evaluator â defined in (2.7).

Theorem 2.16 ([Str88, Th. 2.4]).

(i) X is a nonempty compact Hausdorff space.

(ii) ∀a, b ∈ S a 6∼ b iff Φ(a) ≤ Φ(b) pointwise on X.

(iii) Φ(S) separates the points of X.

Proof. Statement (ii) follows from Theorem 2.13.
Statement (iii) is clear.
We prove statement (i). We have 2 66∼ 1, so from Theorem 2.13 follows that X

cannot be empty.
For a ∈ S, let na ∈ N with a ≤ na. Then for φ ∈ X, φ(a) ≤ na, and so

φ(a) ∈ [0, na]. Embed X ⊆
∏

a∈S[0, na] as a set via φ 7→ (φ(a))a∈S. The set∏
a∈S[0, na] with the product topology is compact by the theorem of Tychonoff.
To see that X is closed in

∏
a∈S[0, na], we write X as an intersection of sets,

X =
{
φ ∈

∏
a∈S

[0, na] : φ(0) = 0
}
∩
{
φ ∈

∏
a∈S

[0, na] : φ(1) = 1
}

∩
⋂
b,c∈S

{
φ ∈

∏
a∈S

[0, na] : φ(b+ c)− φ(b)− φ(c) = 0
}

∩
⋂
b,c∈S

{
φ ∈

∏
a∈S

[0, na] : φ(bc)− φ(b)φ(c) = 0
}

∩
⋂
b,c∈S:
b≤c

{
φ ∈

∏
a∈S

[0, na] : φ(b) ≤ φ(c)
}
,

and we observe that the intersected sets are closed,

X = 0̂−1({0}) ∩ 1̂−1({1})

∩
⋂
b,c∈S

(
(b+ c)̂− b̂− ĉ

)−1
({0})

∩
⋂
b,c∈S

(
(bc)̂− b̂ĉ

)−1
({0})
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∩
⋂
b,c∈S:
b≤c

(
ĉ− b̂

)−1
([0,∞)).

This implies X is also compact.
Let φ, ψ ∈ X be distinct. Let a ∈ S with φ(a) 6= ψ(a). Then â(φ) 6= â(ψ).

Let U 3 â(φ), V 3 â(ψ) be open and disjoint subsets of R≥0. Then â−1(U) and
â−1(V ) are open and disjoint subsets of X. We conclude that X is Hausdorff.

2.10 Uniqueness

Let S be a semiring with N ⊆ S. Let 6 be a Strassen preorder on S. Let
X = X(S,6) be the asymptotic spectrum of (S,6). The object X is unique in
the following sense.

Theorem 2.17 ([Str88, Cor. 2.7]). Let Y be a compact Hausdorff space. Let
Ψ : S → C(Y,R≥0) be a homomorphism of semirings such that

Ψ(S) separates the points of Y (2.8)

and

∀a, b ∈ S a 6∼ b⇔ Ψ(a) ≤ Ψ(b) pointwise on Y. (2.9)

Then there is a unique homeomorphism (continuous bijection with continuous
inverse) h : Y → X such that the diagram

S

C(X,R≥0) C(Y,R≥0)

ΨΦ

h∗

(2.10)

commutes, where h∗ : φ 7→ φ ◦ h. Namely, let h : y 7→
(
a 7→ Ψ(a)(y)

)
.

Proof. We prove uniqueness. Suppose there are two such homeomorphisms

h1, h2 : Y → X.

Suppose x 6= h2(h
−1
1 (x)) for some x ∈ X. Since Φ(S) separates the points of X,

there is an a ∈ S with Φ(a)(x) 6= Φ(a)(h2(h
−1
1 (x))). Let y = h−1

1 (x) ∈ Y. Then
Φ(a)(h1(y)) 6= Φ(a)(h2(y)). Since (2.10) commutes, Φ(a)(h1(y)) = Ψ(a)(y) and
Φ(a)(h2(y)) = Ψ(a)(y), a contradiction.

We prove existence. Let h : Y → X : y 7→ (a 7→ Ψ(a)(y)). One verifies that h
is well-defined, continuous, injective and that the diagram in (2.10) commutes. It
remains to show that h is surjective. We know that Q · Φ(S) is a Q-subalgebra
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of C(X,R) which separates points and which contains the nonzero constant
function Φ(1), so by the Stone–Weierstrass theorem, Q · Φ(S) is dense in C(X,R)
under the sup-norm. Suppose h is not surjective. Then h(Y) ( X is a proper
closed subset. Let x0 ∈ X \ h(Y) be in the complement. Since X is a compact
Hausdorff space, there is a continuous function f : X→ [−1, 1] with

f(h(Y)) = 1

f(x0) = −1.

We know that f can be approximated by elements from Q · Φ(S), i.e. let ε > 0,
then there are a1, a2 ∈ S, N ∈ N such that

1
N

(
Φ(a1)(x)− Φ(a2)(x)

)
> 1− ε for all x ∈ h(Y)

1
N

(
Φ(a1)(x0)− Φ(a2)(x0)

)
< −1 + ε.

This means Ψ(a1) ≥ Ψ(a2) pointwise on Y, so a1 >∼ a2, but also Φ(a1) 6≥ Φ(a2)
pointwise on X, so a1 6>∼ a2. This is a contradiction.

2.11 Subsemirings

Let (T,+, ·) be a semiring. A subset S ⊆ T is called a subsemiring if 0, 1 ∈ S
and moreover S is closed under + and ·, i.e. for all a, b ∈ S holds a + b ∈ S
and a · b ∈ S.

Let S be a subsemiring of a semiring T and let 6 be a Strassen preorder on T .
Of course, 6 also defines a preorder on S. Formally, we define the restriction 6|S
by, for all a, b ∈ S, a 6|S b if and only if a 6 b. Then 6|S is a Strassen
preorder on S. How are the asymptotic spectra X(S,6|S) and X(T,6) related?
Obviously, for φ ∈ X(T,6) we have φ|S ∈ X(S,6|S), where φ|S denotes the
restriction of φ to S. In fact, the uniqueness theorem of Section 2.10 implies
that all elements of X(S,6|S) are restrictions of elements of X(T,6), as follows.
Let X(T,6)|S := {φ|S : φ ∈ X(T,6)}.

Corollary 2.18. Let S be a subsemiring of a semiring T . Let 6 be a Strassen
preorder on T . Then

X(S,6|S) = X(T,6)|S.

Proof. Let

X = X(S,6|S),

Φ : S → C(X,R≥0) : a 7→ â

and let

Y = X(T,6)|S = {φ|S : φ ∈ X(T,6)},
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Ψ : S → C(Y,R≥0) : a 7→
(
φ|S 7→ φ|S(a)

)
.

Then Y is a compact Hausdorff space. Let φ|S, ψ|S ∈ Y be distinct. Then there is
an a ∈ S with φ|S(a) 6= ψ|S(a), so (2.8) holds. For a, b ∈ S, a 6∼ b iff Φ(a) ≤ Φ(b)
iff Ψ(a) ≤ Ψ(b), so (2.9) holds. Therefore,

h : X(T,6)|S → X(S,6|S) : φ|S 7→
(
a 7→ Ψ(a)(φ|S)

)
= φ|S

is a homeomorphism.

2.12 Subsemirings generated by one element

Let S be a semiring and let 6 be a Strassen preorder on S. In this section we
specialise to the simplest type of subsemiring of S. Namely, let a ∈ S and let

N[a] :=
{ k∑
i=0

ni a
i : k ∈ N, ni ∈ N

}
⊆ S

be the subsemiring of S generated by a. We call X(N[a]) = X(N[a],6|N[a]) the
asymptotic spectrum of a.

Corollary 2.19 (cf. [Str88]). If ak > 2 for some k ∈ N, then

˜Q ∈ X(N[a]).

If φ(a) ≥ 1 for some φ ∈ X, then

˜R ∈ X(N[a]).

Proof. Let X = X(N[a]). Let n1, . . . , nq. By Corollary 2.15

˜Q(an1 + · · ·+ anq) = min
φ∈X

φ(an1 + · · ·+ anq).

Since φ is a homomorphism, φ(an1 + · · ·+ anq) = φ(a)n1 + · · ·+ φ(a)nq . Now we
observe that xn1 + · · ·+ xnq is minimised by taking x minimal in the domain. We
conclude

˜Q(an1 + · · ·+ anq) =

q∑
i=1

(
min
φ∈X

φ(a)
)ni = ˜Q(a)n1 + · · ·+ ˜Q(a)nq .

The claim for asymptotic rank ˜R similarly follows from Corollary 2.14.

Remark 2.20. In general, asymptotic subrank ˜Q and asymptotic rank ˜R are not
elements of the asymptotic spectrum. We will see an example in Chapter 4 related
to the matrix multiplication tensor.
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Remark 2.21. Corollary 2.19 is closely related to Schönhage’s “τ -theorem” for
tensors, also called the “asymptotic sum inequality”, see e.g. [BCS97, Section 15.5]
and [Blä13a, Theorem 7.5]. The τ -theorem features in every recent fast matrix
multiplication algorithm (more precisely, every algorithm based on the “laser
method”).

Remark 2.22. Every element φ ∈ X(N[a]) is uniquely determined by the value
of φ(a). We may thus identify X(N[a]) with the set {φ(a) : φ ∈ X(N[a])} ⊆ R≥0.
By Theorem 2.16(i), this set is compact, so it is a union of finitely many closed
intervals.

2.13 Universal spectral points

Having discussed the simplest type of subsemiring in the previous section, let
us discuss the most difficult type of supersemiring. When applying the theory
of asymptotic spectra to some setting, there is a natural largest semiring S in
which the objects of study live. For example, we may study the semiring S of all
(equivalence classes of) 3-tensors of arbitrary format over F. Or we may study
the semiring S of all (isomorphism classes of) finite simple graphs. We refer to
the elements of the asymptotic spectrum X(S) of the “ambient” semiring S by
the term universal spectral points (cf. [Str88, page 119]). The universal spectral
points are the most useful monotone homomorphisms.

2.14 Conclusion

To a semiring S with a Strassen preorder 6, we associated an asymptotic pre-
order 6∼. We proved that this asymptotic preorder is characterised by the
6-monotone semiring homomorphisms S → R≥0, which make up the asymp-
totic spectrum X(S,6) of (S,6). For (S,6) we naturally have a rank function
R : S → N and a subrank function Q : S → N. Their asymptotic versions

˜R(a) = infn R(an)1/n and ˜Q(a) = supn Q(an)1/n coincide with maxφ∈X(S,6) φ(a)

and minφ∈X(S,6) φ(a) respectively, assuming ∃φ ∈ Xφ(a) ≥ 1 and ∃k ∈ N ak > 2
respectively. Unfortunately, we have proved the existence of the asymptotic spec-
trum by nonconstructive means. Explicitly constructing spectral points for a given
pair (S,6) will be a challenging task!

Some remarks about our proof in this chapter. The proof in [Str88] uses the
Kadison–Dubois theorem from the paper of Becker and Schwartz [BS83] as a
black-box. Our presentation basically integrates the proof of Strassen with the
proof of Becker and Schwartz. The notions of rank and subrank were in [Str88] only
discussed for tensors. We considered the straightforward generalisation to arbitrary
semirings with a Strassen preorder. An evident feature of our presentation is that
we do not pass from the semiring to its Grothendieck ring, but instead stay in
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the semiring. In this way we stay close to the “real world” objects. I thank Jop
Briët and Lex Schrijver for this idea. There is a large body of literature on the
Kadison–Dubois theorem, for which we refer to the modern books by Prestel and
Delzell [PD01, Theorem 5.2.6] and Marshall [Mar08, Theorem 5.4.4].





Chapter 3

The asymptotic spectrum of graphs;
Shannon capacity

This chapter is based on the manuscript [Zui18].

3.1 Introduction

This chapter is about the Shannon capacity of graphs, which was introduced by
Claude Shannon in the context of coding theory [Sha56]. More precisely, we will
apply the theory of asymptotic spectra of Chapter 2 to gain a better understanding
of Shannon capacity (and other asymptotic properties of graphs).

We first recall the definition of the Shannon capacity of a graph. Let G be a
(finite simple) graph with vertex set V (G) and edge set E(G). An independent set
or stable set in G is a subset of V (G) that contains no edges. The independence
number or stability number α(G) is the cardinality of the largest independent
set in G. For graphs G and H, the and-product G�H, also called strong graph
product, is defined by

V (G�H) = V (G)× V (H)

E(G�H) =
{
{(g, h), (g′, h′)} :

(
{g, g′} ∈ E(G) or g = g′

)
and

(
{h, h′} ∈ E(H) or h = h′

)
and (g, h) 6= (g′, h′)

}
.

The Shannon capacity Θ(G) is defined as the limit

Θ(G) := lim
N→∞

α(G�N)1/N . (3.1)

This limit exists and equals the supremum supN α(G�N)1/N by Fekete’s lemma
(Lemma 2.2).

Computing the Shannon capacity is nontrivial already for small graphs. Lovász
in [Lov79] computed the value Θ(C5) =

√
5, where Ck denotes the k-cycle graph,

by introducing and evaluating a new graph parameter ϑ which is now known as

37
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the Lovász theta number. For example the value of Θ(C7) is currently not known.
The Shannon capacity Θ is not known to be hard to compute in the sense of
computational complexity. On the other hand, deciding whether α(G) ≤ k, given
a graph G and k ∈ N, is NP-complete [Kar72].

New result: dual description of Shannon capacity

The new result of this chapter is a dual characterisation of the Shannon capacity
of graphs. This characterisation is obtained by applying Strassen’s theory of
asymptotic spectra of Chapter 2. Thus this chapter also serves as an illustration
of the theory of asymptotic spectra.

To state the theorem we need the standard notions graph homomorphism,
graph complement and graph disjoint union. Let G and H be graphs. A graph
homomorphism f : G → H is a map f : V (G) → V (H) such that for all
u, v ∈ V (G), if {u, v} ∈ E(G), then {f(u), f(v)} ∈ E(H). In other words, a graph
homomorphism maps edges to edges. The complement G of G is defined by

V (G) = V (G)

E(G) =
{
{u, v} : {u, v} 6∈ E(G), u 6= v

}
.

The disjoint union G tH is defined by

V (G tH) = V (G) t V (H)

E(G tH) = E(G) t E(H).

For n ∈ N, the complete graph Kn is the graph with V (Kn) = [n] := {1, 2, . . . , n}
and E(Kn) = {{i, j} : i, j ∈ [n], i 6= j}. Thus K0 = K0 is the empty graph
and K1 = K1 is the graph consisting of a single vertex and no edges.

We define the cohomomorphism preorder 6 on graphs by G 6 H if and only
if there is a graph homomorphism G → H from the complement of G to the
complement of H. With this definition, the independence number α(G) equals
the maximum n such that (K1)tn 6 G.

Theorem 3.1. Let S ⊆ {graphs} be a collection of graphs which is closed under
the disjoint union t and the strong graph product �, and which contains the graph
with a single vertex, K1. Define the asymptotic spectrum X(S) as the set of all
maps φ : S → R≥0 such that, for all G,H ∈ S

(1) if G 6 H, then φ(G) ≤ φ(H)

(2) φ(G tH) = φ(G) + φ(H)

(3) φ(G�H) = φ(G)φ(H)

(4) φ(K1) = 1.
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Let G 6∼ H if there is a sequence (xN) ∈ NN with x
1/N
N → 1 when N → ∞ such

that for every N ∈ N

G�N 6 (H�N)txN = H�N t · · · tH�N︸ ︷︷ ︸
xN

.

Then

(i) G 6∼ H iff ∀φ ∈ X(S) φ(G) ≤ φ(H)

(ii) Θ(G) = minφ∈X(S) φ(G).

Statement (ii) of Theorem 3.1 is nontrivial in the sense that Θ is not an element
of X({graphs}). Namely, Θ is not additive under t by a result of Alon [Alo98],
and Θ is not multiplicative under � by a result of Haemers [Hae79], see Ex-
ample 3.10. It turns out that the graph parameter G 7→ maxφ∈X({graphs}) φ(G)
is itself an element of X({graphs}), and is equal to the fractional clique cover
number χf (see Section 3.3.2 and e.g. [Sch03, Eq. (67.112)]). Fritz in [Fri17]
proves (independently of Strassen’s line of work!) a statement that is weaker
than Theorem 3.1. Namely he proves the conclusion of Theorem 3.1 without
the additivity condition (2) and with the normalization condition (4) changed
to φ(Kn) = n for all n ∈ N.

In Section 3.2 we will prove Theorem 3.1 by applying the theory of asymptotic
spectra of Chapter 2 to the appropriate semiring and preorder. In Section 3.3 we
will discuss the elements in the asymptotic spectrum of graphs X({graphs}) that
are currently known to me: the Lovász theta number, the fractional clique cover
number, the fractional orthogonal rank of the complement, and the fractional
Haemers bounds. We moreover prove a sufficient condition for the “fractionalisa-
tion” of a graph parameter to be in the asymptotic spectrum of graphs.

3.2 The asymptotic spectrum of graphs

In this section we prove Theorem 3.1 by applying the theory of asymptotic spectra
to the appropriate semiring.

3.2.1 The semiring of graph isomorphism classes G
A graph homomorphism f : G→ H is a graph isomorphism if f is bijective as
a map V (G)→ V (H) and bijective as a map E(G)→ E(H). We write G ∼= H
if there is a graph isomorphism f : G → H. The relation ∼= is an equivalence
relation on {graphs}, which we call isomorphism. For example, the graphs G
and H given by

V (G) = {a, b, c, d}, E(G) = {{a, b}, {b, c}, {c, d}, {a, d}}
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V (H) = {1, 2, 3, 4}, E(H) = {{1, 3}, {2, 3}, {2, 4}, {1, 4}}

are isomorphic. Let G = {graphs}/∼= be the set of equivalence classes in {graphs}
under ∼=, i.e. the isomorphism classes. The relation 6 is a preorder on G. Recall
that Kn is the complete graph on n vertices, and thus Kn is the graph with n
vertices and no edges.

Lemma 3.2. Let A,B,C ∈ {graphs}.

(i) t and � are commutative and associative operations on G.

(ii) � distributes over t on G, i.e. A� (B t C) = (A�B) t (A� C).

(iii) K1 � A = A.

(iv) K0 � A = K0.

(v) K0 t A = A.

(vi) Kn tKm = Kn+m.

Proof. We leave the proof to the reader.

In other words, Lemma 3.2 says that (G,t,�, K0, K1) is a (commutative)
semiring in which the elements K0, K1, K2, . . . behave like the natural numbers N.
We will denote this semiring simply by G.

3.2.2 Strassen preorder via graph homomorphisms

Let G be the semiring of graphs. Recall that G 6 H if there is a graph homomor-
phism f : G→ H.

Lemma 3.3. The preorder 6 is a Strassen preorder on G. That is, for graphs
A,B,C,D ∈ G we have the following.

(i) For n,m ∈ N, Kn 6 Km iff n ≤ m.

(ii) If A 6 B and C 6 D, then A t C 6 B tD and A� C 6 B �D.

(iii) For A,B ∈ G, if B 6= K0, then there is an r ∈ N with A 6 Kr �B.

Proof. Statement (i) is easy to verify.
We prove (ii). Let f : A→ B and g : C → D be graph homomorphisms. Let

the map f t g : V (A) t V (C)→ V (B) t V (D) be defined by

(f + g)(a) = f(a) for a ∈ V (A)

(f + g)(c) = g(c) for c ∈ V (C).
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One verifies directly that f t g is a graph homomorphism A t C → B tD. Let
the map f � g : V (A)× V (C)→ V (B)× V (D) be defined by

(f � g)(a, c) = (f(a), g(c)).

One verifies directly that f � g is a graph homomorphism A� C → B �D. This
proves (ii).

We prove (iii). Let r = |V (A)|. Then A 6 Kr. By assumption, B 6= K0, so
K1 6 B. Therefore A 6 Kr

∼= Kr � 1 6 Kr �B. This proves (iii).

3.2.3 The asymptotic spectrum of graphs X(G)

We thus have a semiring G with a Strassen preorder 6. We are therefore in the
position to apply the theory of asymptotic spectra (Chapter 2). Let us translate
the abstract terminology to this setting.

Let G 6∼ H if there is a sequence (xN) ∈ NN with (xN)1/N → 1 such that for
every N ∈ N we have G�N 6 H�N �KxN i.e. G�N 6 (H�N)txN .

Let S ⊆ G be a subsemiring. For example, one may take S = G, or one may
choose any set X ⊆ G and let S = N[X] be the subsemiring of G generated by X
under t and �.

The asymptotic spectrum of S is the set X(S) of 6-monotone semiring homo-
morphisms S → R≥0, i.e. all maps φ : S → R≥0 such that, for all G,H ∈ S

(1) if G 6 H, then φ(G) ≤ φ(H)

(2) φ(G tH) = φ(G) + φ(H)

(3) φ(G�H) = φ(G)φ(H)

(4) φ(K1) = 1.

We call X(G) the asymptotic spectrum of graphs.

Theorem 3.4. Let G,H ∈ S. Then G 6∼ H iff ∀φ ∈ X(S) φ(G) ≤ φ(H).

Proof. By Lemma 3.2 we have a semigroup S and by Lemma 3.3 we have a
Strassen preorder 6, so we may apply Theorem 2.13.

We refer to Chapter 2 for a discussion of the topological properties of X(S).

3.2.4 Shannon capacity Θ

Let us discuss the (asymptotic) rank and (asymptotic) subrank for (G,6). Recall
that an independent set in G is a subset of V (G) that contains no edges, and
the independence number α(G) is the cardinality of the largest independent set
in G. A colouring of G is an assignment of colours to the elements of V (G) such
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that connected vertices get distinct colours. The chromatic number χ(G) is the
smallest number of colours in any colouring of G. The clique cover number χ(G)
is defined as the chromatic number of the complement, χ(G) := χ(G).

For the semiring G with preorder 6 the abstract definition of subrank of
Section 2.8 becomes Q(G) = max{m ∈ N : Km 6 G} and the abstract definition
of rank becomes R(G) = min{n ∈ N : G 6 Kn}.
Lemma 3.5.

(i) α(G) = Q(G)

(ii) χ(G) = R(G)

Proof. We leave the proof to the reader.

We see directly that the asymptotic rank is the asymptotic clique cover number,

˜R(G) = lim
N→∞

R(G�N)1/N = lim
N→∞

χ(G�N)1/N =: ˜χ(G)

and that the asymptotic subrank is the Shannon capacity,

˜Q(G) = lim
N→∞

Q(G�N)1/N = lim
N→∞

α(G�N)1/N = Θ(G).

Let S ⊆ G be a subsemiring. Let G ∈ S.

Corollary 3.6. Θ(G) = minφ∈X(S) φ(G).

Proof. Let G be a graph. Either G = K0 or K1 6 G 6 K1 or G contains at least
one edge. In the first two cases the claim is clearly true. In the third case G > K2

and we may thus apply Corollary 2.14.

Corollary 3.7. ˜χ(G) = maxφ∈X(S) φ(G).

Proof. This is Corollary 2.15.

Remark 3.8. As mentioned earlier, it turns out that ˜χ is in fact itself an element
of X(G)! See Section 3.3.2. (This is a striking difference with the situation for
tensors, which we will discuss in Chapter 4; there, both asymptotic rank and
asymptotic subrank are not in the asymptotic spectrum, see Remark 4.4.)

Shannon capacity is not in the asymptotic spectrum

Lemma 3.9. G�G ≥ K|V (G)|.

Proof. Let D = {(u, u) : u ∈ V (G)}. Let (u, u), (v, v) ∈ D. Then either
{u, v} ∈ E(G) or {u, v} ∈ E(G) (exclusive or), and so {(u, u), (v, v)} 6∈ E(G�G).
Therefore, the subgraph in G�G induced by D is isomorphic to K|V (G)|.

Example 3.10. Let G be the Schläfli graph. This is a graph with 27 vertices.
Thus Θ(G � G) ≥ |V (G)| = 27 by Lemma 3.9. On the other hand, Haemers
in [Hae79] showed that Θ(G)Θ(G) ≤ 21. This implies the map Θ is not in X(G),
since it is not multiplicative under �.
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3.3 Universal spectral points

The abstract theory of asymptotic spectra of Chapter 2 does not explicitly describe
the elements of X(G), i.e. the universal spectral points (cf. Section 2.13). However,
several graph parameters from the literature can be shown to be universal spectral
points. In fact, recently in [BC18] the first infinite family of universal spectral
points was found, the fractional Haemers bounds. We give a brief (and probably
incomplete) overview of currently known elements in X(G).

3.3.1 Lovász theta number ϑ

For any real symmetric matrix A let Λ(A) be the largest eigenvalue. The Lovász
theta number ϑ(G) is defined as

ϑ(G) := min{Λ(A) : A ∈ RV (G)×V (G) symmetric, {u, v} 6∈ E(G)⇒ Auv = 1}.

The parameter ϑ(G) was introduced by Lovász in [Lov79]. We refer to [Knu94]
and [Sch03] for a survey. It follows from well-known properties that ϑ ∈ X(G).

3.3.2 Fractional graph parameters

Besides the Lovász theta number there are several elements in X(G) that are
naturally obtained as fractional versions of �-submultiplicative, t-subadditive,
6-monotone maps G → R≥0. For any map φ : G → R≥0 we define a fractional
version φf by

φf (G) := inf
d

φ
(
G�Kd

)
d

. (3.2)

We will discuss several fractional parameters from the literature and prove a
general theorem about fractional parameters.

Fractional clique cover number

We consider the fractional version of the clique cover number χ(G) = χ(G). It is
well-known that χf ∈ X(G), see e.g. [Sch03]. The fractional clique cover number χf
in fact equals the asymptotic clique cover number ˜χ(G) := limN→∞ χ(G�N)1/N

which we introduced in the previous section, see [MP71] and also [Sch03, Th. 67.17].

Fractional Haemers bound

Let rank(A) denote the matrix rank of any matrix A. For any set C of matrices
define rank(C) := min{rank(A) : A ∈ C}. For a field F and a graph G define the
set of matrices

MF(G) := {A ∈ FV (G)×V (G) : ∀u,v Avv 6= 0, {u, v} 6∈ E(G)⇒ Auv = 0}.
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Let RF(G) := rank(MF(G)). The parameter RF(G) was introduced by Haemers
in [Hae79] and is known as the Haemers bound. The fractional Haemers bound RF

f

was studied by Anna Blasiak in [Bla13b] and was recently shown to be�-multiplica-
tive by Bukh and Cox in [BC18]. From this it is not hard to prove that RF

f ∈ X(G).
Bukh and Cox in [BC18] furthermore prove a separation result: for any field F of
nonzero characteristic and any ε > 0, there is a graph G such that for any field F′
with char(F) 6= char(F′) the inequality RF

f(G) < εRF′
f (G) holds. This separation

result implies that there are infinitely many elements in X(G)!

Fractional orthogonal rank

In [CMR+14] the orthogonal rank ξ(G) and its fractional version the projective
rank ξf (G) are studied. It easily follows from results in [CMR+14] that G 7→ ξf (G)
is in X(G).

General fractional parameters

We will prove something general about fractional parameters. Define the lexico-
graphic product GnH by

V (GnH) = V (G)× V (H)

E(GnH) =
{
{(g, h), (g′, h′)} : {g, g′} ∈ E(G)

or (g = g′ and {h, h′} ∈ E(H))
}
.

The lexicographic product satisfies GnH = GnH. Also define the or-product
G ∗H by

V (G ∗H) = V (G)× V (H)

E(G ∗H) =
{
{(g, h), (g′, h′)} : {g, g′} ∈ E(G) or {h, h′} ∈ E(H)

}
.

The or-product and the strong graph product are related by G ∗H = G�H. The
strong graph product gives a subgraph of the lexicographic product, which gives a
subgraph of the or-product,

G�H ⊆ GnH ⊆ G ∗H.

Therefore, G ∗H 6 GnH 6 G�H. Finally, GnKd = G ∗Kd, and of course
G�Kd = Gtd.

We will prove: if φ : G → R≥0 is �-submultiplicative, t-subadditive and
6-monotone, then the fractional parameter φf (defined in (3.2)) is again �-
submultiplicative, t-subadditive and 6-monotone. Moreover, if φ : G → N is
6-monotone and satisfies

∀G,H ∈ G φ(GnH) ≥ φ(GnKφ(H))
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then φf is n-supermultiplicative and, more importantly, φf is �-supermultiplica-
tive.

Lemma 3.11. Let φ : G → R≥0.

(i) If φ is t-superadditive, then φf is t-superadditive.

(ii) If φ is 6-monotone, then φf is 6-monotone.

(iii) If φ is t-subadditive and 6-monotone, then φf is t-subadditive.

(iv) If ∀n ∈ N φ(Kn) = n, then ∀n ∈ N φf (Kn) = n.

(v) If φ is �-submultiplicative and 6-monotone, then φf is �-submultiplicative.

Proof. Let G,H ∈ G. Let d ∈ N.
(i) The lexicographic product distributes over the disjoint union,

(G tH) nKd = (GnKd) t (H nKd).

By superadditivity,

φ((GnKd) t (H nKd)) ≥ φ(GnKd) + φ(H nKd).

Therefore,

φf (G tH) = inf
d

φ((G tH) nKd)

d

= inf
d

φ((GnKd) t (H nKd))

d

≥ inf
d

φ(GnKd)

d
+
φ(H nKd)

d

≥ inf
d1

φ(GnKd1)

d1

+ inf
d2

φ(H nKd2)

d2

= φf (G) + φf (H).

(ii) Let G 6 H. Then G n Kd 6 H n Kd. Thus φ(G n Kd) ≤ φ(H n Kd).
Therefore φf (G) ≤ φf (H).

(iii) We have GnKd 6 G�Kd = Gtd. Thus by monotonicity and subadditivity

φ(GnKd) ≤ dφ(G)

and, for d, e ∈ N,

φ(GnKde) = φ((GnKd) nKe) ≤ eφ(GnKd).
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We use this inequality to get, for d1, d2 ∈ N,

φ(GnKd1)

d1

+
φ(H nKd2)

d2

≥ φ(GnKd1d2) + φ(H nKd1d2)

d1d2

From subadditivity follows

φ(GnKd1d2) + φ(H nKd1d2)

d1d2

≥ φ((GnKd1d2) t (H nKd1d2))

d1d2

=
φ((G tH) nKd1d2)

d1d2

≥ φf (G tH).

We conclude φf (G) + φf (H) ≥ φf (G tH).
(iv) Let n ∈ N. Then φf (Kn) = infd φ(Kn nKd)/d = infd φ(Knd)/d = n.
(v) Let d1, d2 ∈ N. We claim

(G�H) nKd1d2 ≤ (GnKd1)� (H nKd2).

This is the same as saying there is a graph homomorphism

(G�H) nKd1d2 → (GnKd1)� (H nKd2),

which is the same as saying there is a graph homomorphism

(G ∗H) nKd1d2 → (GnKd1) ∗ (H nKd2),

where ∗ denotes the or-product of graphs. One verifies that (g, h, (i, j)) 7→
((g, i), (h, j)) is such a graph homomorphism, proving the claim. The claim
together with monotonicity and submultiplicativity gives

φ((G�H)nKd1d2) ≤ φ((GnKd1)� (H nKd2)) ≤ φ(GnKd1)φ(H nKd2).

Therefore

φf (G�H) = inf
d

φ((G�H) nKd)

d

= inf
d1,d2

φ((G�H) nKd1d2)

d1d2

≤ inf
d1,d2

φ(GnKd1)

d1

φ(H nKd2)

d2

= φf (G)φf (H).

This concludes the proof of the lemma.



3.3. Universal spectral points 47

Lemma 3.12. Let φ : G → N satisfy

∀G,H ∈ G φ(GnH) ≥ φ(GnKφ(H)). (3.3)

Then

inf
H

φ(GnH)

φ(H)
= inf

d

φ(GnKd)

d
.

Proof. From (3.3) follows

φ(GnH)

φ(H)
≥
φ(GnKφ(H))

φ(H)
,

and so

φ(GnH)

φ(H)
≥ inf

d

φ(GnKd)

d
.

We take the infimum over H to get

inf
H

φ(GnH)

φ(H)
≥ inf

d

φ(GnKd)

d
.

The inequality in the other direction,

inf
H

φ(GnH)

φ(H)
≤ inf

d

φ(GnKd)

d
,

is trivially true.

Lemma 3.13. Let φ : G → N be 6-monotone and satisfy

∀G,H ∈ G φ(GnH) ≥ φ(GnKφ(H)).

Then φf is n- and �-supermultiplicative.

Proof. Let A,B ∈ G. We have A�B > AnB, so

φf (A�B) ≥ φf (AnB).

It remains to show φf (AnB) ≥ φf (A)φf (B). We have

φ(AnB nH)

φ(H)
=
φ(An (B nH))

φ(B nH)

φ(B nH)

φ(H)
,

which implies

φ(AnB nH)

φ(H)
≥ inf

H′

φ(AnH ′)

φ(H ′)
inf
H′′

φ(B nH ′′)

φ(H ′′)
= φf (A)φf (B).

Take the infimum over H to obtain φf (AnB) ≥ φf (A)φf (B).

Theorem 3.14. Let φ : G → N be t-additive, �-submultiplicative, 6-monotone
and Kn-normalised and satisfy

∀G,H ∈ G φ(GnH) ≥ φ(GnKφ(H)).

Then φf is in X(G).

Proof. This follows from Lemma 3.11, Lemma 3.12 and Lemma 3.13.
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3.4 Conclusion

In this chapter we introduced a new connection between Strassen’s theory of
asymptotic spectra and the Shannon capacity of graphs. In particular, we charac-
terised the Shannon capacity (which is defined as a supremum) as a minimisation
over elements in the asymptotic spectrum of graphs. Known elements in the
asymptotic spectrum of graphs include the fractional clique cover number, the
Lovász theta number, the projective rank and the fractional Haemers bound. We
are left with a clear goal for future work: find all elements in the asymptotic
spectrum of graphs.



Chapter 4

The asymptotic spectrum of tensors;
exponent of matrix multiplication

This chapter is based on joint work with Matthias Christandl and Péter Vrana [CVZ18].

4.1 Introduction

This chapter is about tensors t ∈ Fn1 ⊗ · · · ⊗ Fnk and their asymptotic properties.
The theory of asymptotic spectra of Chapter 2 was developed by Strassen exactly
for the purpose of understanding the asymptotic properties of tensors. This
chapter is expository and provides the necessary background for understanding
Chapter 5 and Chapter 6.

Let us first define the asymptotic properties of interest and discuss some of
their applications. We need the concepts restriction, tensor Kronecker product
and diagonal tensor. Let s ∈ Fn1 ⊗ · · · ⊗ Fnk and t ∈ Fm1 ⊗ · · · ⊗ Fmk be tensors.
We say s restricts to t, and write s > t, if there are linear maps Ai : Fni → Fmi
such that t = (A1 ⊗ · · · ⊗ Ak) · s. The tensor Kronecker product of s and t is the
element s⊗ t ∈ Fn1m1⊗· · ·⊗Fnkmk with coordinates (s⊗ t)i,j = sitj . We naturally
define the direct sum s ⊕ t ∈ Fn1+m1 ⊗ · · · ⊗ Fnk+mk . We define the diagonal
tensors 〈n〉 =

∑n
i=1 ei ⊗ · · · ⊗ ei for n ∈ N, where e1, . . . , en is the standard basis

of Fn. The tensor rank R(t) is the smallest number n ∈ N such that t can be
written as a sum of simple tensors; a simple tensor being a tensor of the form
v1 ⊗ · · · ⊗ vk. Equivalently, R(t) = min{n ∈ N : t 6 〈n〉}. The asymptotic rank
is the regularisation ˜R(t) = limn→∞R(t⊗n)1/n. While tensor rank is known to be
hard to compute [H̊as90, Shi16], we do not know whether asymptotic rank is hard
to compute.

The exponent of matrix multiplication

The motivating example for studying asymptotic rank is the problem of finding
the exponent of matrix multiplication ω. Recall from the introduction that ω
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is the infimum over a ∈ R such that any two n × n matrices can be multiplied
using O(na) arithmetic operations (in the algebraic circuit model). It turns out
(see [BCS97]) that ω is characterised by the asymptotic rank ˜R(〈2, 2, 2〉) of the
matrix multiplication tensor

〈2, 2, 2〉 =
∑

i,j,k∈[2]

eij ⊗ ejk ⊗ eki ∈ F4 ⊗ F4 ⊗ F4.

Namely ˜R(〈2, 2, 2〉) = 2ω. We know the trivial lower bound 2 ≤ ω, see Section 4.3.
We know the (non-trivial) upper bound ω ≤ 2.3728639, which is by Coppersmith
and Winograd [CW90] and improvements by Stothers, Williams and Le Gall
[Sto10, Wil12, LG14].

Asymptotic subrank and asymptotic restriction

Besides (asymptotic) rank, we naturally define subrank Q(t) = max{m ∈ N :
〈m〉 6 t} and the asymptotic subrank ˜Q(t) = limn→∞Q(t⊗n)1/n. Moreover, we
say s restricts asymptotically to t, written s >∼ t, if there is a sequence of natural
numbers a(n) ∈ o(n) such that for all n ∈ N

s⊗n ⊗ 〈2〉⊗a(n) > t⊗n.

One can prove (see [Str91]) that

s⊗n ⊗ 〈2〉⊗o(n) > t⊗n iff s⊗(n+o(n)) > t⊗n.

Our goal is to understand asymptotic restriction, asymptotic rank and asymptotic
subrank.

More connections: quantum information, combinatorics, algebraic prop-
erty testing

Besides matrix multiplication, other applications of asymptotic restriction of
tensors, asymptotic rank of tensors and asymptotic subrank of tensors include
deciding the feasibility of an asymptotic transformation between pure quantum
states via stochastic local operations and classical communication (slocc) in
quantum information theory [BPR+00, DVC00, VDDMV02, HHHH09], bounding
the size of combinatorial structures like cap sets and tri-colored sum-free sets in
additive combinatorics [Ede04, Tao08, ASU13, CLP17, EG17, Tao16, BCC+17,
KSS16, TS16], see Chapter 5, and bounding the query complexity of certain
properties in algebraic property testing [KS08, BCSX10, Sha09, BX15, HX17,
FK14].

This chapter is organised as follows. In Section 4.2 we briefly discuss the
semiring of tensors, the asymptotic spectrum of tensors, and asymptotic rank and
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subrank. In Section 4.3 we discuss the gauge points, a simple construction of finitely
many elements in the asymptotic spectrum of tensors. In Section 4.4 we discuss
the Strassen support functionals: a family of elements in the asymptotic spectrum
of “oblique” tensors. This family is parametrised by probability distributions
on [k]. In Section 4.5 we discuss an extension of the support functionals, called
the Strassen upper support functionals, which have the potential to be universal.
Finally, in Section 4.6 we prove a new result: we show how asymptotic slice rank
is related to the support functionals.

4.2 The asymptotic spectrum of tensors

Let us properly set up the semiring of tensors and the asymptotic spectrum. For
the proofs we refer to [Str87, Str88, Str91].

4.2.1 The semiring of tensor equivalence classes T
We begin by putting an equivalence relation on tensors. For example, we want to
identify isomorphic tensors and also, for any tensor t ∈ Fn1 ⊗ · · · ⊗ Fnk , we want
to identify t with t⊕ 0, where 0 ∈ Fm1 ⊗ · · · ⊗ Fmk is a zero tensor of any format.

We say s is isomorphic to t, and write s ∼= t, if there are bijective linear maps
Ai : Fmi → Fni such that t = (A1, . . . , Ak) · s.

We say s and t are equivalent, and write s ∼ t, if there are zero tensors
s0 = 0 ∈ Fa1 × · · · × Fak and t0 = 0 ∈ Fb1 × · · · × Fbk such that s ⊕ s0

∼= t ⊕ t0.
The equivalence relation ∼ is in fact the equivalence relation generated by the
restriction preorder 6.

Let T be the set of ∼-equivalence classes of k-tensors over F, for some fixed k
and field F. The direct sum and the tensor product naturally carry over to T ,
and T becomes a semiring with additive unit 〈0〉 and multiplicative unit 〈1〉
(more precisely, the equivalence classes of those tensors, but we will not make this
distinction).

4.2.2 Strassen preorder via restriction

Restriction 6 induces a partial order on T , which behaves well with respect to
the semiring operations, and naturally n ≤ m if and only if 〈n〉 6 〈m〉. Therefore,
restriction 6 is a Strassen preorder on T .

4.2.3 The asymptotic spectrum of tensors X(T )

Let S ⊆ T be a subsemiring. Let

X(S) = X(S,6) = {φ ∈ Hom(S,R≥0) : ∀a, b ∈ S a 6 b⇒ φ(a) ≤ φ(b)}.
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We call X(S) the asymptotic spectrum of S and we call X(T ) the asymptotic
spectrum of k-tensors over F.

Theorem 4.1 ([Str88]). Let s, t ∈ S. Then s . t iff ∀φ ∈ X(S) φ(s) ≤ φ(t).

Proof. This follows from Theorem 2.13.

We refer to Chapter 2 for a discussion of the topological properties of X(S).

Remark 4.2. We mention that X(S) may equivalently be defined with degenera-
tion � instead of restriction ≥. Over C, we say f degenerates to g, written, f � g,
if f ∼= f ′ and g ∼= g′ and g′ is in the Euclidean closure (or equivalently Zariski
closure) of the orbit GLn1 × · · · ×GLnk · f ′. It is a nontrivial fact from algebraic
geometry (see [Kra84, Lemma III.2.3.1] or [BCS97]) that there is a degeneration
f � g if and only if there are matrices Ai with entries polynomial in ε such that
(A1, . . . , Ak) · f = εdg + εd+1g1 + · · · + εd+ege for some elements g1, . . . , ge. The
latter definition of degeneration is valid when C is replaced by an arbitrary field
F and that is how degeneration is defined for an arbitrary field. Degeneration
is weaker than restriction: f ≥ g implies f � g. Asymptotically, however, the
notions coincide: f & g if and only if f⊗n ⊗ 〈2〉⊗o(n) � g⊗n. We mention that,
analogous to restriction, degeneration gives rise to border rank and border subrank,
R(f) = min{r ∈ N : f � 〈r〉} and Q(f) = max{s ∈ N : 〈s〉� f} respectively.

4.2.4 Asymptotic rank and asymptotic subrank

The abstract theory of asymptotic spectra characterises asymptotic subrank and
asymptotic rank as follows.

Corollary 4.3. Let S ⊆ T be a subsemiring. Let a ∈ S. Then

˜Q(a) = min
φ∈X(S)

φ(a) (4.1)

˜R(a) = max
φ∈X(S)

φ(a). (4.2)

Proof. Statement (4.2) follows from Corollary 2.14, since either a = 0 or a > 1.
For statement (4.1), if t⊗k > 2 for some k ∈ N, then we apply Corollary 2.15.
Otherwise, one can show that ˜Q(t) equals 0 or 1 using the gauge points of the
next section (see [Str88, Lemma 3.7]).

Remark 4.4. One verifies that ˜R and ˜Q are 6-monotones and have value n
on 〈n〉. They are not universal spectral points however. Namely, the asymptotic
rank of each of the three tensors

〈2, 1, 1〉 = e1 ⊗ e1 ⊗ 1 + e2 ⊗ e2 ⊗ 1 ∈ F2 ⊗ F2 ⊗ F1

〈1, 1, 2〉 = e1 ⊗ 1⊗ e1 + e2 ⊗ 1⊗ e2 ∈ F2 ⊗ F1 ⊗ F2
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〈1, 2, 2〉 = 1⊗ e1 ⊗ e1 + 1⊗ e2 ⊗ e2 ∈ F1 ⊗ F2 ⊗ F2

equals 2, whereas their tensor product equals the matrix multiplication ten-
sor 〈2, 2, 2〉 whose tensor rank equals 7 and whose asymptotic rank is thus at
most 7, i.e. strictly smaller than 23. Therefore, asymptotic rank is not multiplica-
tive. On the other hand, the asymptotic subrank of each of the above three tensors
equals 1, whereas the asymptotic subrank of 〈2, 2, 2〉 equals 4, see Chapter 5.
Therefore, asymptotic subrank is not multiplicative.

Goal 4.5. Our goal is now to explicitly describe elements in X(T ), universal
spectral points, or more modestly, to describe elements in X(S) for interesting
subsemirings S ⊆ T .

Strassen constructed a finite family of elements in X(T ), the gauge points, and
an infinite family of elements in X({oblique tensors}), the support functionals.
The support functionals are powerful enough to determine the asymptotic subrank
of any “tight tensor”. Tight tensors are discussed in Chapter 5. In Chapter 6 we
construct an infinite family in X({k-tensors over C}), the quantum functionals.
In the rest of this chapter we discuss the gauge points and the support functionals.
We will focus on the case k = 3 for clarity of exposition.

4.3 Gauge points ζ(i)

Strassen in [Str88] introduced a finite family of elements in X(T ), called the gauge
points. We focus on 3-tensors, but the construction generalises immediately to
k-tensors. Let Vi = Fni . Let t ∈ V1 ⊗ V2 ⊗ V3. Let i ∈ [3]. Let flatteni(t) be
the image of t under the grouping V1 ⊗ V2 ⊗ V3 → Vi ⊗ (

⊗
j 6=i Vj). We think

of flatteni(t) as a matrix. Let ζ(i) : T → N : t 7→ rank(flatteni(t)), with rank
denoting matrix rank. We call ζ(1), ζ(2), ζ(3) the gauge points. From the properties
of matrix rank follows directly that ζ(i) is multiplicative under ⊗, additive under ⊕,
monotone under restriction 6 (and under degeneration �) and normalised to 1
on 〈1〉 = e1 ⊗ e1 ⊗ e1.

Theorem 4.6. ζ(1), ζ(2), ζ(3) ∈ X(T ).

Recall, ˜Q(t) ≤ φ(t) ≤ ˜R(t) for all φ ∈ X(T ). In particular, maxi ζ
(i)(t) ≤ ˜R(t).

We do not know whether maxi∈[3] ζ
(i) equals ˜R. To be precise: we do not know any t

for which maxi ζ
(i)(t) < ˜R(t) and we do not know a proof that maxi ζ

(i)(t) = ˜R(t)
for all t. There are various families of tensors t for which maxi ζ

(i)(t) = ˜R(t) is
proven. We will see such a family in Section 5.4.2. For the matrix multiplication
tensor 〈2, 2, 2〉 we have 4 = maxi ζ

(i)(〈2, 2, 2〉) ≤ 2ω, so maxi ζ
(i)(t) = ˜R(t) would

imply that the matrix multiplication exponent ω equals 2.
On the other hand, ˜Q(t) ≤ mini ζ

(i)(t). There exist t for which ˜Q(t) is

strictly smaller than mini∈[3] ζ
(i)(t). To show this strict inequality we need another
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technique of Strassen: the support functionals. These are the topic of the next
section.

4.4 Support functionals ζθ

Strassen in [Str91] constructed an infinite family of elements in the asymptotic
spectrum of “oblique” k-tensors, called the support functionals. In this section
we explain the construction of the support functionals. The support functionals
provide the benchmark for our new quantum functionals (Chapter 6), and are
relevant in the context of combinatorial problems like the cap set problem (Sec-
tion 5.4.2). For clarity of exposition we focus on 3-tensors. The ideas extend
directly to k-tensors.

Oblique tensors are tensors for which in some basis the support has the
following special structure. Let t ∈ Fn1 ⊗ Fn2 ⊗ Fn3 . Let e1, . . . , eni be the
standard basis of Fni . Write t =

∑
i,j,k tijk ei ⊗ ej ⊗ ek. Let [ni] := {1, 2, . . . , ni}.

Let supp(t) := {(i, j, k) : tijk 6= 0} ⊆ [n1] × [n2] × [n3] be the support of t with
respect to the standard basis. Let [ni] have the natural ordering 1 < 2 < · · · < [ni]
and let [n1]× [n2]× [n3] have the product order, denoted by ≤. That is, x ≤ y
if for all i ∈ [3] holds xi ≤ yi. We call supp(t) oblique if supp(t) is an antichain
with respect to ≤, i.e. if any two elements in supp(t) are incomparable with
respect to ≤. We call a tensor t oblique if supp(g · t) is oblique for some group
element g ∈ G(t) := GLn1 × GLn2 × GLn3 . The family of oblique tensors is a
semiring under ⊕ and ⊗.

Not all tensors are oblique. Obliqueness is not a generic property (see Propo-
sition 6.21). However, many tensors that are of interest in algebraic complexity
theory are oblique, notably the matrix multiplication tensors

〈a, b, c〉 :=
∑
i∈[a]

∑
j∈[b]

∑
k∈[c]

eij ⊗ ejk ⊗ eki ∈ Fab ⊗ Fbc ⊗ Fca.

For any finite set X let P(X) be the set of all probability distributions on X.
For any probability distribution P ∈ P(X) the Shannon entropy of P is defined
as H(P ) = −

∑
x∈X P (x) log2 P (x) with 0 log2 0 understood as 0. Given finite

sets X1, . . . , Xk and a probability distribution P ∈ P(X1 × · · · × Xk) on the
product set X1 × · · · ×Xk we denote the marginal distribution of P on Xi by Pi,
that is, Pi(a) =

∑
x:xi=a

P (x) for any a ∈ Xi.

Definition 4.7. Let θ ∈ Θ := P([3]). For t ∈ Fn1 ⊗ Fn2 ⊗ Fn3 \ 0 with supp(t)
oblique define

ζθ(t) := max{2
∑3
i=1 θ(i)H(Pi) : P ∈ P(supp(t))}.

We call the ζθ for θ ∈ Θ the support functionals.
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Theorem 4.8. ζθ ∈ X({oblique}) for θ ∈ Θ.

We work towards the proof of Theorem 4.8. For p ∈ [0, 1] let h(p) be the
binary entropy function, h(p) := −p log2 p − (1 − p) log2(1 − p), i.e. h(p) is the
Shannon entropy of the probability vector (p, 1− p). The following properties of
the Shannon entropy are well-known.

Lemma 4.9.

(i) H(P ⊗Q) = H(P ) +H(Q) for P ∈ P(X1), Q ∈ P(X2).

(ii) H(P ) ≤ H(P1) +H(P2) for P ∈ P(X1 ×X2).

(iii) H(pP⊕(1−p)Q) = pH(P )+(1−p)H(Q)+h(p) for P,Q ∈ P(X), p ∈ [0, 1].

(iv) 2a + 2b = max0≤p≤1 2pa+(1−p)b+h(p) for a, b ∈ R.

For X ⊆ [n1]× [n2]× [n3] let X≤ = {y ∈ [n1]× [n2]× [n3] : ∃x ∈ X y ≤ x} be
the downward closure of X. Let max(X) := {y ∈ X : ∀x ∈ X y ≤ x ⇒ y = x}
be the maximal points of X with respect to ≤. Let Sn be the symmetric group
of permutations of [n]. Then the product group Sn1 × Sn2 × Sn3 acts naturally
on [n1]× [n2]× [n3].

Lemma 4.10. Let t ∈ Fn1 ⊗ Fn2 ⊗ Fn3. For every g ∈ G(t) there is a triple of
permutations w ∈ W (t) := Sn1 × Sn2 × Sn3 with w ·max(supp(g · t)) ⊆ supp(t)≤.

Proof. We prepare for the construction of w. Let n ∈ N. Let e1, . . . , en be
the standard basis of Fn. Let g ∈ GLn. Let f1, . . . , fn with fj = g · ej be the
transformed basis of Fn. Let (Ei)i∈[n] and (Fj)j∈[n] be the complete flags of Fn
with

Ei = Span{ei, ei+1, . . . , en}
Fj = Span{fj, fj+1, . . . , fn}.

Define the map

π : [n]→ [n] : j 7→ max
{
i ∈ [n] : Ei ∩ (fj + Fj+1) 6= ∅

}
. (4.3)

We prove π is injective. Let j, k ∈ [n] with j ≤ k and suppose i = π(j) = π(k).
Let F× := F \ 0. From (4.3) follows

(F×ei + Ei+1) ∩ (fj + Fj+1) 6= ∅ (4.4)

Ei+1 ∩ (fj + Fj+1) = ∅ (4.5)

(F×ei + Ei+1) ∩ (fk + Fk+1) 6= ∅. (4.6)

Suppose j < k. Then from (4.4) and (4.6) we obtain a contradiction to (4.5). We
conclude that j = k. Thus π is injective.
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For each Fni define as above the standard complete flag (Ei
j)j∈[ni] of Fni , the

complete flag (F i
j )j∈[ni] corresponding to the basis given by gi, and the permuta-

tion πi : [ni]→ [ni]. Let w = (π1, π2, π3) ∈ W (t).
We will prove w · max(supp(g · t)) ⊆ supp(t)≤. Let y ∈ max(supp(g · t)).

Let x = w · y. By construction of πi the intersection Ei
xi
∩ (f iyi + F i

yi+1) is not
empty. Choose

f iyi ∈ E
i
xi
∩ (f iyi + F i

yi+1).

Let t∗ be the multilinear map Fn1 × Fn2 × Fn3 → F with t∗(ei, ej, ek) = tijk for all
i ∈ [n1], j ∈ [n2], k ∈ [n3]. Then

t∗(f 1
y1
, f 2
y2
, f 3
y3

) = t∗(f 1
y1
, f 2
y2
, f 3
y3

) +
∑

z∈[n1]×[n2]×[n3]:
z>y

cz t
∗(f 1

z1
, f 2
z2
, f 3
z3

) (4.7)

for some cz ∈ F. Since y is maximal in supp(g·t), the sum over z > y in (4.7) equals
zero. We conclude t∗(f 1

y1
, f 2
y2
, f 3
y3

) = t∗(f 1
y1
, f 2
y2
, f 3
y3

) 6= 0. Thus t∗(E1
x1
×E2

x2
×E3

x3
)

is not zero and thus x ∈ supp(t)≤.

Proof of Theorem 4.8. We prove ζθ on oblique tensors is ⊗-multiplicative, ⊕-
additive, 6-monotone and normalised to 1 on 〈1〉 := e1⊗e1⊗e1. The normalisation
ζθ(〈1〉) = 1 is clear.

We prove ζθ is ⊗-supermultiplicative. Let s ∈ Fn1 ⊗ Fn2 ⊗ Fn3 and let
t ∈ Fm1⊗Fm2⊗Fm3 . Let P ∈ P(supp(t)) and Q ∈ P(supp(s)). Then the product
P ⊗Q ∈ P(supp(s⊗ t)) has marginals Pi⊗Qi. Since H(Pi⊗Qi) = H(Pi)+H(Qi)
(Lemma 4.9(i)), we conclude ζθ(s)ζθ(t) ≤ ζθ(s⊗ t).

We prove ζθ is ⊗-submultiplicative. For P ∈ P(supp(t)) and θ ∈ Θ we use the
notation Hθ(P ) :=

∑3
i=1 θ(i)H(Pi). We naturally identify supp(t) with a subset

of [n1] × [n2] × [n3] × [m1] × [m2] × [m3]. Let P ∈ P(supp(t)). Let P[3] be the
marginal distribution of P on [n1] × [n2] × [n3] and let P3+[3] be the marginal
distribution of P on [m1]× [m2]× [m3]. Then Hθ(P ) ≤ Hθ(P[3]) +Hθ(P3+[3]) by
Lemma 4.9(ii). We conclude ζθ(s⊗ t) ≤ ζθ(s)ζθ(t).

We prove ζθ is ⊕-additive. By definition

ζθ(s⊕ t) = max{2Hθ(P ) : P ∈ P(supp(s⊕ t))}
= max

{
max
0≤p≤1

2Hθ(pP⊕(1−p)Q) : P ∈ P(supp(s)), Q ∈ P(supp(t))
}
.

From Lemma 4.9(iii) and (iv) follows

max
{

max
0≤p≤1

2Hθ(pP⊕(1−p)Q) : P ∈ P(supp(s)), Q ∈ P(supp(t))
}

= max
{

max
0≤p≤1

2pHθ(P )+(1−p)Hθ(Q)+h(p) : P ∈ P(supp(s)), Q ∈ P(supp(t))
}

= max
{

2Hθ(P ) + 2Hθ(Q) : P ∈ P(supp(s)), Q ∈ P(supp(t))
}
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= ζθ(s) + ζθ(t).

We conclude ζθ(s⊕ t) = ζθ(s) + ζθ(t).
We prove ζθ is 6-monotone. Let s 6 t with supp(s) and supp(t) oblique. Then

there are linear maps Ai with s = (A1 ⊗ A2 ⊗ A3) · t. If A1, A2, A3 are of the
form diag(1, . . . , 1, 0, . . . , 0), then ζθ(s) ≤ ζθ(t). Suppose g = (A1, A2, A3) ∈ G(t).
Let P ∈ P(supp(t)) maximise Hθ on P(supp(t)). Let σ ∈ W such that σ · P
has non-increasing marginals. Then Hθ(σ · P ) = Hθ(P ) and σ · P maximises Hθ

on P(supp(σ · t)). Then σ · P maximises Hθ on P(supp(σ · t)≤) by Lemma 4.12
below. Let Q ∈ P(supp(g · t)) maximise Hθ on P(supp(g · t)). By Lemma 4.10
there is a w ∈ W with w · supp(g · t) ⊆ supp(σ · t)≤. Then Hθ(w ·Q) = Hθ(Q) ≤
Hθ(σ · P ) = Hθ(P ). Thus maxP∈P(supp(g·t)) Hθ(P ) ≤ maxP∈supp(t) Hθ(P ). We
conclude ζθ(g · t) ≤ ζθ(t)

The following two lemmas finish the above proof of Theorem 4.8. Recall that
in the proof we defined Hθ(P ) :=

∑3
i=1 θ(i)H(Pi) for θ ∈ Θ.

Lemma 4.11 ([Str91, Prop. 2.1]). Let Φ ⊆ [n1] × [n2] × [n3]. Let P ∈ P(Φ).
Let supp(P ) be the support {x ∈ Φ : P (x) 6= 0}. For x ∈ Φ define hP (x) :=
−
∑3

i=1 θ(i) log2 Pi(xi). Then P maximises Hθ on P(Φ) if and only if

∀x ∈ supp(P ) hP (x) = max
y∈Φ

hP (y). (4.8)

Proof. We write Hθ(P ) in terms of hP ,

Hθ(P ) =
3∑
i=1

θ(i)H(Pi) =
∑

x∈supp(P )

P (x)hP (x). (4.9)

For Q ∈ P(Φ)

lim
ε→0+

d

dε
Hθ

(
(1− ε)P + εQ

)
= lim

ε→0+

d

dε

∑
x

(
(1− ε)P (x) + εQ(x)

)
h(1−ε)P+εQ(x)

=
∑
x

P (x)

( 3∑
i=1

θ(i)
Pi(xi)−Qi(xi)

Pi(xi) ln(2)

)
+
∑
x

(
−P (x) +Q(x)

)
hP (x)

=
∑
x

Q(x)hP (x)−
∑
x

P (x)hP (x).

Therefore, since Hθ is continuous and concave, P maximises Hθ if and only if

∀Q ∈ P(Φ)
∑
x

Q(x)hP (x)−
∑
x

P (x)hP (x) ≤ 0. (4.10)
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We will prove (4.10) is equivalent to (4.8). Suppose
∑

xQ(x)hP (x) ≤
∑

x P (x)hP (x)
for every Q ∈ P(Φ). In particular hP (y) ≤

∑
x P (x)hP (x) for every y ∈ Φ, so

maxy∈Φ hP (y) ≤
∑

x P (x)hP (x). Then maxy∈Φ hP (y) =
∑

x P (x)hP (x). We con-
clude maxy∈Φ hP (y) = hP (x) for every x ∈ supp(P ).

Suppose maxy∈Φ hP (y) = hP (x) for every x ∈ supp(P ). Then hP (y) ≤ hP (x)
for every Q ∈ P(Φ), y ∈ supp(Q), x ∈ supp(P ). We conclude

∑
xQ(x)hP (x) ≤∑

x P (x)hP (x).

Lemma 4.12 ([Str91, Cor. 2.2]). Let Φ ⊆ [n1]× [n2]× [n3]. Let P maximise Hθ

on P(Φ). Suppose Pi is nonincreasing on [ni] for each i ∈ [3]. Then P max-
imises Hθ on P(Φ≤) where Φ≤ is the downward closure of Φ with respect to ≤.

Proof. We know P satisfies (4.8). We will prove P satisfies (4.8) with Φ replaced
by Φ≤. Then we are done by Lemma 4.11. Let x ∈ Φ≤. Then x ≤ y for
some y ∈ Φ. Then (P1(x1), P2(x2), P3(x3)) ≥ (P1(y1), P2(y2), P3(y3)) since each Pi
is nonincreasing. Then hP (x) ≤ hP (y). We conclude maxΦ≤ hP ≤ maxΦ hP . On
the other hand, Φ ⊆ Φ≤. Therefore maxΦ hP ≤ maxΦ≤ hP .

Using the support functionals Strassen managed to fully compute the asymp-
totic spectrum of several semirings generated by oblique tensors. We will see an
example in Section 5.4.2.

4.5 Upper and lower support functionals ζθ, ζθ

In Section 4.4 we defined the support functionals ζθ : {oblique} → R≥0 and
proved that ζθ ∈ X({oblique}). From the general theory of asymptotic spectra
(Chapter 2) we know ζθ is the restriction of some map φ : {tensors} → R≥0

in X(T ). However, the proof of that fact was non-constructive. In other words,
we know that ζθ can be extended to an element of X(T ). In this short section
we discuss a candidate extension proposed by Strassen, called the upper support
functional. We also discuss a companion called the lower support functional.

For arbitrary t ∈ Fn1 ⊗ Fn2 ⊗ Fn3 the upper support functional and the lower
support functional are defined as

ζθ(t) := min
g∈G(t)

max{2Hθ(P ) : P ∈ P(supp(g · t))}

ζθ(t) := max
g∈G(t)

max{2Hθ(P ) : P ∈ P(max(supp(g · t)))}

with G(t) := GLn1 ×GLn2 ×GLn3 and Hθ(P ) :=
∑3

i=1 θ(i)H(Pi). We summarise
the known properties of the upper and lower support functional.

Theorem 4.13 ([Str91]). Let s ∈ Fn1 ⊗ Fn2 ⊗ Fn3 and t ∈ Fm1 ⊗ Fm2 ⊗ Fm3.
Let θ ∈ Θ = P([3]).
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(i) ζθ(〈n〉) = n for n ∈ N.

(ii) ζθ(s⊕ t) = ζθ(s) + ζθ(t).

(iii) ζθ(s⊗ t) ≤ ζθ(s)ζθ(t).

(iv) If s > t, then ζθ(s) ≥ ζθ(t).

Theorem 4.14 ([Str91]). Let s ∈ Fn1 ⊗ Fn2 ⊗ Fn3 and t ∈ Fm1 ⊗ Fm2 ⊗ Fm3.
Let θ ∈ Θ.

(i) ζθ(〈n〉) = n for n ∈ N.

(ii) ζθ(s⊕ t) ≥ ζθ(s) + ζθ(t).

(iii) ζθ(s⊗ t) ≥ ζθ(s)ζθ(t).

(iv) If s > t, then ζθ(s) ≥ ζθ(t).

Theorem 4.15 ([Str91]). ζθ(s⊗ t) ≥ ζθ(s)ζθ(t) and ζθ(t) ≥ ζθ(t) for θ ∈ Θ.

Regarding statement (ii) in Theorem 4.14, Bürgisser [Bür90] shows that the
lower support functional ζθ is not in general additive under the direct sum
when θi > 0 for all i. See also [Str91, Comment (iii)]. In particular, this implies
that the upper support functional ζθ(t) and the lower support functional ζθ(t)
are not equal in general, the upper support functional being additive. In fact,
to show that the lower support functional is not additive, Bürgisser first shows
that when F is algebraically closed the generic value of ζθ on Fn ⊗ Fn ⊗ Fn
equals 2(1−mini θi)n+o(1). On the other hand, Tobler [Tob91] shows that the generic
value of ζθ on Fn ⊗ Fn ⊗ Fn equals n. So even generically ζθ and ζθ are different
on Fn ⊗ Fn ⊗ Fn.

For θ ∈ Θ we say f is θ-robust if ζθ(t) = ζθ(t). We say t is robust if t is θ-robust
for all θ ∈ Θ. Let us try to understand what robust tensors look like. A tensor t
is θ-robust if and only if

ζθ(t) ≤ ζθ(t). (4.11)

The set of θ-robust tensors is closed under ⊕ and ⊗, since

ζθ(s⊕ t) = ζθ(s) + ζθ(t) = ζθ(s) + ζθ(t) ≤ ζθ(s⊕ t),

and

ζθ(s⊗ t) ≤ ζθ(s)ζθ(t) = ζθ(s)ζθ(t) ≤ ζθ(s⊗ t).

For X ⊆ [n1] × [n2] × [n3] we use the notation Hθ(X) := maxP∈P(X) Hθ(P ).
Let t ∈ Fn1 ⊗ Fn2 ⊗ Fn3 \ 0. Equation (4.11) means that there are g, h ∈ G(t)
and P ∈ P(max supp(h · t)) such that Hθ(supp(g · t)) ≤ Hθ(P ). In this case we
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have ζθ(t) = ζθ(t) = 2Hθ(P ). In particular, t is θ-robust if there is a g ∈ G(t) such
that the maximisation Hθ(supp(g · t) is attained by a P ∈ P(max(supp(g · t))).
This criterion is automatically satisfied for all θ when supp(g · t) = max(supp(g · t))
for some g ∈ G(t). Suppose t is oblique. Then supp(g · t) is an antichain
for some g ∈ G(t) and thus supp(g · t) = max supp(g · t). Then t is robust
and ζθ(t) = ζθ(t) = 2Hθ(supp(g·t)).

4.6 Asymptotic slice rank

Slice rank is a variation on tensor rank that was introduced by Terence Tao
in [Tao16] to study cap sets. We will look at cap sets in Section 5.4. Here we
study the relationship between asymptotic slice rank and the support functionals.

Consider the following characterisation of tensor rank. Let a simple tensor be
any tensor of the form v1 ⊗ v2 ⊗ v3 ∈ V1 ⊗ V2 ⊗ V3 with vi ∈ Vi for i ∈ [k]. Then
the rank R(t) of t ∈ V1 ⊗ V2 ⊗ V3 is the smallest number r such that t can be
written as a sum of r simple tensors.

Slice rank is defined similarly, but with simple tensors replaced by slices.
For S ⊆ [k], let VS :=

⊗
i∈S Vi. For j ∈ [k], let j := {j}. A tensor in V1 ⊗ V2 ⊗ V3

is called a slice if it is of the form v ⊗ w with v ∈ Vj and w ∈ Vj for some j ∈ [k]
(under the natural reordering of the tensor legs). Let t ∈ V1 ⊗ V2 ⊗ V3. The slice
rank of t, denoted by SR(t), is the smallest number r such that t can be written
as a sum of r slices. For example, the tensor

W := e1 ⊗ e1 ⊗ e2 + e1 ⊗ e2 ⊗ e1 + e2 ⊗ e1 ⊗ e1 ∈ F2 ⊗ F2 ⊗ F2 (4.12)

has slice rank 2 since we can write W = e1 ⊗ (e1 ⊗ e2 + e2 ⊗ e1) + e2 ⊗ e1 ⊗ e1.
In fact, the slice rank of any element in V1 ⊗ V2 ⊗ V3 is at most mini dimVi. The
tensor rank of W , on the other hand, is known to be 3.

Slice rank is clearly monotone under restriction. The slice rank of the diagonal
tensor 〈r〉 equals r [Tao16]. It follows that subrank is at most slice rank,

Q(t) ≤ SR(t).

The motivation for the introduction of slice rank in [Tao16] was finding upper
bounds on subrank Q(t) and asymptotic subrank ˜Q(t).

The main result of this section is the following theorem. Recall that a tensor t
is oblique if the support supp(g · t) is an antichain for some g ∈ G(t).

Theorem 4.16. Let t be oblique. Then

lim
n→∞

SR(t⊗n)1/n = min
θ∈P([3])

ζθ(t).

Our proof of Theorem 4.16 is based on a proof of Tao and Sawin in [TS16]
and discussions of the author with Dion Gijswijt. The explicit connection between
asymptotic slice rank and the support functionals is new.
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We use Theorem 4.16, before giving its proof, to see that SR is not submulti-
plicative and not supermultiplicative under the tensor product ⊗. In particular we
cannot use Fekete’s lemma Lemma 2.2 to prove that the limit limn→∞ SR(t⊗n)1/n

exists. Thus the existence of the limit is a non-trivial consequence of Theorem 4.16.
Let W as in (4.12). Then SR(W ) = 2. We have ζ(1/3,1/3,1/3)(W ) = 2h(1/3) < 2.

From Theorem 4.16 follows SR(W⊗n) ≤ 2nh(1/3)+o(1). We conclude SR(W⊗n) < 2n

for n large enough. We conclude SR is not supermultiplicative. Now it is also
clear that slice rank is not the same as (border) subrank, since (border) subrank
is supermultiplicative.

Next, the tensors
∑n

i=1 ei⊗ei⊗1,
∑n

i=1 ei⊗1⊗ei,
∑n

i=1 1⊗ei⊗ei have slice rank
one, while their tensor product equals the matrix multiplication tensor 〈n, n, n〉
which has slice rank n2 by Theorem 4.16 and Theorem 5.3 in the next chapter
applied to the tight tensor 〈n, n, n〉. We conclude SR is not submultiplicative.

Slice rank and hitting set number

We study the hitting set number of the support of a tensor. Let Φ ⊆ [n1]×[n2]×[n3].
A hitting set for Φ is a 3-tuple of sets A1 ⊆ [n1], A3 ⊆ [n2], A3 ⊆ [n3] such that for
every a ∈ Φ there is an i ∈ [3] with ai ∈ Ai. We may think of Φ as a 3-partite
3-uniform hypergraph. Then the definition of hitting set says: every edge a ∈ Φ is
hit by an element of some Ai. A hitting set is also called a vertex cover, every
edge being covered by some vertex, or a transversal. The size of the hitting
set (A1, A2, A3) is |A1|+ |A2|+ |A3|. The hitting set number τ(Φ) is the size of
the smallest hitting set for Φ. Let t ∈ Fn1 ⊗ Fn2 ⊗ Fn3 .

Lemma 4.17. Let g ∈ G(t) := GLn1×GLn2×GLn3. Then SR(t) ≤ τ(supp(g · t)).

Proof. This is clear.

Lemma 4.18. Let g ∈ G(t). Then SR(t) ≥ τ(max(supp(g · t))).

Proof. It is sufficient to consider g = e. Let

t =

r1∑
i=1

v1
i ⊗ u1

i +

r2∑
i=1

v2
i ⊗ u2

i +

r3∑
i=1

v3
i ⊗ u3

i

be a slice decomposition. We may assume vj1, . . . , v
j
rj

are linearly independent.

Let Vj = Span{vj1, . . . , vjrj} ⊆ Fnj . Let Wj ⊆ (Fnj)∗ be the elements in the
dual space that vanish on Vj. Let Bj ⊆ Wj be a basis with the following
property: with respect to the standard basis, the matrix with the elements
of Bj as columns is in reduced row echelon form, i.e. each column is of the
form (∗ · · · ∗ 1 0 · · · 0)T and the pivot elements (the 1’s) are all in different rows.
Let Sj ⊆ [nj] be the indices of the pivot element. Let Sj := [nj] \ Sj be the
complement. Then |Sj| = rj . We claim (S1, S2, S3) is a hitting set for max(supp(t)).
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Then r1 + r2 + r3 = |S1|+ |S2|+ |S3| ≥ τ(max(supp(t))). Let x ∈ max(supp(t)).
Suppose x ∈ S1 × S2 × S3. For every j ∈ [3] let φj ∈ Bj have its pivot element at
index xj . Let φ = φ1 ⊗ φ2 ⊗ φ3. Then φ ∈ W1 ⊗W2 ⊗W3, so φ(t) = 0. Since x is
maximal and each Bj is in reduced row echelon form,

φ(t) =
∑
y≤x

ty φ(ey1 ⊗ ey2 ⊗ ey3)

=
∑
y<x

ty φ(ey1 ⊗ ey2 ⊗ ey3) + tx ex1 ⊗ ex2 ⊗ ex3

=
∑
y<x

sy ey1 ⊗ ey2 ⊗ ey3 + tx ex1 ⊗ ex2 ⊗ ex3

for some sy ∈ F. From φ(t) = 0 follows tx = 0. This contradicts x ∈ supp(t), so
x 6∈ S1 × S2 × S3, i.e. there is a j ∈ [3] with xj ∈ Sj.

Asymptotic hitting set number

We now study the asymptotic hitting set number ˜τ(Φ) := limn→∞ τ(Φ×n)1/n.
We will use some basic facts of types and type classes. Let X be a finite

set. Let N ∈ N. An N-type on X is a probability distribution P on X with
N · P (x) ∈ N for all x ∈ X. Let P be an N -type on X. The type class TNP ⊆ XN

is the set of sequences s = (s1, . . . , sN) with x occuring N · P (x) times in s for
every x ∈ X, i.e. |{i ∈ [N ] : si = x}| = N · P (x).

Lemma 4.19. The number of N-types on X equals
(
N+|X|−1
|X|−1

)
. Let P be an

N-type. The size of the type class TNP equals the multinomial coefficient
(
N
NP

)
.

Proof. We leave the proof to the reader.

Lemma 4.20. Let P be an N-type on X. Then

1

(N + 1)|X|
2NH(P ) ≤

(
N

NP

)
≤ 2NH(P ).

Proof. See e.g. [CT12, Theorem 11.1.3].

Lemma 4.21. log2˜τ(Φ) ≤ maxP∈P(Φ) mini∈[3]H(Pi).

Proof. Let P maximise maxP∈P(Φ) miniH(Pi). Let n ∈ N. We construct a hitting
set (A1, A2, A3) for Φn as follows. Let x ∈ Φn. Viewing x as an n-tuple of elements
in Φ, let Q ∈ Pn(Φ) be the type of x (i.e. the empirical distribution). Let j ∈ [3]
with H(Qj) = mini∈[3]H(Qi). By our choice of P we have

H(Qj) = min
i∈[3]

H(Qi) ≤ min
i∈[3]

H(Pi).
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Viewing x as a 3-tuple (x1, x2, x3), add xj to Aj. We repeat this for all x ∈ Φn.
The final (A1, A2, A3) is a hitting set for Φn by construction. For each j ∈ [3],

|Aj| ≤
∑
Qj

|T nQj | ≤
∑
Qj

2nH(Qj)

where the sum is over Qj ∈ Pn(Φj) with H(Qj) ≤ mini∈[3]H(Pi). Then

|Aj| ≤ |Pn(Φj)| 2nminiH(Pi) = poly(n)2nminiH(Pi).

We conclude |A1|+ |A2|+ |A3| ≤ poly(n)2nminiH(Pi).

Lemma 4.22. log2˜τ(Φ) ≥ maxP∈P(Φ) mini∈[3]H(Pi).

Proof. Let P maximise maxP∈P(Φ) miniH(Pi). Let n ∈ N. Let (A1, A2, A3) be a
hitting set for Φn. Let Q ∈ Pn(Φ) be an n-type with miniH(Qi) = miniH(Pi)−
o(n). Let Ψ = T nQ ⊆ Φn be the set of strings with type Q. Then (A1, A2, A3) is a
hitting set for Ψ. Let πi : Ψ→ Φn

i : (x1, x2, x3) 7→ xi. Then

Ψ = π−1
1 (A1) ∪ π−1

2 (A2) ∪ π−1
3 (A3).

Let j ∈ [3] with |π−1
j (Aj)| ≥ 1

3
|Ψ|. The fiber π−1

j (a) has constant size over a ∈ Ψj .

Let cj = |π−1
j (a)| be this size. Then

|Ψ| =
∑
a∈Ψj

|π−1
j (a)| =

∑
a∈Ψj

cj = |Ψj| cj.

And

|π−1
j (Aj)| =

∑
a∈Aj∩Ψj

|π−1
j (a)| = |Aj ∩Ψj| cj ≤ |Aj| cj.

Therefore

|Aj| ≥
|π−1
j (Aj)|
cj

≥
1
3
|Ψ|
cj

= 1
3
|Ψj| .

We have |Ψj| ≥ 2nH(Qj)−o(n) ≥ 2nminiH(Qi)−o(n) ≥ 2nminiH(Pi)−o(n). We conclude
|A1|+ |A2|+ |A3| ≥ |Aj| ≥ 1

3
|Ψj| ≥ 1

3
2nminiH(Pi)−o(n).

Lemma 4.23. log2˜τ(Φ) = maxP∈P(Φ) mini∈[3] H(Pi).

Proof. This follows directly from the above lemmas.
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Asymptotic slice rank

We now combine the above lemmas about slice rank and the asymptotic hitting
set number to prove Theorem 4.16. First we have the following basic lemma.

Lemma 4.24. minθ∈Θ maxP∈P(Φ)Hθ(P ) = maxP∈P(Φ) mini∈[3]H(Pi).

Proof. Since Hθ(P ) is convex in θ and concave in P , von Neumann’s minimax
theorem gives minθ maxP∈P(Φ)Hθ(P ) = maxP∈P(Φ) minθHθ(P ). Finally, we use
that minθHθ(P ) = miniH(Pi).

Define f∼(t) := lim supn→∞ f(t⊗n)1/n and f∼(t) := lim infn→∞ f(t⊗n)1/n.

Lemma 4.25. Let t ∈ Fn1 ⊗ Fn2 ⊗ Fn3. Then

max
g∈G(t)

max
P∈P(max supp(g·t))

min
i
H(Pi) ≤ SR∼(t) ≤ SR∼(t) ≤ min

θ
ζθ(t).

Proof. By definition, SR∼(t) ≤ SR∼(t). From Lemma 4.17 follows

SR∼(t) ≤˜τ(supp(g · t))

for any g ∈ G(t). Lemma 4.23 gives ˜τ(supp(g · t)) = maxP∈P(supp(g·t)) mini 2
H(Pi).

Thus with the help of Lemma 4.24

SR∼(t) ≤ min
g∈G(t)

max
P∈P(supp(g·t))

min
i

2H(Pi) = min
θ
ζθ(t).

From Lemma 4.18 follows

˜τ(max(supp(g · t))) ≤ SR∼(t)

for any g ∈ G(t). Lemma 4.23 gives

max
g∈G(t)

max
P∈P(max(supp(g·t)))

min
i

2H(Pi) ≤ SR∼(t).

This proves the lemma.

Proof of Theorem 4.16. We may assume Φ = supp(t) is oblique. Then, with
the help of Lemma 4.24 and Lemma 4.25

min
θ∈Θ

ζθ(t) = min
θ∈Θ

ζθ(t)

= min
θ∈Θ

max
P∈max(Φ)

2Hθ(P )

= max
P∈max(Φ)

min
i∈[3]

2H(Pi)

≤ max
g∈G(t)

max
P∈P(max(supp(g·t)))

min
i∈[3]

2H(Pi)

≤ SR∼(t)

≤ SR∼(t)

≤ min
θ∈Θ

ζθ(t).

This proves the claim.
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4.7 Conclusion

The study of asymptotic rank of tensors is motivated by the open problem of finding
the exponent of matrix multiplication. Asymptotic subrank has applications
in for example combinatorics and algebraic property testing. Via the theory
of asymptotic spectra Strassen characterised asymptotic rank and asymptotic
subrank in terms of the asymptotic spectrum of tensors. Strassen introduced the
gauge points in X(T ) and the support functionals in X({oblique}). More precisely,
there are the lower support functionals, and the upper support functionals. The
lower support functionals are not additive and can thus not be universal spectral
points. The upper support functionals may be universal spectral points, but this
can, however, not be shown with the help of the lower support functionals. Finally,
we showed that for oblique tensors the asymptotic slice rank exists and equals the
minimum value over the support functionals. In the next chapter we will see a
subfamily of the oblique 3-tensors for which the support functionals are powerful
enough to compute the asymptotic subrank.





Chapter 5

Tight tensors and combinatorial
subrank; cap sets

This chapter is based on joint work with Matthias Christandl and Péter Vrana [CVZ16,

CVZ18].

5.1 Introduction

In the previous chapter we discussed the gauge points and the support function-
als ζθ. The gauge points are in the asymptotic spectrum of all tensors, while the
support functionals are in the asymptotic spectrum of oblique tensors.

How “powerful” are the support functionals? We know ˜Q(t) ≤ ζθ(t) ≤ ˜R(t) for

oblique t and for all θ. Thus maxθ ζ
θ(t) ≤ ˜R(t). In fact, maxθ ζ

θ(t) is at most the
maximum over the gauge points maxS ζ(S), and in turn maxS ζ(S) is at most ˜R(t).
As remarked earlier, it is not known whether maxS ζ(S) equals ˜R(t) in general.

On the other hand, we have ˜Q(t) ≤ minθ ζ
θ(t). Do we attain equality here

in general; ˜Q(t) = minθ ζ
θ(t)? The answer is “yes” for the subsemiring of tight

3-tensors. In this chapter we study tight k-tensors.

Tight tensors

Let I1, . . . , Ik be finite sets. Let Φ ⊆ I1 × · · · × Ik. We say Φ is tight if there are
injective maps ui : Ii → Z for i ∈ [k] such that

∀α ∈ Φ u1(α1) + · · ·+ uk(αk) = 0.

We say t ∈ Fn1 ⊗ · · · ⊗ Fnk is tight if there is a g ∈ G(t) := GLn1 × · · · × GLnk
such that the support supp(g · t) is tight.

Recall that a tensor is oblique if the support is an antichain in some basis.
Clearly, tight tensors are oblique. To summarise the families of tensors that we
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have defined up to now, we have

{tight} ⊆ {oblique} ⊆ {robust} ⊆ {θ-robust}.

Recall that the families of oblique, robust and θ-robust tensors each form a
semiring under ⊗ and ⊕. Tight tensors have the same property [Str91, Section 5].
Another property is that any subset of a tight set is tight.

Example 5.1. Let k ≥ 3 be fixed. For any integer n ≥ 1 and c ∈ [n] the set

Φn(c) = {α ∈ {0, . . . , n− 1}k : α1 + · · ·+ αk = c}

is tight. For any integer n ≥ 2 and any c ∈ [n] the set

Ψn(c) = {α ∈ {0, . . . , n− 1}k : α1 + · · ·+ αk = c mod n}

is not tight (cf. Exercise 15.20 in [BCS97]).

Example 5.2. When F contains a primitive nth root of unity ζ, the tensor

tn =
∑

α∈Ψn(0)

eα1 ⊗ · · · ⊗ eαk ∈ (Fn)⊗k,

which has support Ψn(0), is tight. Namely, the elements vj =
∑n

i=1 ζ
ijei for j ∈ [n]

form a basis of Fn. Let g ∈ G(tn) be the corresponding basis transformation.
Then we have tn =

∑n
j=1 vj⊗· · ·⊗vj , and we see that the support supp(g−1 · tn) =

{α ∈ [n]k : α1 = · · · = αk} is tight. (See also [BCS97, Exercise 15.25].) When
the characteristic of F equals n, the tensor tn is also tight, as we will see in
Section 5.4.2.

Combinatorial subrank and the Coppersmith–Winograd method

We care about tight tensors because of a remarkable theorem for tight 3-tensors of
Strassen (Theorem 5.3 below). To understand the theorem we need the concept of
combinatorial asymptotic subrank (cf. [Str91, Section 5]). We say D ⊆ I1×· · ·×Ik
is a diagonal when any two distinct α, β ∈ D are distinct in all k coordinates. In
other words, for elements in D, the value at one coordinate uniquely determines
the value at the other k − 1 coordinates. Let Φ ⊆ I1 × · · · × Ik. We say a
diagonal D ⊆ I1 × · · · × Ik is free for Φ or simply D ⊆ Φ is a free diagonal
if D = Φ ∩ (D1 × · · · × Dk), where Di = {xi : (x1, . . . , xk) ∈ D}. Define the
(combinatorial) subrank Q(Φ) as the size of the largest free diagonal D ⊆ Φ.
For Φ ⊆ I1 × · · · × Ik and Ψ ⊆ J1 × · · · × Jk we naturally define the product
Φ×Ψ ⊆ (I1 × J1)× · · · × (Ik × Jk) by

Φ×Ψ = {((α1, β1), . . . , (αk, βk)) : α ∈ Φ, β ∈ Ψ}.



5.1. Introduction 69

Define the (combinatorial) asymptotic subrank ˜Q(Φ) = limn→∞Q(Φ×n)1/n. Let
t ∈ Fn1 ⊗ · · · ⊗ Fnk and let Φ be the support of t in the standard basis. Then
Q(Φ) ≤ Q(t) and ˜Q(Φ) ≤ ˜Q(t). The number Q(Φ) may be interpreted as the
largest number n such that 〈n〉 can be obtained from t using a restriction that
consists of matrices that have at most one nonzero entry in each row and in
each column. (This is called M-restriction in [Str87, Section 6] which stands
for monomial restriction.) We may also interpret Φ as a k-partite hypergraph.
Then Q(Φ) is the size of the largest induced k-partite matching in Φ.

Let Φ ⊆ [n1]×· · ·× [nk] and let t ∈ Fn1 ⊗· · ·⊗Fnk be any tensor with support
equal to Φ. Then the (asymptotic) subranks of Φ and t are related as follows:

Q(Φ) ≤ Q(t), and ˜Q(Φ) ≤ ˜Q(t).

Strassen proved the following theorem using the method of Coppersmith and
Winograd [CW90]. Recall that for Φ ⊆ I1 × I2 × I3 we let P(Φ) be the set of
probability distributions on Φ. For P ∈ P(Φ), let P1, P2, P3 be the marginal
distributions of P on the 3 components of I1 × I2 × I3.

Theorem 5.3 ([Str91, Lemma 5.1]). Let Φ ⊆ I1 × I2 × I3 be tight. Then

˜Q(Φ) = max
P∈P(Φ)

min
i∈[3]

2H(Pi). (5.1)

The consequence of Theorem 5.3 is that the support functionals are sufficiently
powerful to compute the asymptotic subrank of tight 3-tensors.

Corollary 5.4 ([Str91, Proposition 5.4]). Let t ∈ Fn1 ⊗ Fn2 ⊗ Fn3 be tight. Then

˜Q(t) = min
θ∈P([3])

ζθ(t).

Moreover, if Φ = supp(g · t) is tight for some g ∈ G(t), then ˜Q(t) = ˜Q(Φ).

Remark 5.5. Strassen conjectured in [Str94, Conjecture 5.3] that for the family
of tight 3-tensors the support functionals give all spectral points in the asymp-
totic spectrum X({tight 3-tensors}). In [Str91] numerous examples are given of
subfamilies of tight 3-tensors for which this is the case.

Remark 5.6. Equation (5.1) becomes false when we let Φ ⊆ I1 × · · · × Ik
with k ≥ 4 and we let the right-hand side of the equation be maxP∈P(Φ) mini 2H(Pi),
see [CVZ16, Example 1.1.38].

New results in this chapter

This chapter is an investigation of tight tensors, combinatorial asymptotic subrank
and applications. More precisely this chapter contains the following new results.
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Higher-order Coppersmith–Winograd method. In Section 5.2 we extend
Theorem 5.3 to obtain a lower bound for ˜Q(Φ) for tight sets Φ ⊆ I1 × · · · × Ik
with k ≥ 4. Our lower bound is not known to be optimal in general. We compute
examples for which the lower bound is optimal.

Combinatorial degeneration method. In Section 5.3 we further extend the
range of application of the Coppersmith–Winograd method via a partial order �

on supports of tensors called combinatorial degeneration. We prove that if Φ � Ψ,
then ˜Q(Φ) ≤ ˜Q(Ψ). Suppose Ψ is not tight, but Φ is tight, then we may apply the
(higher-order) Coppersmith–Winograd method to obtain a lower bound on ˜Q(Φ)
and thus on ˜Q(Ψ).

Cap sets. In Section 5.4 we relate the theory of asymptotic spectra, the
Coppersmith–Winograd method and the combinatorial degeneration method
to the problem of upper bounding the maximum size of cap sets in Fnp .

Graph tensors. Graph tensors are generalisations of the matrix multiplication
tensor 〈2, 2, 2〉 parametrised by graphs. In Section 5.5 we discuss how one can
apply the higher-order Coppersmith–Winograd method to obtain upper bounds
on the asymptotic rank of complete graph tensors. We also briefly discuss the
surgery method, which gives good upper bounds on the asymptotic rank of graph
tensors for sparse graphs like cycle graphs.

5.2 Higher-order CW method

In this section we extend Theorem 5.3 to tight Φ ⊆ I1 × · · · × Ik with k ≥ 4.
We introduce some notation. Let P(Φ) be the set of probability distributions
on Φ. For P ∈ P(Φ), let P1, . . . , Pk be the marginal distributions of P on the k
components of I1 × · · · × Ik. Let R(Φ) be the set of all subsets R ⊆ Φ2 such
that: R 6⊆ {(x, x) : x ∈ Φ} and R ⊆ {(x, y) ∈ Φ2 : xi = yi} for some i ∈ [k].
For P ∈ P(Φ) and R ∈ R(Φ), let Q(R, (P1, . . . , Pk)) be the set of probability
distributions Q on R whose marginal distributions on the 2k components of R
satisfy Qi = Qk+i = Pi for i ∈ [k].

Let I1, . . . , Ik be finite subsets of Z. The result of this section is a lower bound on
the asymptotic subrank of any Φ ⊆ I1×· · ·×Ik satisfying ∀a ∈ Φ

∑k
i=1 ai = 0. For

R ⊆ R(Φ), let r(R) be the rank over Q of the matrix with rows {x−y : (x, y) ∈ R}.

Theorem 5.7. Let Φ ⊆ Zk be a finite set with ∀a ∈ Φ
∑k

i=1 ai = 0. Then

log2 ˜Q(Φ) ≥ max
P

min
R,Q

H(P )− (k − 2)
H(Q)−H(P )

r(R)

with P ∈ P(Φ), R ∈ R(Φ) and Q ∈ Q(R, (P1, . . . , Pk)).
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5.2.1 Construction

We prepare for the proof of Theorem 5.7 by discussing some basic facts.

Average-free sets

Lemma 5.8. Let k ∈ N. Let M ∈ N. We say a subset B ⊆ Z/MZ is (k − 1)-
average-free if

∀x1, . . . , xk ∈ B x1 + · · ·+ xk−1 = (k − 1)xk ⇒ x1 = · · · = xk.

There is a (k − 1)-average-free set B ⊆ Z/MZ of size |B| = M1−o(1).

Proof. There is a set A ⊆ {1, . . . , bM−1
k−1
c} of size |A| = M1−o(1) with

∀x1, . . . , xk ∈ A x1 + · · ·+ xk−1 = (k − 1)xk ⇒ x1 = · · · = xk, (5.2)

see [VC15, Lemma 10]. Let B = {a mod M : a ∈ A} ⊆ Z/MZ. Then |B| = |A|.
Let x1, . . . , xk ∈ B with x1 + · · ·+ xk−1 = (k − 1)xk. View x1, . . . , xk as elements
in {1, . . . , bM−1

k−1
c}. Then x1 + · · ·+xk−1 = (k−1)xk still holds. From (5.2) follows

x1 = · · · = xk in Z, and hence also in Z/MZ.

Linear combinations of uniform variables

Lemma 5.9. Let M be a prime. Let u1, . . . , un be independently uniformly dis-
tributed over Z/MZ. Let v1, . . . , vm be (Z/MZ)-linear combinations of u1, . . . , un.
Then the vector v = (v1, . . . , vm) is uniformly distributed over the range of v in
(Z/MZ)m.

Proof. Let vi =
∑

j cijuj with cij ∈ Z/MZ. Then v = Cu with u = (u1, . . . , un)
and C the matrix with entries Cij = cij. Let y in the image of C. Then the
cardinality of the preimage C−1(y) equals the cardinality of the kernel of C.
Indeed, if Cx = y, then C−1(y) = x + ker(C). Since u is uniform, we conclude
that v is uniform on the image of C.

Free diagonals

Lemma 5.10. Let G be a graph with n vertices and m edges. Then G has at least
n−m connected components.

Proof. A graph without edges has n connected components. For every edge that
we add to the graph, we lose at most one connected component.

Lemma 5.11. Let I1, . . . , Ik be finite sets. Let Ψ ⊆ I1 × · · · × Ik. Let

C = {{a, b} ⊆ Ψ : a 6= b;∃i ∈ [k] ai = bi}.

Then Q(Ψ) ≥ |Ψ| − |C|. Obviously, the statement remains true if we replace C by
the larger set {(a, b) ∈ Ψ2 : a 6= b;∃i ∈ [k] ai = bi}.
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Proof. Let G = (Ψ, C) be the graph with vertex set Ψ and edge set C. Let Γ ⊆ Ψ
contain exactly one vertex per connected component of G. The vertices in Γ are
pairwise not adjacent. So Γ is a diagonal. Of course, Γ ⊆ Ψ∩ (Γ1× · · · × Γk). Let
a ∈ Ψ ∩ (Γ1 × · · · × Γk). Let x1, . . . , xk ∈ Γ with

(x1)1 = a1, (x2)2 = a2, . . . , (xk)k = ak.

Then x1, . . . , xk are all adjacent to a in G, i.e. they are all in the same connected
component. Then x1 = · · · = xk, since Γ contains precisely one vertex per
connected component. So a = x1 = · · · = xk. So a ∈ Γ. We conclude that
Γ ⊇ Ψ ∩ (Γ1 × · · · × Γk). Finally, |Γ| ≥ |Ψ| − |C| by Lemma 5.10.

We now give the proof of Theorem 5.7. We repeat some notation from above.
Let k ≥ 3. Let Φ ⊆ Zk be a finite set. Let P(Φ) be the set of probability
distributions on Φ. For P ∈ P(Φ), let P1, . . . , Pk be the marginal distributions
of P on the k components of Zk. Let R(Φ) be the set of all subsets R ⊆ Φ2 such
that: R 6⊆ {(x, x) : x ∈ Φ} and R ⊆ {(x, y) ∈ Φ2 : xi = yi} for some i ∈ [k].
For P ∈ P(Φ) and R ∈ R(Φ), let Q(R, (P1, . . . , Pk)) be the set of probability
distributions Q on R whose marginal distributions on the 2k components of R
satisfy Qi = Qk+i = Pi for i ∈ [k]. For R ⊆ R(Φ), let r(R) be the rank over Q of
the matrix with rows

{x− y : (x, y) ∈ R}.

For any prime M , let rM(R) be the rank over Z/MZ of the same matrix.

Theorem (Theorem 5.7). Let Φ ⊆ Zk be a nonempty finite set such that for
all a ∈ Φ holds

∑k
i=1 ai = 0. Then

log2 ˜Q(Φ) ≥ max
P

min
R,Q

H(P )− (k − 2)
H(Q)−H(P )

r(R)

with P ∈ P(Φ), R ∈ R(Φ) and Q ∈ Q(R, (P1, . . . , Pk)).

Proof. Let P be a rational probability distribution on Φ, i.e. ∀a ∈ Φ P (a) ∈ Q.

Choice of parameters

This proof involves a variable N that we will let go to infinity, and a prime
number M that depends on N . For the sake of rigor we first set the dependence
of M on N , and make sure that N is large enough for M to have good properties.

Let n ∈ N such that P is an n-type, i.e. ∀a ∈ Φ nP (a) ∈ N. Let N = tn be a
multiple of n. Let

f(N) = log2

(
2|Φ|

2

max
R∈R(Φ)

(
N + |R| − 1

|R| − 1

))
∈ o(N). (5.3)
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Let

g(N) = |Φ| log2(N + 1) ∈ o(N).

By Lemma 4.20

2NH(P )−g(N) ≤
(
N

NP

)
. (5.4)

Let

µ(N) = max
R,Q

H(Q)−H(P ) + (1 + g(N) + f(N)) 1
N

r(R)
(5.5)

with R ∈ R(Φ) and Q ∈ Q(R, (P1, . . . , Pk)). Let M be a prime with

d2µ(N)Ne ≤M ≤ 2d2µ(N)Ne. (5.6)

Such a prime exists by Bertrand’s postulate, see e.g. [AZ14]. We can make M
arbitrarily large by choosing N large enough. Choose N = tn large enough such
that

M > k − 1 (5.7)

∀R ∈ R(Φ) rM(R) = r(R). (5.8)

We will later let t and thus N go to infinity.

Restrict to marginal type classes

The set Φ⊗N is a finite subset of (ZN)k. Let a ∈ Φ⊗N . Then we have that
ai = ((ai)1, . . . , (ai)N) ∈ ZN for i ∈ [k]. We restrict to those a for which ai is in
the type class TNPi for all i ∈ [k]. Thus, let

Ψ = Φ⊗N ∩ (TNP1
× · · · × TNPk).

We prove a lower bound on the size of Ψ. Let (s1, . . . , sN ) ∈ TNP . Then sj ∈ Φ for
j ∈ [N ] and ((s1)i, . . . , (sN)i) ∈ TNPi for i ∈ [k]. So(

((s1)1, . . . , (sN)1), . . . , ((s1)k, . . . , (sN)k)
)
∈ Φ⊗N ∩ (TNP1

× · · · × TNPk) = Ψ.

Thus |Ψ| ≥ |TNP |. By Lemma 4.19, |TNP | =
(
N
NP

)
. By Lemma 4.20,

(
N
NP

)
≥

2NH(P )−g(N). Therefore,

|Ψ| ≥ 2NH(P )−g(N). (5.9)
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Hashing

Let u1, . . . , uk−1, v1, . . . , vN ∈ Z/MZ. For i ∈ [k] let

hi : ZN → Z/MZ

x 7→

{
ui +

∑N
j=1 xjvj for 1 ≤ i ≤ k − 1

1
k−1

(
u1 + · · ·+ uk−1 −

∑N
j=1 xjvj

)
for i = k.

Note that k−1 is invertible in Z/MZ by (5.7). Let a ∈ Ψ. Then ((a1)j, . . . , (ak)j) ∈
Φ for j ∈ [N ]. So

∑k
i=1(ai)j = 0 for every j ∈ [N ]. Thus

k∑
i=1

N∑
j=1

(ai)jvj =
N∑
j=1

vj

k∑
i=1

(ai)j = 0.

Therefore

h1(a1) + · · ·+ hk−1(ak−1) = (k − 1)hk(ak).

Restrict to average-free set

Let B ⊆ Z/MZ be a (k − 1)-average-free set of size

|B| ≥M1−κ(M) with κ(M) ∈ o(1), (5.10)

meaning

∀x1, . . . , xk ∈ B x1 + · · ·+ xk−1 = (k − 1)xk ⇒ x1 = · · · = xk (5.11)

(Lemma 5.8). Let Ψ′ ⊆ Ψ be the subset

Ψ′ = {a ∈ Ψ : ∀i ∈ [k] hi(ai) ∈ B}.

Let a ∈ Ψ′. Then a ∈ Ψ, so

h1(a1) + · · ·+ hk−1(ak−1) = (k − 1)hk(ak)

Since hi(ai) ∈ B for every i ∈ [k], (5.11) implies

h1(a1) = · · · = hk(ak).

Probabilistic method

Clearly Q(Φ⊗N) ≥ Q(Ψ) ≥ Q(Ψ′). Let

C ′ = {(a, b) ∈ Ψ′2 : a 6= b;∃i ∈ [k] ai = bi}.
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Let X = |Ψ′| and Y = |C ′|. By Lemma 5.11

Q(Ψ′) ≥ X − Y.

Let u1, . . . , uk−1, v1, . . . , vN be independent uniformly random variables over the
field Z/MZ. Then X and Y are random variables. Then

Q(Ψ′) ≥ E[X − Y ] = E[X]− E[Y ]

where the expectation is over u1, . . . , uk−1, v1, . . . , vN .
We will prove

E[X] = |B| |Ψ|M−(k−1) (5.12)

E[Y ] ≤ |B|max
R,Q

2NH(Q)+f(N)M−(k−1)−r(R) (5.13)

with f(N) as defined in (5.3), and R ∈ R(Φ), Q ∈ Q(R, (P1, . . . , Pk)). Before
proving (5.12) and (5.13) we derive the final bound.

Derivation of final bound

From (5.12) and (5.13) follows

E[X]− E[Y ] ≥ |B| |Ψ|M−(k−1) − |B|max
R,Q

2NH(Q)+f(N)M−(k−1)−r(R).

We factor out |B|, |Ψ| and M−(k−1),

E[X]− E[Y ] ≥ |B| |Ψ|M−(k−1)
(

1− 1

|Ψ|
max
R,Q

2NH(Q)+f(N)M−r(R)
)
.

From our choice of µ(N) from (5.5),

µ(N) = max
R,Q

H(Q)−H(P ) + (1 + g(N) + f(N)) 1
N

r(R)
,

follows

max
R,Q

2N(H(Q)−H(P )−r(R)µ(N))+g(N)+f(N) ≤ 1

2
. (5.14)

Apply |B| ≥M1−κ(M) from (5.10) and |Ψ| ≥ 2NH(P )−g(N) from (5.9) to get

E[X]− E[Y ] ≥M1−κ(M)2NH(P )−g(N)M−(k−1)

·
(

1− 2−NH(P )+g(N) max
R,Q

2NH(Q)+f(N)M−r(R)
)

≥M−(k−2+κ(M))2NH(P )−g(N)
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·
(

1−max
R,Q

2NH(Q)−NH(P )+g(N)+f(N)M−r(R)
)
.

(Here we used (5.14) to see that the second factor is nonnegative.) Apply the
upper bound 2µ(N)N ≤M ≤ 2µ(N)N+2 from (5.6) to get

E[X]− E[Y ] ≥ (2µ(N)N+2)−(k−2+κ(M))2NH(P )−g(N)

·
(

1−max
R,Q

2NH(Q)−NH(P )+g(N)+f(N)(2µ(N)N)−r(R)
)

= 2N(H(P )−(k−2+κ(M))µ(N))−2(k−2+κ(M))−g(N)

·
(

1−max
R,Q

2N(H(Q)−H(P )−r(R)µ(N))+g(N)+f(N)
)
.

Using (5.14) we get

E[X]− E[Y ] ≥ 2N(H(P )−(k−2+κ(M))µ(N))−2(k−2+κ(M))−g(N)(1− 1

2
)

= 2N(H(P )−(k−2+κ(M))µ(N))−2(k−2+κ(M))−g(N)−1.

Then

1

N
log2 Q(Φ⊗N)

≥ 1

N
log2(E[X]− E[Y ])

≥ H(P )− (k − 2 + κ(M)) max
R,Q

H(Q)−H(P ) + (1 + g(N) + f(N)) 1
N

r(R)

− 2(k − 2 + κ(M)) + g(N) + 1

N
.

We let t and thus N go to infinity, and obtain

log2 ˜Q(Φ) ≥ H(P )− (k − 2) max
R,Q

H(Q)−H(P )

r(R)
.

This lower bound holds for any rational probability distribution P on Φ and by
continuity for any real probability distribution P on Φ.

It remains to prove (5.12) and (5.13). We do this in the lemmas below.

Lemma 5.12. E[X] = |B| |Ψ|M−(k−1).

Proof. Let a ∈ Ψ. Then h1(a1) + · · ·+ hk−1(ak−1) = (k − 1)hk(ak). The following
four statements are equivalent:

a ∈ Ψ′

∀i ∈ [k] hi(ai) ∈ B
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∃b ∈ B h1(a1) = · · · = hk(ak) = b

∃b ∈ B h1(a1) = · · · = hk−1(ak−1) = b.

Therefore,

P[a ∈ Ψ′] =
∑
b∈B

P[h1(a1) = · · · = hk−1(ak−1) = b].

For b ∈ B,

P[h1(a1) = · · · = hk−1(ak−1) = b] = (M−1)k−1.

We conclude

E[X] =
∑
a∈Ψ

P[a ∈ Ψ′]

=
∑
a∈Ψ

∑
b∈B

P[h1(a1) = · · · = hk−1(ak−1) = b]

=
∑
a∈Ψ

∑
b∈B

(M−1)k−1

= |Ψ| |B|M−(k−1).

This proves the lemma.

Lemma 5.13. E[Y ] ≤ |B|maxR,Q 2NH(Q)+f(N)M−(k−1)−r(R).

Proof. Let

C = {(a, a′) ∈ Ψ2 : a 6= a′;∃i ∈ [k] ai = a′i}.

Let (a, a′) ∈ C. The following statements are equivalent:

(a, a′) ∈ C ′ (5.15)

a, a′ ∈ Ψ′ (5.16)

∀i ∈ [k] hi(ai), hi(a
′
i) ∈ B (5.17)

∃b ∈ B h1(a1) = · · · = hk(ak) = h1(a′1) = · · · = hk(a
′
k) = b. (5.18)

Therefore,

E[Y ] =
∑

(a,a′)∈C

P[(a, a′) ∈ C ′]

=
∑

(a,a′)∈C

∑
b∈B

P[h1(a1) = · · · = hk(ak) = h1(a′1) = · · · = hk(a
′
k) = b].
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Let (a, a′) ∈ C. Then hi(ai) and hi(a
′
i) are Z/MZ-linear combinations of

u1, . . . , uk−1, v1, . . . , vN . The random variable(
h1(a1), . . . , hk(ak), h1(a′1), . . . , hk(a

′
k)
)

is uniformly distributed over the image subspace V ⊆ (Z/MZ)2k. Let b ∈ B.
Then (b, . . . , b) ∈ V , since u1 = · · · = uk = b, v1, . . . , vN = 0 is a valid assignment.
Therefore,

P[h1(a1) = · · · = hk(ak) = h1(a′1) = · · · = hk(a
′
k) = b] = |V |−1 .

And |V | equals M to the power the rank of the matrix
1 0 · · · 0 1

k−1
1 0 · · · 0 1

k−1

0 1 0 1
k−1

0 1 0 1
k−1

...
. . .

...
. . .

...
0 0 · · · 1 1

k−1
0 0 · · · 1 1

k−1

a1 a2 · · · ak−1 − ak
k−1

a′1 a′2 · · · a′k−1 −
a′k
k−1

 (5.19)

over Z/MZ, with a1, . . . , ak, a
′
1, . . . , a

′
k thought of as column vectors in (Z/MZ)N .

With column operations we transform (5.19) into
0 0 · · · 0 0 1 0 · · · 0 0
0 0 · · · 0 0 0 1 0 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 0 0 0 1 0

a1 − a′1 a2 − a′2 · · · ak−1 − a′k−1 ak − a′k a′1 a′2 · · · a′k−1 0

 (5.20)

Matrix (5.20) has rank equal to k − 1 plus rM(a, a′) = rk(A(a, a′)), where

A(a, a′) :=
(
a1 − a′1 a2 − a′2 · · · ak − a′k

)
.

We obtain

E[Y ] ≤
∑

(a,a′)∈C

∑
b∈B

M−(k−1+rM (a,a′)).

Since the summands are independent of b, we get

E[Y ] ≤ |B|
∑

(a,a′)∈C

M−(k−1+rM (a,a′)).

Let (a, a′) ∈ C. Consider the rows of A(a, a′). The N rows are of the
form xi − yi with (xi, yi) ∈ Φ2. Let s = ((x1, y1), . . . , (xN , yN)). Let R =
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{(x1, y1), . . . , (xN , yN)}. We have rM(a, a′) = rM(R) and rM(R) = r(R) by (5.8).
Let Q be the N -type with supp(Q) = R and s ∈ TNQ . From a 6= a′ follows
R 6⊆ {(x, x) : x ∈ Φ}. From ∃i ∈ [k] ai = a′i follows ∃i ∈ [k] R ⊆ {(x, y) : xi = yi}.
From a, a′ ∈ TNP1

× · · · × TNPk follows Qi = Qk+i = Pi for all i ∈ [k]. We thus have

E[Y ] ≤ |B|
∑

R∈R(Φ)

∑
Q∈Q(R,(P1,...,Pk)):

supp(Q)=R
Q is N -type

∑
s∈TNQ

M−(k−1+r(R)).

The number of N -types Q with supp(Q) = R is at most the number of N -types
on R, which is at most

(
N+|R|−1
|R|−1

)
(Lemma 4.19). For any Q ∈ Q(R, (P1, . . . , Pk)),

|TNQ | ≤ 2NH(Q) (Lemma 4.19). Therefore,

E[Y ] ≤ |B|
∑

R∈R(Φ)

(
N + |R| − 1

|R| − 1

)
max

Q∈Q(R,(P1,...,Pk))
2NH(Q) M−(k−1+r(R)).

Also |R(Φ)| ≤ 2|Φ|
2

. Therefore,

E[Y ] ≤ |B| 2|Φ|2 max
R∈R(Φ)

(
N + |R| − 1

|R| − 1

)
max

Q∈Q(R,(P1,...,Pk))
2NH(Q) M−(k−1+r(R)).

We conclude that

E[Y ] ≤ |B|max
R,Q

2NH(Q)+f(N)M−(k−1)−r(R).

This proves the lemma.

5.2.2 Computational remarks

The following two lemmas are helpful when applying Theorem 5.7. We leave the
proof to the reader.

Lemma 5.14. Let P ∈ P(Φ). Let R,R′ ∈ R(Φ) with R ⊆ R′ and r(R) = r(R′).
Then

max
Q∈Q(R,(P1,...,Pk))

H(Q)−H(P )

r(R)
≤ max

Q∈Q(R′,(P1,...,Pk))

H(Q)−H(P )

r(R′)
.

Lemma 5.15. Let R ∈ R(Φ). There is an equivalence relation R′ ∈ R(Φ) with
R ⊆ R′ and r(R) = r(R′).
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5.2.3 Examples: type sets

We discuss some examples. The first example we will use to get good upper
bounds on the asymptotic rank of complete graph tensors in Section 5.5. We focus
on one family of examples that is parametrised by partitions. Let λ ` k be an
integer partition of k with d parts. Let

Φλ = {a ∈ {0, 1, . . . , d− 1} : type(a) = λ}.

The set Φλ is tight.

Theorem 5.16. log2 ˜Q(Φ(2,2)) = 1.

Proof. Let Φ = Φ(2,2). Clearly, ˜Q(Φ) ≤ 2. After relabelling, ∀a ∈ Φ
∑k

i=1 ai = 0.
We may thus apply Theorem 5.7. Let P be the uniform probability distribution
on Φ. Then H(P ) = log2 6.

Let R ∈ R(Φ). We may assume that

R ⊆ {(1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1)}2

∪{(0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 1, 0)}2.

We may assume R is an equivalence relation (Lemma 5.15). Let (x, y) ∈ R.
Let R′ = R ∪ {((1, 1, 1, 1) − x, (1, 1, 1, 1) − y)} ∈ R(Φ)}. Then R ⊆ R′ and
R′ ∈ R(Φ) and r(R) = r(R′). We may thus assume that if (x, y) ∈ R, then also
((1, 1, 1, 1)− x, (1, 1, 1, 1)− y) ∈ R (Lemma 5.14).

Let S = {(1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1)}. By the above observation, it suffices
to consider equivalence relations on S. There are three types of such equivalence
relations.

Type (3): all three elements of S are equivalent. Then |R| = 18 and r(R) = 2.
Type (2, 1): two elements of S are equivalent and inequivalent to the third

element (which is equivalent to itself). Then |R| = 10 and r(R) = 1.
Type (1, 1, 1)): all elements of S are inequivalent. Then R ⊆ {(x, x) : x ∈ Φ}

which is a contradiction.
For type (3) and (2, 1), the uniform probability distribution Q on R has

marginals Qi = Q4+i = Pi for i ∈ [4]. The uniform Q is optimal. Then H(Q) =
log2 |R|. Let R(3) and R(2,1) be equivalence relations of type (3) and (2, 1). Then

log2 ˜Q(Φ) ≥ min
{
H(P )− 2

r(R(3))

(
log2 |R(3)| −H(P )

)
,

H(P )− 2

r(R(2,1))

(
log2 |R(2,1)| −H(P )

)}
= min{ log2 6− 2

2
(log2 18− log2 6),

log2 6− 2
1
(log2 10− log2 6)}

= min{1, log2
54
25
} = 1

This proves the theorem.
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Theorem 5.17. log2 ˜Q(Φ(0k−1,1)) = h(1/k).

Proof. We refer to [CVZ16].

With Srinivasan Arunachalam and Péter Vrana we have the following unpub-
lished result.

Theorem 5.18. log2 ˜Q(Φ(0k/2,1k/2)) = 1.

5.3 Combinatorial degeneration method

In this section we extend the (higher-order) Coppersmith–Winograd method via a
preorder called combinatorial degeneration. Suppose Ψ ⊆ I1×· · ·× Ik is not tight,
but has a tight subset Φ ⊆ Ψ. In the rest of this section we focus on obtaining a
lower bound on ˜Q(Ψ) via Φ. This has an application in the context of tri-colored
sum-free sets (Section 5.4.2) for example.

Definition 5.19 ([BCS97]). Let Φ ⊆ Ψ ⊆ I1 × · · · × Ik. We say that Φ is a
combinatorial degeneration of Ψ, and write Ψ � Φ, if there are maps ui : Ii → Z
(i ∈ [k]) such that for all α ∈ I1 × · · · × Ik, if α ∈ Ψ \ Φ, then

∑k
i=1 ui(αi) > 0,

and if α ∈ Φ, then
∑k

i=1 ui(αi) = 0. Note that the maps ui need not be injective.

Combinatorial degeneration gets its name from the following standard proposi-
tion, see e.g. [BCS97, Proposition 15.30].

Proposition 5.20. Let t ∈ Fn1 ⊗ · · · ⊗ Fnk . Let Ψ = supp(t). Let Φ ⊆ Ψ such
that Ψ � Φ. Then t� t|Φ.

Proposition 5.20 brings us only slightly closer to our goal. Namely, given
t ∈ Fn1 ⊗· · ·⊗Fnk with Ψ = supp(t), and given Φ ⊆ Ψ such that Ψ�Φ, it follows
directly from Proposition 5.20 that t� t|Φ and thus ˜Q(t) ≥ ˜Q(t|Φ). This, however,
does not give us a lower bound on the combinatorial asymptotic subrank ˜Q(Ψ).
The following theorem does. Our theorem extends a result in [KSS16].

Theorem 5.21. Let Φ ⊆ Ψ ⊆ I1 × · · · × Ik. If Ψ � Φ, then

˜Q(Ψ) ≥ ˜Q(Φ).

Lemma 5.22. Let Φ ⊆ Ψ ⊆ I1 × · · · × Ik. If Ψ � Φ, then ˜Q(Ψ) ≥ Q(Φ).

Proof. Pick maps ui : Ii → Z such that

k∑
i=1

ui(αi) = 0 for α ∈ Φ

k∑
i=1

ui(αi) > 0 for α ∈ Ψ \ Φ.
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Let D be a free diagonal in Φ with |D| = Q(Φ) and let

wi =
∑
x∈Di

ui(x).

Let n ∈ N and define

Wi =
{

(x1, . . . , xn|D|) ∈ I×n|D|i :

n|D|∑
j=1

ui(xj) = nwi
}
.

Then

Ψ×n|D| ∩ (W1 × · · · ×Wk) = Φ×n|D| ∩ (W1 × · · · ×Wk).

The inclusion ⊇ is clear. To show ⊆, let (x1, . . . , xk) ∈ Ψ×n|D| ∩ (W1 × · · · ×Wk).
Write xi = (xi,1, xi,2, . . . , xi,n|D|) and consider the n|D| × k matrix of evaluations

u1(x1,1) u2(x2,1) · · · uk(xk,1)
u1(x1,2) u2(x2,2) · · · uk(xk,2)

...
...

. . .
...

u1(x1,n|D|) u2(x2,n|D|) · · · uk(xk,n|D|)

The sum of the ith column is nwi by definition of Wi, and
∑k

i=1 nwi = 0. The
row sums are nonnegative by definition of the maps u1, . . . , uk. We conclude that
the row sums are zero. Therefore (x1, . . . , xk) is an element of Φ×n|D|.

Since D is a free diagonal in Φ, D×n|D| is a free diagonal in Φ×n|D|, and also
D×n|D| ∩ (W1× · · · ×Wk) is a free diagonal in Φ×n|D| ∩ (W1× · · · ×Wk), which in
turn is equal to Ψ×n|D| ∩ (W1 × · · · ×Wk). Therefore D×n|D| ∩ (W1 × · · · ×Wk) is
also a free diagonal in Ψ×n|D|, i.e.

Q(Ψ×n|D|) ≥ |D×n|D| ∩ (W1 × · · · ×Wk)|.

In the set D×n|D| consider the strings with uniform type, i.e. where all |D|
elements of D occur exactly n times. These are clearly in W1 × · · · ×Wk, and
their number is

(
n|D|
n,...,n

)
. Therefore

Q(Ψ×n|D|) ≥
(

n|D|
n, . . . , n

)
= |D|n|D|−o(n),

which implies ˜Q(Ψ) = limn→∞Q(Ψ×n|D|)
1

n|D| ≥ |D|.

Proof of Theorem 5.21. We have ˜Q(Ψ) = limn→∞ ˜Q(Ψ×n)1/n. It follows from
Lemma 5.22 that

lim
n→∞ ˜Q(Ψ×n)1/n ≥ lim

n→∞
Q(Φ×n)1/n.

The right-hand side is ˜Q(Φ).
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5.4 Cap sets

A subset A ⊆ (Z/3Z)n is called a cap set if any line in A is a point, a line
being a triple of points of the form (u, u + v, u + 2v). Until recently it was
not known whether the maximal size of a cap set in (Z/3Z)n grows like 3n−o(n)

or like cn−o(n) for some c < 3. Gijswijt and Ellenberg in [EG17], inspired by
the work of Croot, Lev and Pach in [CLP17], settled this question, showing that
c ≤ 3(207+33

√
33)1/3/8 ≈ 2.755. Tao realised in [Tao16] that the cap set question

may naturally be phrased as the problem of computing the size of the largest
main diagonal in powers of the “cap set tensor”

∑
α eα1 ⊗ eα2 ⊗ eα3 where the

sum is over α1, α2, α3 ∈ F3 with α1 + α2 + α3 = 0. Here main diagonal refers
to a subset A of the basis elements such that restricting the cap set tensor to
A×A×A gives the tensor

∑
v∈A v⊗ v⊗ v. We show that the cap set tensor is in

the GL3(F3)×3 orbit of the “reduced polynomial multiplication tensor”, which was
studied in [Str91], and we show how recent results follow from this connection,
using Theorem 5.21.

5.4.1 Reduced polynomial multiplication

Let tn be the tensor
∑

α eα1 ⊗ eα2 ⊗ eα3 where the sum is over (α1, α2, α3) in
{0, 1, . . . , n−1}3 such that α1 +α2 = α3. We call tn the reduced polynomial multi-
plication tensor, since tn is essentially the structure tensor of the algebra F[x]/(xn)
of univariate polynomials modulo the ideal generated by xn. The support of tn
equals

{
(α1, α2, α3) ∈ {0, . . . , n− 1}3

∣∣α1 + α2 = α3

}
which via α3 7→ n− 1− α3 we may identify with the set

Φn =
{

(α1, α2, α3) ∈ {0, . . . , n− 1}3
∣∣α1 + α2 + α3 = n− 1

}
. (5.21)

The support Φn is tight (cf. Example 5.1). Strassen proves in [Str91, Theorem 6.7]
using Corollary 5.4 that ˜Q(tn) = ˜Q(Φn) = z(n), where z(n) is defined as

z(n) :=
γn − 1

γ − 1
γ−2(n−1)/3 (5.22)

with γ equal to the unique positive real solution of the equation 1
γ−1
− n

γn−1
= n−1

3
.

The following table contains values of z(n) for small n. See also [Str91, Table 1].
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n z(n)

rounded exact

2 1.88988 3/22/3 = 2h(1/3)

3 2.75510 3(207 + 33
√

33)1/3/8
4 3.61072
5 4.46158
6 5.30973
7 6.15620
8 7.00155
9 7.84612
10 8.69012

In fact, [Str91, Theorem 6.7] says that the asymptotic spectrum of tn is completely
determined by the support functionals; and that the possible values that the
spectral points can take on tn form the closed interval [z(n), n] (cf. Remark 2.22),

X(N[tn]) = {ζθ|N[tn] : θ ∈ P([3])}, {φ(tn) : φ ∈ X(N[tn])} = [z(n), n].

5.4.2 Cap sets

We turn to cap sets.

Definition 5.23. A three-term progression-free set is a set A ⊆ (Z/mZ)n satisfy-
ing the following. For all (x1, x2, x3) ∈ A×3: there are u, v ∈ (Z/mZ)n such that
(x1, x2, x3) = (u, u + v, u + 2v) if and only if x1 = x2 = x3. Let r3((Z/mZ)n) be
the size of the largest three-term progression-free set in (Z/mZ)n and define the
regularisation ˜r3(Z/mZ) = limn→∞ r3((Z/mZ)n)1/n.

A three-term progression-free set in (Z/3Z)n is called a cap or cap set. We
next discuss an asymmetric variation on three-term progression free sets, called
tri-colored sum-free sets, which are potentially larger. They are interesting since
all known upper bound techniques for the size of three-term progression-free sets
turn out to be upper bounds on the size of tri-colored sum-free sets.

Definition 5.24. Let G be an abelian group. Let Γ ⊆ G×G×G. For i ∈ [3] we
define the marginal sets Γi = {x ∈ G : ∃α ∈ Γ : αi = x}. We say Γ is tricolored
sum-free if the following holds. The set Γ is a diagonal, and for any α ∈ Γ1×Γ2×Γ3:
α1 + α2 + α3 = 0 if and only if α ∈ Γ. (Recall that Γ ⊆ I1 × I2 × I3 is a diagonal
when any two distinct α, β ∈ Γ are distinct in all coordinates.) Let s3(G) be the
size of the largest tricolored sum-free set in G×G×G and define the regularisation

˜s3(G) = limn→∞ s3(G×n)1/n.

Equivalently, Γ ⊆ G×G×G is a tricolored sum-free set if and only if Γ is a
free diagonal in {α ∈ G×G×G : α1 + α2 + α3 = 0}.
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If the set A ⊆ G = (Z/mZ)n is three-term progression-free, then the set
Γ = {(a, a,−2a) : a ∈ A} ⊆ G × G × G is tri-colored sum-free. Therefore, we
have ˜r3(Z/mZ) ≤ ˜s3(Z/mZ).

We summarise the recent history of results on cap sets. For clarity we focus
on m = 3; we refer the reader to the references for the general results. Edel in
[Ede04] proved the lower bound 2.21739 ≤ ˜r3(Z/3Z). In [EG17] Ellenberg and
Gijswijt proved the upper bound

˜r3(Z/3Z) ≤ 3(207 + 33
√

33)1/3/8 ≈ 2.755,

Blasiak et al. [BCC+17] proved that in fact

˜s3(Z/3Z) ≤ 3(207 + 33
√

33)1/3/8.

This upper bound was shown to be an equality in [KSS16, Nor16, Peb16]:

Theorem 5.25. ˜s3(Z/3Z) = 3(207 + 33
√

33)1/3/8.

We reprove Theorem 5.25 by proving that ˜s3(Z/mZ) equals the asymptotic
subrank z(m) of tm discussed in Section 5.4.1, when m is a prime power. The
significance of our proof lies in the explicit connection to the framework of
asymptotic spectra and not in the obtained value, which also for prime powers m
was already computed in [BCC+17, KSS16, Nor16, Peb16].

Proof. We will prove ˜s3(Z/mZ) = z(m) when m is a prime power. By defini-
tion, ˜s3(Z/mZ) equals the asymptotic subrank of the set

{α ∈ {0, . . . ,m− 1}3 : α1 + α2 + α3 = 0 mod m}

which via α3 7→ α3 − (m− 1) we may identify with the set

Ψm = {α ∈ {0, . . . ,m− 1}3 : α1 + α2 + α3 = m− 1 mod m}

and so ˜s3(Z/mZ) = ˜Q(Ψm). Let

Φm = {α ∈ {0, . . . ,m− 1}3 : α1 + α2 + α3 = m− 1}.

We know ˜Q(Φm) = z(m) (Section 5.4.1). We will show that ˜Q(Φm) = ˜Q(Ψm)
when m is a prime power. This proves the theorem.

We prove ˜Q(Φm) ≤ ˜Q(Ψm). There is a combinatorial degeneration Φm � Ψm.
Indeed, let ui : {0, . . . ,m− 1} → {0, . . . ,m− 1} be the identity map. If α ∈ Φm,
then

∑3
i=1 ui(αi) = m − 1, and if α ∈ Ψm \ Φm, then

∑3
i=1 ui(αi) equals m − 1

plus a positive multiple of m. This means Theorem 5.21 applies, and we thus
obtain ˜Q(Φm) ≤ ˜Q(Ψm). This proves the claim.

We show ˜Q(Ψm) ≤ ˜Q(Φm) when m is a power of the prime p. Let F = Fp.
Let fm ∈ Fm ⊗ Fm ⊗ Fm have support Ψm with all nonzero coefficients equal
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to 1. Obviously, ˜Q(Ψm) ≤ ˜Q(fm). To compute ˜Q(fm) we show that there is a
basis in which the support of fm equals the tight set Φm. Then ˜Q(fm) = ˜Q(Φm)
(Corollary 5.4). This implies the claim. We prepare to give the basis (which is
the same basis as used in [BCC+17]). First observe that the rule x 7→

(
x
a

)
gives a

well-defined map Z/mZ→ Z/pZ, since for a ∈ {0, 1, . . . ,m− 1}, if x = y mod m
then

(
x
a

)
=
(
y
a

)
mod p by Lucas’ theorem. Let (ex)x be the standard basis of Fm.

The elements (
∑

x∈Z/mZ
(
x
a

)
ex)a∈Z/mZ form a basis of Fm since the matrix (

(
x
a

)
)a,x

is upper triangular with ones on the diagonal. We will now rewrite fm in the basis
((
∑

x

(
x
a

)
ex)a, (

∑
y

(
y
b

)
ey)b, (

∑
z

(
z
c

)
ez)c). Observe that

(
x

m−1

)
equals 1 if and only

if x equals m− 1, and hence

fm =
∑

x,y,z∈Z/mZ:
x+y+z=m−1

ex ⊗ ey ⊗ ez =
∑

x,y,z∈Z/mZ

(
x+ y + z

m− 1

)
ex ⊗ ey ⊗ ez.

The identity
(
x+y+z
w

)
=
∑(

x
a

)(
y
b

)(
z
c

)
with sum over a, b, c ∈ {0, 1, . . . ,m− 1} such

that a+ b+ c = w is true and thus∑
x,y,z∈Z/mZ

(
x+ y + z

m− 1

)
ex ⊗ ey ⊗ ez

=
∑

x,y,z∈Z/mZ

∑
a,b,c∈{0,1,...,m−1}:

a+b+c=m−1

(
x

a

)(
y

b

)(
z

c

)
ex ⊗ ey ⊗ ez. (5.23)

We may simply rewrite (5.23) as

∑
a,b,c∈{0,1,...,m−1}:

a+b+c=m−1

∑
x∈Z/mZ

(
x

a

)
ex ⊗

∑
y∈Z/mZ

(
y

b

)
eb ⊗

∑
z∈Z/mZ

(
z

c

)
ez.

Therefore, with respect to the basis ((
∑

x

(
x
a

)
ex)a, (

∑
y

(
y
b

)
ey)b, (

∑
z

(
z
c

)
ez)c), the

support of fm equals the tight set Φm. (And even stronger, fm is isomorphic to
the tensor F[x]/(xm) of Section 5.4.1.)

Remark 5.26. Why did we reprove the cap set result Theorem 5.25? Our
motivation, being interested in the asymptotic spectrum of tensors, was to see
if the techniques in the cap set papers are stronger than the Strassen support
functionals, i.e. whether they give any new spectral points. Above we have seen
that the cap set result itself can be proven with the support functionals. In fact, we
show in Section 4.6 that for oblique tensors the asymptotic slice-rank, which was
introduced in [Tao16] to give a concise proof of [EG17], equals the minimum value
over the support functionals. In Section 6.11 we show that for all complex tensors
asymptotic slice-rank equals the minimum value of the quantum functionals.
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5.5 Graph tensors

In this section we briefly discuss the application that motivated us to prove
Theorem 5.7 in [CVZ16], namely upper bounding the asymptotic rank of so-called
graph tensors. Graph tensors are defined as follows.

Let G = (V,E) be a graph (or hypergraph) with vertex set V and edge
set E. Let n ∈ N. Let (bi)i∈[n] be the standard basis of Fn. We define the graph
tensor Tn(G) as

Tn(G) :=
∑
i∈[n]E

⊗
v∈V

(⊗
e∈E:
v∈e

bie

)

seen as a |V |-tensor. Given a vertex v ∈ V let d(v) denote the degree of v, that
is, d(v) equals the number of edges e ∈ E that contain v. Then Tn(G) is naturally
in
⊗

v∈V Fd(v). We write T(G) for T2(G). For example, for the complete graph
on four vertices K4 the graph tensor is

T(K4) = T
( )

= T
( )

⊗ T
( )

⊗ T
( )

⊗ T
( )

⊗ T
( )

⊗ T
( )

=
∑

i∈{0,1}6
(bi1⊗bi2⊗bi5)⊗ (bi2⊗bi3⊗bi6)⊗ (bi3⊗bi4⊗bi5)⊗ (bi1⊗bi4⊗bi6)

living in (C8)⊗4. Let Kk be the complete graph on k vertices. The 2×2 matrix mul-
tiplication tensor 〈2, 2, 2〉 equals the tensor T(K3). Define the exponent ω(T(G)) =
log2 ˜R(T(G)). We study the exponent per edge τ(T(G)) = ω(T(G))/ |E(G)|.

Our result is an upper bound on τ(T(K4)) in terms of the combinatorial
asymptotic subrank ˜Q(Φ(2,2)) which we studied in Theorem 5.16.

Theorem 5.27. For any q ≥ 1, τ(T(K4)) ≤ logq

( q + 2

˜Q(Φ(2,2))

)
.

Proof. We apply a generalisation of the laser method. See [CVZ16].

Corollary 5.28. Let k ≥ 4. Then τ(T(Kk)) ≤ 0.772943.

Proof. In the bound of Theorem 5.27 we plug in the value ˜Q(Φ(2,2)) = 2 from
Theorem 5.16. Then we optimise over q to obtain the value 0.772943. By
a “covering argument” we can show that τ(T(Kk)) is non-increasing when k
increases.

For k ≥ 4 Corollary 5.28 improves the upper bound τ(T(Kk)) ≤ 0.790955
that can be derived from the well-known upper bound of Le Gall [LG14] on the
exponent of matrix multiplication ω := ω(T(K3)).
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A standard “flattening argument” (i.e. using the gauge points from the asymp-
totic spectrum) yields the lower bound τ(T(Kk)) ≥ 1

2
k/(k − 1) if k is even and

τ(T(Kk)) ≥ 1
2
(k + 1)/k if k is odd. As a consequence, if the exponent of matrix

multiplication ω equals 2, then τ(T(K4)) = τ(T(K3)) = 2
3
. We raise the following

question: is there a k ≥ 5 such that τ(T(Kk)) <
2
3
?

Tensor surgery; cycle graphs

For graph tensors given by sparse graphs, good upper bounds on the asymptotic
rank can be obtained with an entirely different method called tensor surgery, which
we introduced in [CZ18]. As an illustration let me mention the results we obtained
for cycle graphs with tensor surgery. Recall ω = log2 ˜R(〈2, 2, 2〉) = log2 ˜R(T(C3)).
Let ωk := log2 ˜R(T(Ck)). First observe that ωk = k for even k. For odd k, trivially
k − 1 ≤ ωk ≤ k. We prove the following.

Theorem 5.29. For k, ` odd, ωk+`−1 ≤ ωk + ω`.

Corollary 5.30. Let k ≥ 5 odd. Then, ωk ≤ ωk−2 + ω3 and thus ωk ≤ k−1
2
ω.

Corollary 5.31. If ω = 2, then ωk = k − 1 for all odd k.

See [CZ18] for the proofs.

5.6 Conclusion

Tight tensors are a subfamily of the oblique tensors. For tight 3-tensors the
minimum over the support functionals equals the asymptotic subrank. This is
proven via the Coppersmith–Winograd method. The construction is in fact of a
very combinatorial nature. In this chapter we studied the combinatorial notion of
subrank. We proved that combinatorial subrank is monotone under combinatorial
degeneration. We studied the cap set problem via the support functionals. We
extended the Coppersmith–Winograd method to higher-order tensors, and applied
this method to study graph tensors.



Chapter 6

Universal points in the asymp-
totic spectrum of tensors; entanglement
polytopes, moment polytopes

This chapter is based on joint work with Matthias Christandl and Péter Vrana [CVZ18].

6.1 Introduction

In Chapter 4, following Strassen, we introduced the asymptotic spectrum of
tensors X(T ) = X(T ,6) for T the semiring of k-tensors over F for some fixed
integer k and field F, with addition given by direct sum ⊕, multiplication given
by tensor product ⊗, and preorder 6 given by restriction (or degeneration). The
asymptotic spectrum characterises the asymptotic rank ˜R and the asymptotic
subrank ˜Q. We have seen that the asymptotic rank plays an important role in
algebraic complexity theory: the asymptotic rank of the matrix multiplication
tensor 〈2, 2, 2〉 =

∑
i,j,k∈[2] eij ⊗ ejk⊗ eki ∈ F4⊗F4⊗F4 characterises the exponent

of the arithmetic complexity of multiplying two n × n matrices over F, that
is ˜R(〈2, 2, 2〉) = 2ω. We have also seen in Chapter 5 how one may use the
asymptotic subrank to upper bound the size of combinatorial objects like for
example cap sets in Fn3 .

New results in this chapter

So far, the only elements we have seen in X(T ) (i.e. universal spectral points
cf. Section 2.13) are the gauge points (Section 4.3). Besides that we have seen
in Section 4.4 that the Strassen support functionals ζθ are in X({oblique}). In
this chapter we introduce for the first time an explicit infinite family of universal
spectral points (over the complex numbers), the quantum functionals. Our new
insight is to use the moment polytope. Given a tensor t ∈ Cn1 ⊗ Cn2 ⊗ Cn3 , the
moment polytope P(t) is a convex polytope that carries representation-theoretic

89
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information about t. The quantum functionals are defined as maximisations over
moment polytopes.

Let us immediately put a disclaimer. The quantum functionals do not give a
new lower bound on the asymptotic rank of matrix multiplication 〈2, 2, 2〉, namely
they give the same lower bound as the gauge points. Also, the quantum functionals
being defined for tensors over complex numbers only, we do not expect to get new
upper bounds on the size of combinatorial objects that are “like cap sets”.

So what have we gained? Arguably, we have found the “right” viewpoint on
how to construct universal spectral points for tensors. (In fact, after writing our
paper [CVZ18] we realised that Strassen had begun a study of moment polytopes
in the appendix of the German survey [Str05]! Strassen did not construct new
universal spectral points, however; not in that publication at least.) If there are
more universal spectral points, then our viewpoint may lead the way to finding
them. Moreover, whereas no efficient algorithm is known for evaluating the support
functionals, the moment polytope viewpoint may open the way to having efficient
algorithms for evaluating the quantum functionals.

In Sections 6.2–6.7 we work towards the construction of the quantum functionals
and we give a proof that they are universal spectral points. In Sections 6.8–6.10 we
compare the quantum functionals and the support functionals, and in Section 6.11
we relate asymptotic slice rank to the quantum functionals.

In this chapter we will focus on 3-tensors, but the theory naturally generalises
to k-tensors.

6.2 Schur–Weyl duality

For background on representation theory we refer to [Kra84], [Ful97] and [GW09].
Let Sn be the symmetric group on n symbols. Let Sn act on the tensor

space (Cd)⊗n by permuting the tensor legs,

π · v1 ⊗ · · · ⊗ vn = vπ−1(1) ⊗ · · · ⊗ vπ−1(n), π ∈ Sn.

Let GLd be the general linear group of Cd. Let GLd act on (Cd)⊗n via the diagonal
embedding GLd → GL×nd : g 7→ (g, . . . , g),

g · v1 ⊗ · · · ⊗ vn = (gv1)⊗ · · · ⊗ (gvn), g ∈ GLd.

The actions of Sn and GLd commute, so we have a well-defined action of the product
group Sn ×GLd on (Cd)⊗n. Schur–Weyl duality describes the decomposition of
the space (Cd)⊗n into a direct sum of irreducible Sn ×GLd representations. This
decomposition is

(Cd)⊗n ∼=
⊕
λ`dn

[λ]⊗ Sλ(Cd) (6.1)
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with [λ] an irreducible Sn representation of type λ and Sλ(Cd) an irreducible
GLd-representation of type λ when `(λ) ≤ d and 0 when `(λ) > d. We use the
notation λ `d n for the partitions of n with at most d parts. Let

Pλ : (Cd)⊗n → (Cd)⊗n

be the equivariant projector onto the isotypical component of type λ, i.e. onto the
subspace of (Cd)⊗n isomorphic to [λ]⊗ Sλ(Cd). The projector Pλ is given by the
action of the group algebra element

Pλ =
(dim[λ]

n!

)2 ∑
T∈Tab(λ)

cT ∈ C[Sn]

where Tab(λ) is the set of Young tableaux of shape λ filled with [n], and with cT
the Young symmetrizer

cT =
∑

σ∈C(T )

sgn(σ)σ
∑

π∈R(T )

π

where C(T ), R(T ) ⊆ Sn are the subgroups of permutations inside columns and
permutations inside rows respectively. The element Pλ is a minimal central
idempotent in C[Sn], and

∑
λ`n Pλ = e.

Back to the decomposition of (Cd)⊗n. We need a handle on the size of the
components in the direct sum decomposition (6.1). For our application it is good
to think of d as a constant and n as a large number. The number of summands in
the direct sum decomposition (6.1) is upper bounded by a polynomial in n,

|{λ `d n}| ≤ (n+ 1)d,

i.e. there are only few summands compared to the total dimension dn. There are
the following well-known bounds on the dimensions of the irreducible representa-
tions [λ] and Sλ(Cd) that make up the summands,

n!∏d
`=1(λ` + d− `)!

≤ dim[λ] ≤ n!∏d
`=1 λ`!

(6.2)

dimSλ(Cd) ≤ (n+ 1)d(d−1)/2. (6.3)

Let p ∈ Rn be a probability vector, i.e.
∑n

i=1 pi = 1 and pi ≥ 0 for i ∈ [n].
Let H(p) be the Shannon entropy of the probability vector p,

H(p) =
n∑
i=1

pi log2

1

pi
.

For α ∈ [0, 1], let h(α) = H((α, 1 − α)) be the binary entropy. For a partition
λ = (λ1, . . . , λ`) ` n, let λ := λ/n = (λ1/n, . . . , λ`/n) be the probability vector
obtained by normalising λ.
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Let λ ` n. For N ∈ N, let Nλ = (Nλ1, Nλ2, . . . , Nλ`) be the stretched
partition. We see that, asymptotically in the stretching factor N , the dimension
of the irreducible SNn-representation [Nλ] behaves like a multinomial coefficient,
and

2NnH(λ)−o(N) ≤ dim[Nλ] ≤ 2NnH(λ). (6.4)

6.3 Kronecker and Littlewood–Richardson coef-

ficients gλµν, c
λ
µν

Let µ, ν ` n. Let Sn ↪→ Sn×Sn : π 7→ (π, π) be the diagonal embedding. Consider
the decomposition of the tensor product [µ] ⊗ [ν] restricted along the diagonal
embedding,

[µ]⊗ [ν] ↓Sn×SnSn
∼=
⊗
λ`n

HomSn([λ], [µ]⊗ [ν])⊗ [λ].

Define the Kronecker coefficient

gλµν = dim HomSn([λ], [µ]⊗ [ν]),

i.e. gλµν is the multiplicity of [λ] in [µ]⊗ [ν].
Let λ `a+b. Let GLa ×GLb ↪→ GLa+b : (A,B) 7→ A⊕B be the block-diagonal

embedding. Consider the decomposition of the representation Sλ(Ca+b) restricted
along the block-diagonal embedding,

Sλ(Ca+b) ↓GLa+b

GLa×GLb
∼=
⊕
µ`a
ν`b

Hλ
µ,ν ⊗ Sµ(Ca)⊗ Sν(Cb)

with

Hλ
µ,ν = HomGLa×GLb(Sµ(Ca)⊗ Sν(Cb),Sλ(Ca+b)).

Define the Littlewood–Richardson coefficient cλµν = dimHλ
µ,ν .

For partitions λ, λ′ ` define λ + λ′ elementwise. The Kronecker and the
Littlewood–Richardson coefficients have the following semigroup property (see
e.g. [CHM07]).

Lemma 6.1. Let λ, µ, ν, α, β, γ ` be partitions.

(i) If gλµν > 0 and gαβγ > 0, then gλ+α, µ+β, ν+γ > 0.

(ii) If cλµν > 0 and cαβγ > 0, then cλ+α
µ+β, ν+γ > 0.
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6.4 Entropy inequalities

The semigroup properties imply the following lemma. Of this lemma, the first
statement can be found in a paper by Christandl and Mitchison [CM06], while we
do not know of any source that explicitly states the second statement. For the
convenience of the reader we give the proofs of both statements.

Lemma 6.2. Let λ, µ, ν ` be partitions.

(i) If gλµν > 0, then H(λ) ≤ H(µ) +H(ν).

(ii) If cλµν > 0, then H(λ) ≤ |µ|
|µ|+|ν|H(µ) + |ν|

|µ|+|ν|H(ν) + h
( |µ|
|µ|+|ν|

)
.

Proof. (i) Let gλµν > 0. Suppose λ, µ, ν ` n. Let N ∈ N. Then Lemma 6.1
implies gNλ,Nµ,Nν > 0. This means HomSnN ([Nλ], [Nµ]⊗ [Nν]) 6= 0, which implies
dim[Nλ] ≤ dim[Nµ] dim[Nν]. From (6.4) we have the dimension bounds

2NnH(λ)−o(N) ≤ dim[Nλ]

dim[Nµ] ≤ 2NnH(µ)

dim[Nν] ≤ 2NnH(ν).

Thus NnH(λ) − o(N) ≤ NnH(µ) + NnH(ν). Divide by Nn and let N go to
infinity to get H(λ) ≤ H(µ) +H(ν).

(ii) We restrict the decomposition

(Ca+b)⊗n ∼=
⊕
λ`a+bn

[λ]⊗ Sλ(Ca+b)

along the block-diagonal embedding to get

(Ca+b)⊗n ↓GLa+b

GLa×GLb
∼=
⊗
λ`a+bn

[λ]⊗ Sλ(Ca+b) ↓GLa+b

GLa×GLb

∼=
⊕
λ`a+bn

[λ]⊗
⊕
µ`a
ν`b

Ccλµν ⊗ Sµ(Ca)⊗ Sν(Cb)

∼=
⊕
µ`a
ν`b

(⊕
λ`a+bn

[λ]⊗ Ccλµν
)
⊗ Sµ(Ca)⊗ Sν(Cb).

On the other hand,

(Ca+b)⊗n ↓ ∼= (Ca ⊕ Cb)⊗n ↓∼= (Ca)⊗n ⊕ ((Ca)⊗n−1 ⊗ Cb)⊕ · · · ⊕ (Cb)⊗n ↓

∼=
n⊕
k=0

C(nk) ⊗
⊕
µ`ak

([µ]⊗ Sµ(Ca))⊗
⊕

ν`bn−k

([ν]⊗ Sν(Cb))
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∼=
n⊕
k=0

⊕
µ`ak
ν`bn−k

(
C(nk) ⊗ [µ]⊗ [ν]

)
⊗ Sµ(Ca)⊗ Sν(Cb).

Suppose cλµν > 0. Comparing the above expressions gives the inequality dim[λ] ≤(
n
|µ|

)
dim[µ] dim[ν]. By the semigroup property Lemma 6.1, we have cNλNµ,Nν > 0

for all N ∈ N. Thus dim[Nλ] ≤
(
Nn
N |µ|

)
dim[Nµ] dim[Nν] for all N ∈ N. Then

from (6.4) follows

2NnH(λ)−o(N) ≤ 2Nnh(
|µ|
n

)2N |µ|H(µ)2N |ν|H(ν).

We conclude H(λ) ≤ h( |µ|
n

) + |µ|
n
H(µ) + |ν|

n
H(ν).

Let x = (x(1), x(2), x(3)) be a triple of probability vectors x(i) ∈ Rni . Let
θ ∈ Θ := P([3]). Let Hθ(x) be the θ-weighted average of the Shannon entropies of
the probability vectors x(1), x(2) and x(3),

Hθ(x) := θ(1)H(x(1)) + θ(2)H(x(2)) + θ(3)H(x(3)).

(Note that this notation is slightly different from the notation used in Chapter 4.)
We will use the notation λ `3 n to say that λ is a triple of partitions of n, i.e. λ
equals (λ(1), λ(2), λ(3)) where each λ(i) is a partition of n. We write λ for the

component-wise normalised triple (λ(1), λ(2), λ(3)).

Lemma 6.3. Let λ, µ, ν `3 be three triples of partitions.

(i) If gλ(i)µ(i)ν(i) > 0 for all i, then 2Hθ(λ) ≤ 2Hθ(µ)2Hθ(ν).

(ii) If µ `3 m, ν `3 n−m and cλ
(i)

µ(i)ν(i) > 0 for all i, then 2Hθ(λ) ≤ 2Hθ(µ) + 2Hθ(ν).

Proof. (i) Suppose gλ(i)µ(i)ν(i) > 0 for all i. Then H(λ(i)) ≤ H(µ(i)) +H(ν(i)) for

all i by Lemma 6.2. Thus
∑

i θ(i)H(λ(i)) ≤
∑

i θ(i)H(µ(i))+
∑

i θ(i)H(ν(i)). Then

Hθ(λ) ≤ Hθ(µ) +Hθ(ν). We conclude 2Hθ(λ) ≤ 2Hθ(µ)2Hθ(ν).

(ii) Suppose cλ
(i)

µ(i)ν(i) > 0 for all i. Then H(λ(i)) ≤ m
n
H(µ(i))+ n−m

n
H(ν(i))+h(m

n
)

by Lemma 6.2. We take the θ-weighted average to get Hθ(λ) ≤ m
n
Hθ(µ) +

n−m
m
Hθ(ν) + h(m

n
). We conclude 2Hθ(λ) ≤ 2Hθ(µ) + 2Hθ(ν) by Lemma 4.9(iv).

6.5 Hilbert spaces and density operators

Endow the vector space Cn with a hermitian inner product (one may take the
standard hermitian inner product 〈u, v〉 =

∑n
i=1 uivi for u, v ∈ Cn where · denotes

taking the complex conjugate), so that it is a Hilbert space.
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Let (V1, 〈·, ·〉) and (V2, 〈·, ·〉) be Hilbert spaces. On V1 ⊕ V2 we define the inner
product by 〈u1 ⊕ u2, v1 ⊕ v2〉 = 〈u1, v1〉+ 〈u2, v3〉. On V1 ⊗ V2 we define the inner
product by 〈u1 ⊗ u2, v1 ⊗ v2〉 = 〈u1, v1〉〈u2, v2〉 and extending linearly.

Let V be a Hilbert space. A positive semidefinite hermitian operator ρ : V → V
with trace one is called a density operator. The sequence of eigenvalues of a density
operator ρ is a probability vector. Let spec(ρ) = (p1, . . . , pn) be the sequence of
eigenvalues of ρ, ordered non-increasingly, p1 ≥ · · · ≥ pn.

Let V1 and V2 be Hilbert spaces. Given a density operator ρ on V1 ⊗ V2,
the reduced density operator ρ1 = tr2 ρ is uniquely defined by the property that
tr(ρ1X1) = tr(ρ(X1⊗ IdV2)) for all operators X1 on V1. The operator ρ1 is again a
density operator. The operation tr2 is called the partial trace over V2. Explicitly, ρ1

is given by 〈ei, ρ1(ej)〉 =
∑

`〈ei ⊗ f`, ρ(ej ⊗ f`)〉, where the ei are some basis of V1

and the fi are some basis of V2 (the statement is independent of basis choice).
Let Vi be a Hilbert space and consider the tensor product V1⊗V2⊗V3. Associate

with t ∈ V1 ⊗ V2 ⊗ V3 the dual element t∗ := 〈t, ·〉 ∈ (V1 ⊗ V2 ⊗ V3)∗. Then

ρt := tt∗/〈t, t〉 = t〈t, ·〉/〈t, t〉

is a density operator on V1 ⊗ V2 ⊗ V3. Viewing ρt as a density operator on the
regrouped space V1⊗ (V2⊗ V3) we may take the partial trace of ρt over V2⊗ V3 as
described above. We denote the resulting density operator by ρt1 = tr23 ρ

t. We
similarly define ρt2 = tr13 ρ

t and ρt3 = tr12 ρ
t.

6.6 Moment polytopes P(t)

We give a brief introduction to moment polytopes. We refer to [Nes84, Bri87,
Fra02, Wal14] for more information. We begin with the general setting and then
specialise to orbit closures in tensor spaces.

6.6.1 General setting

Let G be a connected reductive algebraic group. (We refer to Kraft [Kra84] and
Humphreys [Hum75] for an introduction to algebraic groups.) Fix a maximal torus
T ⊆ G and a Borel subgroup T ⊆ B ⊆ G. We have the character group X(T ), the
Weyl group W , the root system Φ ⊆ X(T ) and the system of positive roots Φ+ ⊆ Φ.
For λ, µ ∈ X(T ), we set λ 4 µ if µ − λ is a sum of positive roots. Let V be
a rational G-representation. The restriction of the action of G to T gives a
decomposition

V =
⊕

λ∈X(T )

Vλ, Vλ = {v ∈ V : ∀t ∈ T t · v = λ(t)v}.

This decomposition is called the weight decomposition of V . The λ ∈ X(T )
with Vλ 6= 0 are called the weights of V with respect to T . The Vλ are the
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weight spaces of V . For v ∈ V , let vλ be the component of v in Vλ. Let
supp(v) := {λ : vλ 6= 0}.

Let E be the real vector space E := X(T ) ⊗ R. The Weyl group W acts
on X(T ) and thus on E. We enlarge 4 to a partial order on E as follows. For
x, y ∈ E let x 4 y if y − x is a nonnegative linear combination of positive roots.
Let D ⊆ E be the positive Weyl chamber. For every x ∈ E the orbit W · x
intersects the positive Weyl chamber D in exactly one point, which we denote by
dom(x).

Let V be a finite-dimensional rational G-module. Let χ ∈ X(T ) ∩ D be
a dominant character. We denote the χ-isotypical component of V with V(χ).
Let Z ⊆ V be a Zariski closed set. We denote the coordinate ring of Z with C[Z].
We denote the degree d part of C[Z] with C[Z]d. If Z is G-stable, then C[Z]d is a
G-module.

Definition 6.4. Let V be a rational G-module and Z ⊆ V a nontrivial irreducible
closed G-stable cone. The moment polytope of Z, denoted by

P(Z),

is defined as the Euclidean closure in E of the set

R(Z) = {χ/d : (C[Z]d)(χ∗) 6= 0}

of normalised characters χ/d for which the χ∗-isotypical component (C[Z]d)(χ∗) is
not zero.

Theorem 6.5 (Mumford–Ness [Nes84], Brion [Bri87], Franz [Fra02]). The moment
polytope is indeed a convex polytope and it is equal to the image of the so-called
moment map intersected with the positive Weyl chamber,

P(Z) = µ(Z \ 0) ∩D.

Let Z = G · v be the orbit closure (in the Zariski topology) of a vector v ∈ V \0
and suppose G · v is a cone.

Lemma 6.6 (See e.g. [Str05]). Suppose G · v is a cone. Then

R(G · v) = {χ/d : (C[G · v]d)(χ∗) 6= 0}
= {χ/d : (lin(G · v⊗d))(χ) 6= 0}.

6.6.2 Tensor spaces

We specialise to 3-tensors. Let V = V1 ⊗ V2 ⊗ V3 with Vi = Cni . Let

G = GLn1 ×GLn2 ×GLn3
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T = T1 × T2 × T3

with Ti the diagonal matrices in GLni . The weight decomposition of V is the
decomposition with respect to the standard basis elements ex1 ⊗ ex2 ⊗ ex3 where
x ∈ [n1]× [n2]× [n3]. The support supp(v) is the support of v with respect to the
standard basis.

In the current setting there is a beautiful rephrasing of Theorem 6.5 in terms
of ordered spectra of reduced density matrices. Recall from Section 6.5 that for
v ∈ V \ 0 we have a density matrix ρv, and reduced density matrices ρvi , of which
we may take the non-increasingly ordered spectra, spec(ρvi ).

Theorem 6.7 (Walter–Doran–Gross–Christandl [WDGC13]). Let Z ⊆ V be a
nontrivial irreducible closed G-stable cone. Then

P(Z) = {(spec ρz1, spec ρz2, spec ρz3) : z ∈ Z \ 0}.

Let v ∈ V \0. We consider the moment polytope of the orbit closure Z = G · v.
In this setting Lemma 6.6 specialises to the following.

Lemma 6.8 (See e.g. [Str05]).

R(G · v) = {χ/d : (C[G · v]d)(χ∗) 6= 0, d ∈ N≥1}
= {χ/d : (lin(G · v⊗d))(χ) 6= 0, d ∈ N≥1}
= {χ/d : Pχv

⊗d 6= 0, d ∈ N≥1},

where Pχ = Pχ(1) ⊗ Pχ(2) ⊗ Pχ(3) with Pχ(i) : V ⊗di → V ⊗di the projector onto the

isotypical component of type χ(i) discussed in Section 6.2.

On the other hand, Theorem 6.7 immediately gives a description of the moment
polytope P(G · v) in terms of ordered spectra of reduced density matrices.

Theorem 6.9. Let v ∈ V \ 0. Then

P(G · v) = {(spec ρu1 , spec ρu2 , spec ρu3) : u ∈ G · v \ 0}.

Summarising, we have two descriptions of the moment polytope, a represen-
tation-theoretic or invariant-theoretic description (Lemma 6.8) and a quantum
marginal spectra description (Theorem 6.9). These two descriptions are the key
to proving the properties of the quantum functionals that we need.

6.7 Quantum functionals F θ(t)

We will now define the quantum functionals and prove that they are universal
spectral points.
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Let p = (p1, . . . , pn) ∈ Rn be a probability vector, i.e.
∑n

i=1 pi = 1 and
pi ≥ 0 for all i ∈ [n]. Recall that H(p) denotes the Shannon entropy of the
probability vector p, H(p) :=

∑n
i=1 pi log2 1/pi. Let x = (x(1), x(2), x(3)) be a

triple of probability vectors x(i) ∈ Rni . Let θ ∈ Θ := P([3]). Recall that Hθ(x)
denotes the θ-weighted average of the Shannon entropies of the three probability
vectors x(1), x(2), x(3),

Hθ(x) := θ(1)H(x(1)) + θ(2)H(x(2)) + θ(3)H(x(3)).

Let V = Cn1 ⊗ Cn2 ⊗ Cn3 . Let G = GLn1 ×GLn2 ×GLn3 . Let v ∈ V \ 0. We
use the notation P(v) := P(G · v) for the moment polytope of the orbit closure
of v.

Definition 6.10. For θ ∈ Θ and v ∈ V \ 0 let

F θ(v) := max{2Hθ(x) : x ∈ P(v)}.

Let F θ(0) = 0. We call the functions F θ the quantum functionals. The name
quantum functional comes from the fact that the moment polytope P(t) consists
of triples of quantum marginal entropies.

Theorem 6.11. Let T be the semiring of 3-tensors over C. Let 6 be the restriction
preorder. For θ ∈ Θ

F θ ∈ X(T ,6).

In other words, F θ is a semiring homomorphism T → R≥0 which is monotone
under restriction 6. In fact, F θ is monotone under degeneration �.

Remark 6.12. The results in this chapter generalise to k-tensors over C. In our
paper [CVZ18] we discuss this general situation in detail and make a distinction
between upper quantum functionals and lower quantum functionals.

Let p ∈ Rn and q ∈ Rm be vectors. We define the tensor product p⊗q ∈ Rnm by

p⊗ q := (piqj : i ∈ [n], j ∈ [m]).

We define the direct sum p⊕ q ∈ Rn+m by

p⊕ q := (p1, . . . , pn, q1, . . . , qm)

Let dom(p) be the vector obtained from p by reordering the coefficients non-
increasingly.

Let x = (x(1), x(2), x(3)) and y = (y(1), y(2), y(3)) be triples of vectors. We define
the tensor product x⊗ y elementwise,

x⊗ y := (x(1) ⊗ y(1), x(2) ⊗ y(2), x(3) ⊗ y(3)).
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We define the direct sum x⊕ y elementwise,

x⊕ y := (x(1) ⊕ y(1), x(2) ⊕ y(2), x(3) ⊕ y(3)).

For a triple of vectors x = (x(1), x(2), x(3)) let

dom(x) := (dom(x(1)), dom(x(2)), dom(x(3)))

be the triple of vectors obtained from x be reordering each component x(i) non-
increasing. For any set S of triples of vectors, let

dom(S) := {dom(x) : x ∈ S}.

For v ∈ Cn1⊗Cn2⊗Cn3 we will use the notation G(v) := GLn1×GLn2×GLn3

to denote the product of general linear groups that naturally corresponds to the
space that v lives in. We will use the notation P(v) := P(G(v) · v) for the moment
polytope of the orbit closure of v.

Theorem 6.13. Let s ∈ Cn1 ⊗ Cn2 ⊗ Cn3 and t ∈ Cm1 ⊗ Cm2 ⊗ Cm3.

(i) dom
(
P(s)⊗P(t)

)
⊆ P(s⊗ t)

(ii) ∀α ∈ [0, 1] dom
(
αP(s)⊕ (1− α) P(t)

)
⊆ P(s⊕ t)

(iii) If s, t ∈ Cn1 ⊗ Cn2 ⊗ Cn3 \ 0 and s ∈ G(t) · t, then P(s) ⊆ P(t)

(iv) P(s⊕ 0) = P(s)⊕ 0

(v) P(〈1〉) = {((1), (1), (1))} with 〈1〉 = e1 ⊗ e1 ⊗ e1 ∈ C1 ⊗ C1 ⊗ C1.

Proof. To prove statements (i) and (ii), let x ∈ P(s) and y ∈ P(t). Then there
are elements a ∈ G(s) · s and b ∈ G(t) · t with ordered marginal spectra x and y,

x = (spec ρa1, spec ρa2, spec ρa3)

y = (spec ρb1, spec ρb2, spec ρb3).

We prove statement (i). We have a⊗ b ∈ G(s⊗ t) · s⊗ t. Thus

dom(x⊗ y) = (spec ρa⊗b1 , spec ρa⊗b2 , spec ρa⊗b3 ) ∈ P(s⊗ t).

We conclude dom(P(s)⊗P(t)) ⊆ P(s⊗ t). We prove statement (ii). Let α ∈ [0, 1].
Define the tensor u(α) ∈ Cn1+m1 ⊗ Cn2+m2 ⊗ Cn3+m3 by

u(α) :=

√
α√
〈s, s〉

a⊕
√

1− α√
〈t, t〉

b.
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Then u(α) ∈ G(s⊕ t) · s⊕ t. We have ρ
u(α)
i = αρai ⊕ (1 − α)ρbi . From the

observation

spec(αρai ⊕ (1− α)ρbi) = dom(αx⊕ (1− α)y)

follows dom(αx⊕ (1− α)y) ∈ P(G(s⊕ t) · s⊕ t). We conclude

dom(αP(s)⊕ (1− α)P(t)) ⊆ P(s⊕ t).

We have thus proven statement (i) and (ii).
We prove statement (iii). Let G = G(t) = G(s). Let s ∈ G · t. Then

G · s ⊆ G · t, so we have a G-equivariant restriction map C[G · s] � C[G · t] on
the coordinate rings. Let χ/d ∈ R(G · s) with (C[G · s]d)(χ∗) 6= 0. Then also
(C[G · t]d)(χ∗) 6= 0 by Schur’s lemma. Thus χ/d ∈ R(G · t) ⊆ P(G · t). We
conclude P(s) ⊆ P(t).

We prove statement (iv). Let χ/d ∈ R(G(s⊕ 0) · (s⊕ 0)) with Pχ(s⊕0)⊗d 6= 0.
Recall from Section 6.2 that Pχ is given by the action of an element in the group
algebra C[Sd] which we also denoted by Pχ. From this viewpoint we see that also

Pχs
⊗d 6= 0. So χ/d ∈ R(G(s) · s).
Statement (v) is a direct observation.

Corollary 6.14.

(i) F θ(s)F θ(t) ≤ F θ(s⊗ t)

(ii) F θ(s) + F θ(t) ≤ F θ(s⊕ t)

(iii) If s� t, then F θ(s) ≤ F θ(t)

(iv) F θ(〈1〉) = 1

Proof. (i) Let x ∈ P(s) and y ∈ P(t). Then x⊗y ∈ P(s⊗t) by Theorem 6.13. It is
a basic fact that Hθ(x)+Hθ(y) = Hθ(x⊗y) (Lemma 4.9), so 2Hθ(x)2Hθ(y) = 2Hθ(x⊗y).
We conclude F θ(s)F θ(t) ≤ F θ(s⊗ t).

(ii) Let x ∈ P(s) and y ∈ P(t). Then by Theorem 6.13 for all α ∈ [0, 1]

dom(αx⊕ (1− α)y) ∈ P(s⊕ t).

It is a basic fact that αHθ(x) + (1 − α)Hθ(y) + h(α) = Hθ(αx ⊕ (1 − α)y)
(Lemma 4.9). Thus for any α ∈ [0, 1] we have 2αHθ(x)+(1−α)Hθ(y)+h(α) ≤ F θ(s⊕ t).
Using Lemma 4.9(iv) we conclude F θ(s) + F θ(t) ≤ F θ(s⊕ t).

(iii) This follows from statement (iii) and (iv) of Theorem 6.13, since, by
definition, degeneration s� t means s⊕ 0 ∈ G(t⊕ 0) · (t⊕ 0).

(iv) This follows from statement (v) of Theorem 6.13.
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Theorem 6.15.

(i) R(s⊗ t) ⊆ {λ/N : ∃µ/N ∈ R(s), ν/N ∈ R(t); gλ(i)µ(i)ν(i) > 0 for all i}

(ii) R(s⊕ t) ⊆ {λ/N : ∃µ/m ∈ R(s), ν/(N −m) ∈ R(t); cλ
(i)

µ(i)ν(i) > 0 for all i}

Proof. (i) Let s ∈ V1 ⊗ V2 ⊗ V3 and let t ∈ W1 ⊗W2 ⊗W3. Let λ/N ∈ R(s⊗ t)
with Pλ(s⊗ t)⊗N 6= 0. Let π be the natural regrouping map

π : ((V1 ⊗W1)⊗ (V2 ⊗W2)⊗ (V3 ⊗W3))⊗N

→ (V1 ⊗ V2 ⊗ V3)⊗N ⊗ (W1 ⊗W2 ⊗W3)⊗N .

Then

(s⊗ t)⊗N =
∑
µ,ν

π−1(Pµ ⊗ Pν)π(s⊗ t)⊗N .

Let µ, ν `3 N with Pλπ
−1(Pµ ⊗ Pν)π(s ⊗ t)⊗N 6= 0. Then Pµs

⊗N 6= 0 and
Pνt

⊗N 6= 0, i.e. µ/N ∈ R(s) and ν/N ∈ R(t). Moreover Pλπ
−1(Pµ ⊗ Pν)π 6= 0,

which means the Kronecker coefficients gλ(i)µ(i)ν(i) are nonzero.
(ii) Let λ/N ∈ R(s⊕ t) with Pλ(s⊕ t)⊗N 6= 0. Let us expand (s⊕ t)⊗N as

(s⊕ t)⊗N = s⊗N ⊕ (s⊗N−1 ⊗ t)⊕ · · · ⊕ t⊗N .

Then Pλ does not vanish on some summand, which we may assume to be of the
form s⊗m ⊗ t⊗N−m. Let π be the natural projection

π : ((V1 ⊕W1)⊗ (V2 ⊕W2)⊗ (V3 ⊕W3))⊗N

→ (V1 ⊗ V2 ⊗ V3)⊗m ⊗ (W1 ⊗W2 ⊗W3)⊗N−m.

Let µ, ν with Pλπ
−1(Pµ ⊗ Pν)π(s⊕ t)⊗N 6= 0. Then Pµs

⊗m 6= 0 and Pνt
⊗N−m 6= 0.

Moreover Pλπ
−1(Pµ ⊗ Pν)π 6= 0. Therefore, the Littlewood–Richardson coeffi-

cients cλ
(i)

µ(i)ν(i) are nonzero.

Corollary 6.16.

(i) F θ(s⊗ t) ≤ F θ(s)F θ(t)

(ii) F θ(s⊕ t) ≤ F θ(s) + F θ(t)

Proof. (i) Let λ/N ∈ R(s ⊗ t). By Theorem 6.15 there is a µ/N ∈ R(s) and a
ν/N ∈ R(t) such that the Kronecker coefficient gλ(i)µ(i)ν(i) is nonzero for every i.

Then 2Hθ(µ) ≤ F θ(s) and 2Hθ(ν) ≤ F θ(t) by definition of F θ. The Kronecker
coefficients being nonzero implies

2Hθ(λ) ≤ 2Hθ(µ)2Hθ(ν)
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by Lemma 6.3. We conclude F θ(s⊗ t) ≤ F θ(s)F θ(t).

(ii) Let λ/N ∈ R(s ⊕ t). Then by Theorem 6.15 there are µ/m ∈ R(s) and

ν/(N − m) ∈ R(t) such that the Littlewood–Richardson coefficient cλ
(i)

µ(i)ν(i) is
nonzero for every i. This means

2Hθ(λ) ≤ 2Hθ(µ) + 2Hθ(ν)

by Lemma 6.3. We conclude F θ(s⊕ t) ≤ F θ(s) + F θ(t).

Proof of Theorem 6.11. Corollary 6.14 and Corollary 6.16 together prove The-
orem 6.11.

6.8 Outer approximation

In this section we discuss an outer approximation of P(t). We will use this outer
approximation to show that the quantum functionals are at most the support
functionals.

Let 4 be the dominance order i.e. majorization order on triples of probability
vectors. For any set S ⊆ Rn1 × Rn2 × Rn3 of triples of probability vectors, let S4

denote the upward closure with respect to 4,

S4 = {y ∈ Rn1 × Rn2 × Rn3 : ∃x ∈ S, x 4 y}.

Let conv(S) denote the convex hull of S in Rn1 × Rn2 × Rn3 . Recall that for x ∈
S we defined dom(x) as the triple of probability vectors obtained from x =
(x(1), x(2), x(3)) by reordering the components x(i) such that they become non-
increasing, and dom(S) = {dom(x) : x ∈ S}.

Theorem 6.17 (Strassen [Str05]). Let v ∈ V \ 0. Then

P(v) ⊆ (dom conv supp v)4. (6.5)

Proof. We give the proof for the convenience of the reader. Let χ/d ∈ R(G · v).
Then (lin(G · v⊗d))(χ) 6= 0. Let Mχ ⊆ lin(G · v⊗d) be a simple G-submodule with
highest weight χ. Let N ⊆ V ⊗d be the G-module complement, N ⊕Mχ = V ⊗d.
Then v⊗d is not in N . Let v =

⊕
γ∈supp v vγ be the weight decomposition. Then v⊗d

is a sum of tensor products of the vγ. At least one summand is not in N , say of
weight η :=

∑
γ dγγ with

∑
γ dγ = d. The projection V ⊗d →Mχ along N maps this

summand onto a nonzero weight vector of weight η. So η is a weight of Mχ. Then
also dom(η) is a weight of Mχ. Since χ is the highest weight of Mχ, dom(η) 4 χ.

Then dom(η/d) 4 χ/d. We have η/d =
∑

γ
dγ
d
γ ∈ conv supp v. We conclude

R(G · v) ⊆ (dom conv supp v)4 and thus P(G · v) ⊆ (dom conv supp v)4.
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6.9 Inner approximation for free tensors

In this section we discuss an inner approximation for the moment polytope of a
free tensor. We will use this inner approximation in the next section to prove that
the quantum functionals coincide with the support functionals when restricted to
free tensors. We will prove that not all tensors are free.

We say a set Φ ⊆ [n1] × [n2] × [n3] is free if every two different elements
of Φ differ in at least two coordinates, in other words if the elements of Φ have
Hamming distance at least two. We say v ∈ V = Cn1 ⊗ Cn2 ⊗ Cn3 is free if for
some g ∈ G(v) = GLn1 ×GLn2 ×GLn3 the support supp(g · v) ⊆ [n1]× [n2]× [n3]
is free. (Free is called “schlicht” in [Str05].)

Theorem 6.18 (Strassen [Str05]). Let v ∈ V \ 0 with supp(v) free. Then

dom conv supp v ⊆ P(v).

Proof. We refer to [Str05].

Corollary 6.19. Let v ∈ V \ 0 with supp(v) free. Then

P(v)4 =
(
dom conv supp v

)4
.

Proof. By Theorem 6.18 dom conv supp v ⊆ P(v). We take the upward closure
on both sides to get (dom conv supp v)4 ⊆ P(v)4. On the other hand, from
Theorem 6.17 follows P(v)4 ⊆ (dom conv supp v)4.

Remark 6.20. Recall that v ∈ V is oblique if the support supp(g · v) is an
antichain for some g ∈ G(v) (Section 4.4). Such antichains are free, so oblique
tensors are free. Thus {tight} ⊆ {oblique} ⊆ {free}. Like the tight tensors and
oblique tensors, free tensors from a semigroup under ⊗ and ⊕.

Proposition 6.21. For n ≥ 5 there exists a tensor that is not free in Cn⊗Cn⊗Cn.

Proof. We upper bound the maximal size of a free support. Let Φ ⊆ [n]× [n]× [n]
be free. Any two distinct elements in Φ are still distinct if we forget the third
coefficient of each. Therefore, |Φ| = |{(α1, α2) : α ∈ Φ}| ≤ n2. (This is a special
case of the Singleton bound [Sin64] from coding theory. This upper bound is tight,
since Φ = {(a, b, c) : a, b, c ∈ [n], c = a+ b mod n} is free and has size n2.) Second
we apply the following observation of Bürgisser [Bür90, page 3]. Let

Zn = {t ∈ Cn ⊗ Cn ⊗ Cn : ∃g ∈ G(t) |supp(g · t)| < n3 − 3n2}.

Let Yn = Cn ⊗ Cn ⊗ Cn \ Zn. Then the set Yn is Zariski open and nonempty.
Now let n ≥ 5 and let t ∈ Yn. Then ∀g ∈ G(t) |supp(g · t)| ≥ n3 − 3n2 > n2. We
conclude t is not free.
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6.10 Quantum functionals versus support func-

tionals

We discussed the support functionals ζθ ∈ X({oblique 3-tensors over F}) in Chap-
ter 4. We recall its definition over C. Let V = Cn1⊗Cn2⊗Cn3 . For θ ∈ Θ := P([3])
and t ∈ V \ 0 with supp(t) oblique,

ζθ(t) = max{2Hθ(P ) : P ∈ P(supp(t))}.

We also discussed an extension of ζθ to all 3-tensors over C: the upper support
functional:

ζθ(t) = min
g∈G(t)

max{2Hθ(P ) : P ∈ P(supp(g · t))}.

We know ζθ(s ⊗ t) ≤ ζθ(s)ζθ(t), ζθ(s ⊕ t) = ζθ(s) + ζθ(t), ζθ(〈1〉) = 1 and
s 6 t⇒ ζθ(s) ≤ ζθ(t) for any s, t ∈ V .

The set conv supp(g · t) is the set of marginals of probability distributions on
supp(g · t). Thus dom conv supp(g · t) is the set of ordered marginals of probability
distributions on supp(g · t). Therefore

ζθ(t) = min
g∈G(t)

max
x∈S(g·t)

2Hθ(x)

with S(w) = dom conv suppw. Let X ⊆ Rn1 × Rn2 × Rn3 be a set of triples of
probability vectors. From Schur-convexity of the Shannon entropy function follows
maxx∈X 2Hθ(x) = maxx∈X4 2Hθ(x). Also Hθ(x) = Hθ(domx).

Theorem 6.22. ζθ(t) ≥ F θ(t).

Proof. Let g ∈ G(t) such that

max
x∈S

2Hθ(x) = ζθ(t)

with S = dom conv supp(g · t). We have

max
x∈S

2Hθ(x) = max
x∈S4

2Hθ(x).

By Theorem 6.17, P(t) ⊆ S4. We conclude F θ(t) ≤ ζθ(t).

Theorem 6.23. Let t ∈ V be free. Then ζθ(t) = F θ(t).

Proof. We know from Theorem 6.22 that ζθ(t) ≥ F θ(t). We prove ζθ(t) ≤ F θ(t).
Let g ∈ G(t) such that supp(g · t) is free. Let S = dom conv supp(g · t). Then
ζθ(t) ≤ maxx∈S 2Hθ(x) = maxx∈S4 2Hθ(x). By Theorem 6.18 we have S4 = P(t)4.
We conclude ζθ(t) ≤ F θ(t).
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We can show that the regularised upper support functional equals the quantum
support functional. As a consequence, the quantum functional is at least the lower
support functional which was discussed in Chapter 4.

Theorem 6.24. limn→∞
1
n
ζθ(t⊗n)1/n = F θ(t).

Proof. We refer the reader to [CVZ18].

Corollary 6.25. F θ(v) ≥ ζθ(v).

Proof. By Theorem 6.24, F θ(v) = limn→∞ ζ
θ(v⊗n)1/n. We know ζθ(v) ≥ ζθ(v)

by Theorem 4.15 and thus limn→∞ ζ
θ(v⊗n)1/n ≥ limn→∞ ζθ(v

⊗n)1/n. The lower
support functional ζθ is supermultiplicative under ⊗ (Theorem 4.14), so

lim
n→∞

ζθ(v
⊗n)1/n ≥ ζθ(v).

Combining these three inequalities proves the theorem.

6.11 Asymptotic slice rank

We proved in Section 4.6 that for oblique t ∈ Fn1 ⊗ Fn2 ⊗ Fn3 the asymptotic slice
rank limn→∞ SR(t⊗n)1/n exists and equals minθ∈Θ ζ

θ(t) with Θ := P([3]). In this
section we prove the analogous statement for the quantum functionals.

Theorem 6.26. Let t ∈ Cn1 ⊗ Cn2 ⊗ Cn3. Then

lim
n→∞

SR(t⊗n)1/n = min
θ∈Θ

F θ(t).

We work towards the proof of Theorem 6.26. Let t ∈ Cn1 ⊗Cn2 ⊗Cn3 \ 0. Let
Eθ(t) := log2 F

θ(t).

Lemma 6.27. For any ε > 0 there is an n0 ∈ N such that for all n ≥ n0 there is
a λ/n ∈ R(t) with mini∈[3]H(λ(i)) ≥ minθ∈ΘE

θ(t)− ε.

Proof. By definition

min
θ∈Θ

Eθ(t) = min
θ∈Θ

max
x∈P(t)

∑
j∈[3]

θ(j)H(x(j)).

By Von Neumann’s minimax theorem, the right-hand side equals

max
x∈P(t)

min
θ∈Θ

∑
j∈[3]

θ(j)H(x(j))

which equals

max
x∈P(t)

min
j∈[3]

H(x(j)).
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Let ε > 0. Let µ/m ∈ R(t) with minj∈[3] H(µ(j)) ≥ minθ∈Θ E
θ(t)− ε/2. We will

use two facts. We have (P(1) ⊗ P(1) ⊗ P(1))t = t 6= 0. The triples of partitions λ
with Pλt

⊗n 6= 0 for some n form a semigroup. Let n ∈ N. We can write n = qm+r
with q, r ∈ N, 0 ≤ r < m. Let λ(j) = qµ(j) + (r). Then by the semigroup property

Pλt
⊗n 6= 0, i.e. λ/n ∈ R(t). We have 1

n
(qµ(j) + (r)) = qm

n
µ(j) + r

n
(r). By concavity

of Shannon entropy

H( 1
n
(qµ(j) + (r))) = H( qm

n
µ(j) + r

n
(r))

≥ qm
n
H(µ(j))

≥ (1− m
n

)H(µ(j)).

When n is large enough (1− m
n

)H(µ(j)) is at least H(µ(j))− ε/2. Let n0 ∈ N such
that this is the case for all j ∈ [3].

Lemma 6.28. Let λ/n ∈ R(t). Then SR(t⊗n) ≥ mini∈[3] dim[λ(i)].

Proof. We have the restriction t⊗n ≥ Pλt
⊗n 6= 0. Choose rank-one projections Aj

in the vector spaces Sλ(j)(Cnj) with

s := (id[λ(1)]⊗A1)⊗ (id[λ(2)]⊗A2)⊗ (id[λ(3)]⊗A3)Pλt
⊗n 6= 0.

The tensor s is invariant under Sn acting diagonally on (Cn1)⊗n⊗(Cn2)⊗n⊗(Cn3)⊗n.
Thus the marginal spectra spec ρsi are uniform. This implies s is semistable.
From [BCC+17, Theorem 4.6] follows that SR(s) equals mini∈[3] dim[λ(i)].

Lemma 6.29. lim infn→∞ SR(t⊗n)1/n ≥ minθ∈Θ F
θ(t).

Proof. Let ε > 0. For n large enough choose λ/n ∈ R(t) as in Lemma 6.27. By
Lemma 6.28, SR(t⊗n) ≥ mini∈[3] dim[λ(i)]. The right-hand side we lower bound by

min
i∈[3]

dim[λ(i)] ≥ min
i∈[3]

2nH(λ(i))2−o(n) ≥ 2n(minθ∈Θ Eθ(t)−ε)2−o(n).

Then lim infn→∞ SR(t⊗n)1/n ≥ 2minθ∈Θ Eθ(t)−ε.

Lemma 6.30. lim supn→∞ SR(t⊗n)1/n ≤ F θ(t).

Proof. Let n ∈ N. Define s1, s2, s3 ∈ Cn1 ⊗ Cn2 ⊗ Cn3 by

s1 =
(∑
λ(1)`n:

H(λ(1))≤Eθ(t)

Pλ(1) ⊗ Id⊗ Id
)
t⊗n

s2 =
(∑
λ(2)`n:

H(λ(2))≤Eθ(t)

Id⊗ Pλ(2) ⊗ Id
)

(t⊗n − s1)
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s3 =
(∑
λ(3)`n:

H(λ(3))≤Eθ(t)

Id⊗ Id⊗ Pλ(3)

)
(t⊗n − s1 − s2).

Then t⊗n = s1 +s2 +s3. The slice rank of an element in the image of Pλ(1)⊗ Id⊗ Id

is at most dim[λ(1)] ⊗ Sλ(1)(Cn1), which is at most 2nH(λ(1))+o(n) (Section 6.2).
Similarly for Id ⊗ Pλ(2) ⊗ Id and Id ⊗ Id ⊗ Pλ(3) . The tensor s1 is in the image
of the sum

∑
λ(1) Pλ(1) ⊗ Id ⊗ Id over λ(1) ` n with at most n1 parts. There are

at most (n+ 1)n1 such partitions. Thus SR(s1) ≤ (n+ 1)n12nE
θ(t)+o(n). Similarly

for s2 and s3. Therefore

lim sup
n→∞

SR(t⊗n)1/n ≤ lim sup
n→∞

(
3(n+ 1)maxi∈[3] ni 2nE

θ(t)+o(n)
)1/n

. (6.6)

The right-hand side of (6.6) equals F θ(t).

Proof of Theorem 6.26. Lemma 6.29 and Lemma 6.30 together prove Theo-
rem 6.26.

6.12 Conclusion

In this chapter we constructed the first infinite family of spectral points for 3-
tensors over C, the quantum functionals. For 30 years the only explicit spectral
points known were the gauge points. The constructions in this chapter naturally
generalise to higher-order tensors, for which we refer to our paper [CVZ18]. We
do not know whether the quantum functionals are all of the spectral points for
3-tensors over C. Finally, we showed that for complex tensors the asymptotic slice
rank exists and equals the minimum value over all the quantum functionals.





Chapter 7

Algebraic branching programs;
approximation and nondeterminism

This chapter is based on joint work with Karl Bringmann and Christian

Ikenmeyer [BIZ17].

7.1 Introduction

The study of asymptotic tensor rank in previous chapters was originally motivated
by the study of the complexity of matrix multiplication in the algebraic circuit
model, an algebraic model of computation. In this chapter we will study several
other algebraic models of computation and algebraic complexity classes.

Formulas, the class VPe and the determinant

An (arithmetic) formula is a rooted binary tree whose leaves are each labeled
with a variable or a field constant, and whose root and intermediate vertices are
labeled with either + (addition) or × (multiplication). In the natural way, via
recursion over the tree structure, a formula computes a multivariate polynomial f .
The formula size of a multivariate polynomial f is the smallest number of vertices
required for any formula to compute f . Here is an example of a formula of size 7
computing the polynomial (3 + x)(3 + y).

3 x 3 y

+ +

×

A sequence of multivariate polynomials (fn)n∈N is called a family. Valiant in
his seminal paper [Val79] introduced the complexity class VPe that is defined as

109



110 Chapter 7. Algebraic branching programs

the set of all families whose formula size is polynomially bounded. (We say a
sequence (an)n ∈ NN of natural numbers is polynomially bounded if there exists a
univariate polynomial q such that an ≤ q(n) for all n.) For example, the family
((x1)

n + (x2)
n + · · ·+ (xn)n)n is in VPe, because the formula size of this family

grows quadratically.

The smallest known formulas for the determinant family detn have size nO(logn).
This follows from Berkowitz’ algorithm [Ber84], which gives an algebraic cir-
cuit of depth O(log2 n), and thus by expanding we get an algebraic formula of
depth O(log2 n) whose size is then trivially bounded by 2O(log2 n) = nO(logn). It
is a major open question in algebraic complexity theory whether formulas of
polynomially bounded size exist for detn. This question can be phrased in terms
of complexity classes as asking whether or not the inclusion VPe ⊆ VPs is strict.
(We will define VPs shortly.)

Motivated by this question we study the closure class VPe of families of
polynomials that can be approximated arbitrarily closely by families in VPe

(see Section 7.2.4 for the formal definition). Over the field R or C one can think
of VPe as the set of families whose border formula size is polynomially bounded.
The border formula size of a polynomial f is the smallest number c such that there
exists a sequence gi of polynomials with formula size at most c and limi→∞ gi = f .

Continuous lower bounds

In algebraic complexity theory, problem instances correspond to vectors v ∈ Fn.
A complexity lower bound often takes the form of a function f : Fn → F that is zero
on the vectors of “low complexity” and nonzero on v. We refer to Grochow [Gro13]
for a discussion of settings where complexity lower bounds are obtained in this
way (e.g. [NW97, Raz09, LO15, GKKS13, LMR13, BI13]). Over the complex
numbers we can in fact assume that these functions f are continuous [Gro13]
(and even so-called highest-weight vector polynomials). If C and D are algebraic
complexity classes with C ⊆ D (for example, C = VPe and D = VPs), then
a proof of separation D 6⊆ C in this continuous manner implies the stronger
separation D 6⊆ C. In our case, it is thus natural to aim for the separation VPs 6⊆
VPe instead of the slightly weaker VPs 6⊆ VPe, which provides further motivation
for studying VPe. This is exactly analogous to the geometric complexity theory
approach of Mulmuley and Sohoni (see e.g. [MS01, MS08] and the exposition
[BLMW11, Sec. 9]) which aims to prove the separation VNP 6⊆ VPs to attack
Valiant’s famous conjecture VPs 6= VNP [Val79]. (Here VNP is the class of
p-definable families, see Section 7.2.4.)

New results in this chapter

We prove two new results in this chapter
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Algebraic branching programs of width 2. An algebraic branching pro-
gram (abp) is a directed acyclic graph with a source vertex s and a sink vertex t
that has affine linear forms (in one or more variables) over the base field F as
edge labels. Moreover, we require that each vertex is labeled with an integer (its
layer) and that edges in the abp only point from vertices in layer i to vertices in
layer i+ 1. The width of an abp is the cardinality of its largest layer. The size of
an abp is the number of its vertices. The value of an abp is the sum of the values
of all s–t-paths, where the value of an s–t-path is the product of its edge labels.
We say that an abp computes its value. The class VPs coincides with the class of
families of polynomials that can be computed by abps of polynomially bounded
size, see e.g. [Sap16].

For k ∈ N we introduce the class VPk as the class of families of polyno-
mials computable by width-k abps of polynomially bounded size. It is well-
known (see Lemma 7.2) that VPk ⊆ VPe for all k ≥ 1. In 1992, Ben-Or and
Cleve [BOC92] showed that VPk = VPe for all k ≥ 3. In 2011, Allender and
Wang [AW16] showed that width-2 abps cannot compute every polynomial, so in
particular we have a strict inclusion VP2 ( VP3.

We prove that the closure of VP2 and the closure of VPe are equal,

VP2 = VPe, (7.1)

when char(F) 6= 2. From (7.1) and the result of Allender and Wang follows directly
that the inclusion VP2 ( VP2 is strict. We have thus separated a complexity
class from its approximation closure.

VNP via affine linear forms. Every algebraic complexity class has a nondeter-
ministic closure (see Section 7.2.5 for the definition). The nondeterministic closure
of VP is called VNP, and the nondeterministic closure of VPe is called VNPe.
In 1980, Valiant [Val80] proved VNPe = VNP. The nondeterministic closure
of VP1 and VP2 we call VNP1 and VNP2. Using interpolation techniques we
can deduce VNP2 = VNP from (7.1), provided the field is infinite. Using more
sophisticated techniques we prove

VNP1 = VNP. (7.2)

From (7.2) easily follows VP1 ( VNP1. Also, from [AW16] we get VP2 ( VNP2.
We have thus separated complexity classes from their nondeterministic closures.

Further related work

An excellent exposition on the history of small-width computation can be found
in [AW16], along with an explicit polynomial that cannot be computed by width-2
abps, namely x1x2 + x3x4 + · · ·+ x15x16. Saha, Saptharishi and Saxena in [SSS09,
Cor. 14] showed that x1x2 + x3x4 + x5x6 cannot be computed by width-2 abps
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that correspond to the iterated matrix multiplication of upper triangular matrices.
Bürgisser in [Bür04] studied approximations in the model of general algebraic
circuits, finding general upper bounds on the error degree. For most algebraic
complexity classes C the relation between C and C has not been an active
object of study. As pointed out recently by Forbes [For16], Nisan’s result [Nis91]
implies that C = C for C being the class of size-k algebraic branching programs
on noncommuting variables. A structured study of VP and VPs was started
in [GMQ16]. Much work in lower bounds for algebraic approximation algorithms
has been done in the area of bilinear complexity, dating back to [BCRL79, Str83,
Lic84] and more recently e.g. [Lan06, LO15, HIL13, Zui17, LM16a].

This chapter is organised as follows. In Section 7.2 we discuss definitions and
basic results. In Section 7.3 we prove that the approximation closure of VP2

equals the approximation closure of VPe, i.e. VP2 = VPe. In Section 7.4 we prove
that the nondeterminism closure of VP1 equals VNP.

7.2 Definitions and basic results

We briefly recall the definition of circuits, formulas and branching programs and
we recall the definition of the corresponding complexity classes. Then we discuss
some straightforward relationships among these classes and review the proof of a
theorem by Ben-Or and Cleve, which inspired our work. Finally, we discuss the
approximation closure and the nondeterminism closure for algebraic complexity
classes.

7.2.1 Computational models

Let x1, x2, . . . be formal variables. By F[x] we mean the ring of polynomials over F
with variables x1, x2, . . . , xk with k large enough.

A circuit is a directed acyclic graph G with one or more source vertices and
one sink vertex. Each source vertex is labelled by a variable xi or a constant c ∈ F.
The other vertices are labelled by either + or × and have in-degree 2 (that is,
fan-in 2). Each vertex computes an element in F[x] by recursion over the graph.
The element computed by the sink is the element computed by the circuit. The
size of a circuit is the number of vertices.

A formula is a circuit whose graph is a tree.
An algebraic branching program (abp) is a directed acyclic graph with a source

vertex s and a sink vertex t that has affine linear forms
∑

i αixi + β, α, β ∈ F as
edge labels. Moreover, we require that each vertex is labeled with an integer (its
layer) and that edges in the abp only point from vertices in layer i to vertices in
layer i+ 1. The width of an abp is the cardinality of its largest layer. The size of
an abp is the number of its vertices. The value of an abp is the sum of the values
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of all s–t-paths, where the value of an s–t-path is the product of its edge labels.
We say that an abp computes its value.

For example, the following abp has depth 5, width 3 and computes the
polynomial x1x2 + x2 + 2x1 − 1.

x1 2

x1x2−1

An abp G corresponds naturally to an iterated product of matrices: for any two
consecutive layers Li, Li+1 in G, let Mi be the matrix (ev,w)v∈Li,w∈Li+1

with ev,w
the label of the edge from v to w (or 0 if there is no edge from v to w). Then the
value of G equals the product Md · · ·M2M1.

For example, the above abp corresponds to the following iterated matrix
product:

(
1 1 1

)−1 0 0
0 x2 0
0 0 x1


 1 0 0
x1 1 0
0 0 2


1

1
1

 .

7.2.2 Complexity classes VP, VPe, VPk

The circuit size of a polynomial f is the size of the smallest circuit computing f .
The formula size of a polynomial f is the size of the smallest formula computing f .

A family is a sequence (fn)n∈N of multivariate polynomials over F. A class is a
set of families. The class VP consists of all families (fn) with circuit size, degree
and number of variables in poly(n). The class VPe consists of all families (fn)
with formula size in poly(n). (The origin of the subscript e in VPe is the term
“arithmetic expression”.) Clearly, VPe ⊆ VP.

We introduce classes defined by abps. Let k ≥ 1. The class VPk consists of all
families computed by polynomial-size width-k abps with edges labelled by affine
linear forms

∑
i αixi + β with coefficients αi, β ∈ F.

We note that the above classes depend on the choice of the ground field F.

In our paper [BIZ17] we make a distinction between three different types of
edge labels for abps. The class VPk in this chapter corresponds to the class VPg

k

in [BIZ17].
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7.2.3 The theorem of Ben-Or and Cleve

This subsection is about the relations among VPk and VPe.

Lemma 7.1. VPk ⊆ VP` when k ≤ `.

Proof. This is clearly true.

Lemma 7.2. VPk ⊆ VPe for any k.

Proof. For the simple proof we refer to [BIZ17].

Ben-Or and Cleve [BOC92] showed that for k ≥ 3, the classes VPk and VPe

are in fact equal.

Theorem 7.3 (Ben-Or and Cleve [BOC92]). For k ≥ 3, VPk = VPe.

We will review the construction of Ben-Or and Cleve here, because we will use
it to prove Theorem 7.8 and Theorem 7.15. The following depth-reduction lemma
for formulas by Brent is a crucial ingredient.

Lemma 7.4 (Brent [Bre74]). Let f be an n-variate degree-d polynomial computed
by a formula of size s. Then f can also be computed by a formula of size poly(s, n, d)
and depth O(log s).

Proof. See the survey of Saptharishi [Sap16, Lemma 5.5] for a modern proof.

Proof of Theorem 7.3. Lemma 7.2 says VPk ⊆ VPe. We will prove the
inlusion VPe ⊆ VP3, from which follows VPe ⊆ VPk by Lemma 7.1 and
thus VPk = VPe. For a polynomial h, define the matrix

M(h) :=

1 0 0
h 1 0
0 0 1


which, as part of an abp, looks like

h

We call the following matrices primitive:

• M(h) with h any variable or any constant in F

• the 3× 3 permutation matrices, denoted by Mπ with π ∈ S3

• the diagonal matrices Ma,b,c := diag(a, b, c) with a, b, c ∈ F.
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The entries of the primitives are variables or constants in F, making them suitable
to use in the construction of a width-3 abp.

Let (fn) ∈ VPe. Then fn can be computed by a formula of size s(n) ∈ poly(n).
By Brent’s depth-reduction theorem for formulas (Lemma 7.4) fn can be computed
by a formula of size poly(n) and depth d(n) ∈ O(log s(n)).

We will construct a sequence of primitives A1, . . . , Am(n) such that

A1 · · ·Am(n) =

 1 0 0
fn 1 0
0 0 1


with m(n) ∈ O(4d(n)) = poly(n). Then

fn(x) = ( 1 1 1 )M−1,1,0A1 · · ·Am
(

1
1
1

)
,

so fn(x) can be computed by a width-3 abp of length poly(n), proving the theorem.
To explain the construction, let h be a polynomial and consider a formula

computing h of depth d. The goal is to construct (recursively on the formula
structure) primitives A1, . . . , Am such that

A1 · · ·Am =

1 0 0
h 1 0
0 0 1


with m ∈ O(4d).

Suppose h is a variable or a constant. Then M(h) is itself a primitive matrix.
Suppose h = f + g is a sum of two polynomials f, g and suppose M(f) and

M(g) can be written as a product of primitives. Then M(f + g) equals a product
of primitives, because M(f + g) = M(f)M(g). This can easily be verified directly,
or by noting that in the corresponding partial abps the top-bottom paths (ui-vj
paths) have the same value:

u1 u2 u3

v1 v2 v3

f

g
∼

u1 u2 u3

v1 v2 v3

f+g

Suppose h = fg is a product of two polynomials f, g and suppose M(f) and
M(g) can be written as a product of primitives. Then M(fg) equals a product of
primitives, because

M(f · g) = M(23)

(
M1,−1,1M(123)M(g)M(132)M(f)

)2
M(23)
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(here (23) ∈ S3 denotes the transposition 1 7→ 1, 2 7→ 3, 3 7→ 2 and (123) ∈ S3

denotes the cyclic shift 1 7→ 2, 2 7→ 3, 3 7→ 1) as can be verified either directly or
by checking that in the corresponding partial abps the top-bottom paths (ui-vj
paths) have the same value:

u1 u2 u3

v1 v2 v3

f

−1

g

f

g

−1

∼

u1 u2 u3

v1 v2 v3

f ·g

This completes the construction.

The length m of the construction is m(h) = 1 for h a variable or constant and
recursively m(f + g) = m(f) +m(g), m(f · g) = 2(m(f) +m(g)), so m ∈ O(4d)
where d is the formula depth of h.

The above result of Ben-Or and Cleve (Theorem 7.3) raises the intriguing
question whether the inclusion VP2 ⊆ VPe is strict. Allender and Wang [AW16]
show that the inclusion is indeed strict; in fact, they show that some polynomials
cannot be computed by any width-2 abp.

Theorem 7.5 (Allender and Wang [AW16]). The polynomial

x1x2 + x3x4 + · · ·+ x15x16

cannot be computed by any width-2 abp. Therefore, we have the separation of
classes VP2 ( VP3 = VPe.
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7.2.4 Approximation closure C

We define the norm of a complex multivariate polynomial as the sum of the
absolute values of its coefficients. This defines a topology on the polynomial ring
C[x1, . . . , xm]. Given a complexity measure L, say abp size or formula size, there
is a natural notion of approximate complexity that is called border complexity.
Namely, a polynomial f ∈ C[x] has border complexity Ltop at most c if there is
a sequence of polynomials g1, g2, . . . in C[x] converging to f such that each gi
satisfies L(gi) ≤ c. It turns out that for reasonable classes over the field of complex
numbers C, this topological notion of approximation is equivalent to what we call
algebraic approximation (see e.g. [Bür04]). Namely, a polynomial f ∈ C[x] satisfies
L(f)alg ≤ c iff there are polynomials f1, . . . , fe ∈ C[x] such that the polynomial

h := f + εf1 + ε2f2 + · · ·+ εefe ∈ C[ε,x]

has complexity LC(ε)(h) ≤ c, where ε is a formal variable and LC(ε)(h) denotes
the complexity of h over the field extension C(ε). This algebraic notion of
approximation makes sense over any base field and we will use it in the statements
and proofs of this chapter.

Definition 7.6. Let C(F) be a class over the field F. We define the approximation
closure C(F) as follows: a family (fn) over F is in C(F) if there are polynomials
fn;i(x) ∈ F[x] and a function e : N→ N such that the family (gn) defined by

gn(x) := fn(x) + εfn;1(x) + ε2fn;2(x) + · · ·+ εe(n)fn;e(n)(x)

is in C(F(ε)). We define the poly-approximation closure C
poly

(F) similarly, but
with the additional requirement that e(n) ∈ poly(n). We call e(n) the error
degree.

7.2.5 Nondeterminism closure N(C)

We introduce the nondeterminism closure for algebraic complexity classes.

Definition 7.7. Let C be a class. The class N(C) consists of families (fn) with
the following property: there is a family (gn) ∈ C and p(n), q(n) ∈ poly(n) such
that

fn(x) =
∑

b∈{0,1}p(n)

gq(n)(b,x),

where x and b denote sequences of variables x1, x2, . . . and b1, b2, . . . , bp(n). We say
that fn(x) is a hypercube sum over g and that b1, b2, . . . , bp(n) are the hypercube
variables. For any subscript x, we will use the notation VNPx to denote N(VPx).
We remark that the map C 7→ N(C) trivially satisfies all properties of being a
Kuratowski closure operator, i.e., N(∅) = ∅, C ⊆ N(C), N(C∪D) = N(C)∪N(D),
and N(N(C)) = N(C).
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7.3 Approximation closure of VP2

We show that every polynomial can be approximated by a width-2 abp. Even
better we show that every polynomial can be approximated by a width-2 abp
of size polynomial in the formula size, and with error degree polynomial in the
formula size. This is the main result of the current chapter.

Theorem 7.8. VPe ⊆ VP2
poly

when char(F) 6= 2.

Proof. For a polynomial h define the matrix M(h) :=
(

1 0
h 1

)
. We call the following

matrices primitives :

• M(h) with h any variable or constant in F

•
(

1
2ε

0
0 1

)
,

(
−2ε 0

0 1

)
,

(
−1 ε
0 1

)
,

(
−1 −ε
0 1

)
,

(
−1 0
0 1

)
The entries of the primitives are variables or constants in the base field F(ε),
making them suitable to use in a width-2 abp over the base field F(ε).

Let (fn) ∈ VPe, so fn(x) can be computed by a formula of size s(n) ∈ poly(n).
By Brent’s depth reduction theorem for formulas (Lemma 7.4) fn can be computed
by a formula of size poly(n) and depth d(n) ∈ O(log s(n)).

We will construct a sequence of primitives A1, . . . , Am(n) such that

A1 · · ·Am(n) =

(
1 0
fn 1

)
+ ε

(
fn;111 fn;112

fn;121 fn;122

)
+ ε2

(
fn;211 fn;212

fn;221 fn;222

)
+ · · · + εe

(
fn;e11 fn;e12

fn;e21 fn;e22

)
for some fn;ijk ∈ F[x], with m(n), e(n) ∈ O(8d(n)) = poly(n). Then

( 1 1 )
(
−1 0
0 1

)
A1 · · ·Am(n)( 1

1 ) = fn(x) +O(ε),

so fn(x) can be approximated by a width-2 abp of length poly(n) and with error
degree poly(n), proving the theorem.

We begin with the construction. Let h be a polynomial and consider a formula
computing h of depth d. The goal is to construct, recursively on the tree structure
of the formula, a sequence of primitives A1, . . . , Am such that for some hijk ∈ F[x]

A1 · · ·Am =

(
1 0
h 1

)
+ ε

(
0 0
h121 0

)
+ ε2

(
h211 h212

h221 h222

)
+

· · · + εe
(
he11 he12

he21 he22

)
(7.3)

with m, e ∈ O(8d). Notice the particular first-degree error pattern in (7.3), which
our recursion will rely on.
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Suppose h is a variable or a constant. Then M(h) is itself a primitive satisfy-
ing (7.3).

Suppose h = f + g is a sum of two polynomials f, g and suppose that

F =

(
1 0
f 1

)
+ ε

(
0 0
f ′ 0

)
+O(ε2) (7.4)

G =

(
1 0
g 1

)
+ ε

(
0 0
g′ 0

)
+O(ε2) (7.5)

are products of primitives for some f ′, g′ ∈ F[x]. Then

G · F =

(
1 0

f + g 1

)
+ ε

(
0 0

f ′ + g′ 0

)
+O(ε2)

is a product of primitives satisfying (7.3).
Suppose h = fg is a product of two polynomials and suppose that F and G

are of the form (7.4) and (7.5) and are products of primitives. We will construct
M((f + g)2), M(−f 2), M(−g2) approximately in such a way that when we use
the identity (f + g)2 − f 2 − g2 = 2fg, the error terms cancel properly. Here we
will use that char(F) 6= 2. Define the expressions sq+(A) and sq−(A) by

sq±(A) :=

(
−ε 0
0 1

)
· A ·

(
−1 ±ε
0 1

)
· A ·

(
1
ε

0
0 1

)
.

Then

sq±(F ) =

(
1∓ εf 0

±f 2 +O(ε) 1± εf

)
+O(ε2).

We have

sq−(F ) · sq−(G) · sq+(G · F )

=

(
1 + εg 0

−g2 +O(ε) 1− εg

)
·
(

1 + εf 0
−f 2 +O(ε) 1− εf

)
·
(

1− ε(f + g) 0
(f + g)2 +O(ε) 1 + ε(f + g)

)
+O(ε2)

which simplifies to

sq−(F ) · sq−(G) · sq+(G · F ) =

(
1 0

2fg +O(ε) 1

)
+O(ε2).
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We conclude(
2 0
0 1

)
· sq−(G) · sq−(F ) · sq+(G · F ) ·

(
1
2

0
0 1

)
=

(
−2ε 0

0 1

)
·G ·

(
−1 −ε
0 1

)
·G ·

(
−1 0
0 1

)
· F ·

(
−1 −ε
0 1

)
F

·
(
−1 0
0 1

)
·G · F ·

(
−1 ε
0 1

)
·G · F ·

(
1
2ε

0
0 1

)
=

(
1 0

fg +O(ε) 1

)
+O(ε2).

This completes the construction.
The length m of the construction is m(h) = 1 for h a variable or constant

and recursively m(f + g) = m(f) + m(g), m(f · g) = 4(m(f) + m(g)) + 7. We
conclude m ∈ O(8d). The error degree e of the construction satisfies the same
recursion, so e ∈ O(8d).

Remark 7.9. The construction in the above proof of Theorem 7.8 is different
from the construction in our paper [BIZ17]. The recursion in the above proof is
simpler, while the construction in [BIZ17] has a better error degree and has a
special form which relates it to a family of polynomials called continuants.

Corollary 7.10. VP2 = VPe and VP2
poly

= VPe
poly

when char(F) 6= 2.

Proof. We have VP2 ⊆ VPe by Lemma 7.2. Taking closures on both sides, we
obtain VP2 ⊆ VPe and VP2

poly⊆ VPe
poly

.
When char(F) 6= 2, VPe ⊆ VP2

poly
(Theorem 7.8). By taking closures follows

VPe ⊆ VP2 and VPe
poly⊆ VP2

poly
.

Corollary 7.11. VP2
poly

= VPe when char(F) 6= 2 and F is infinite.

Proof. By Corollary 7.10 VP2
poly

= VPe
poly

. We prove VPe
poly

= VPe in
Lemma 7.12 below.

Lemma 7.12. VPe
poly

= VPe when char(F) 6= 2 and F is infinite.

Proof. The inclusion VPe ⊆ VPe
poly

is trivially true. We prove the other direction.
Let (fn) ∈ VPe

poly
. Then there are polynomials fn;i(x) ∈ F[x] and e(n) ∈ poly(n)

such that

fn(x) + εfn;1(x) + ε2fn;2(x) + · · ·+ εe(n)fn;e(n)(x)

is computed by a poly-size formula Γ over F(ε). Let α0, α1, . . . , αe(n) be distinct
elements in F such that replacing ε by αj in Γ is a valid substitution, i.e. not
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causing division by zero. These αj exist since our field is infinite by assumption.
View

gn(ε) := fn(x) + εfn;1(x) + ε2fn;2(x) + · · ·+ εe(n)fn;e(n)(x)

as a polynomial in ε. The polynomial gn(ε) has degree at most e(n) so we can
write gn(ε) as follows (Lagrange interpolation on e(n) + 1 points)

gn(ε) =

e(n)∑
j=0

gn(αj)
∏

0≤m≤e(n):
m6=j

ε− αm
αj − αm

. (7.6)

Clearly, fn(x) = gn(0). However, replacing ε by 0 in Γ is not a valid substitution
in general. From (7.6) we see directly how to write gn(0) as a linear combination
of the values gn(αj), namely

gn(0) =

e(n)∑
j=0

gn(αj)
∏

0≤m≤e(n):
m6=j

−αm
αj − αm

,

that is,

gn(0) =
e(n)∑
j=0

βj gn(αj) with βj :=
∏

0≤m≤e(n):
m6=j

αm
αm − αj

.

The value gn(αj) is computed by the formula Γ with ε replaced by αj, which we

denote by Γ|ε=αj . Thus fn(x) is computed by the poly-size formula
∑e(n)

j=0 βj Γ|ε=αj .
We conclude (fn) ∈ VPe.

Remark 7.13. The statement of Lemma 7.12 also holds with VPe replaced with
VPs or with VP by a similar proof.

7.4 Nondeterminism closure of VP1

Recall the definition of VNPx = N(VPx) from Definition 7.7. Valiant proved the
following characterisation of VNP in his seminal work [Val80]. See also [BCS97,
Thm. 21.26], [Bür00, Thm. 2.13] and [MP08, Thm. 2].

Theorem 7.14 (Valiant [Val80]). VNPe = VNP.

We strengthen Valiant’s characterisation of VNP from VNPe to VNP1.

Theorem 7.15. VNP1 = VNP when char(F) 6= 2.
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The idea of the proof is “to simulate in VNP1” the primitives that we used in
the proof of VPe ⊆ VP3 (Theorem 7.3).

Proof of Theorem 7.15. Clearly, VNP1 ⊆ VNP by Lemma 7.2 and taking
the nondeterminism closure N. We will prove that VNP ⊆ VNP1. Recall that
in the proof of VPe ⊆ VP3 (Theorem 7.3), we defined for any polynomial h the
matrix

M(h) :=

1 0 0
h 1 0
0 0 1


and we called the following matrices primitives :

• M(h) with h any variable or any constant in F

• the 3× 3 permutation matrices, denoted by Mπ for π ∈ S3

• the diagonal matrices Ma,b,c := diag(a, b, c) with a, b, c ∈ F.

In the proof of VPe ⊆ VP3 we constructed, for any family (fn) ∈ VPe, a sequence
of primitive matrices An,1, . . . , An,t(n) with t(n) ∈ poly(n) such that

fn(x) = ( 1 1 1 )M−1,1,0An,1 · · ·An,t(n)

(
1
1
1

)
. (7.7)

We will show VPe ⊆ VNP1 by constructing a hypercube sum over a width-1
abp that evaluates the right-hand side of (7.7). This implies VNPe ⊆ VNP1 by
taking the N-closure. Then by Valiant’s Theorem 7.14, VNP ⊆ VNP1.

Let f(x) be a polynomial and let A1, . . . , Ak be primitive matrices such
that f(x) is computed as

f(x) = ( 1 1 1 )Ak · · ·A1

(
1
1
1

)
.

View this expression as a width-3 abp G, with vertex layers labeled as shown in
the left-hand diagram in Fig. 7.1. Assume for simplicity that all edges between
layers are present, possibly with label 0. The sum of the values of every s–t path
in G equals f(x),

f(x) =
∑
j∈[3]k

Ak[jk, jk−1] · · ·A1[j2, j1]. (7.8)

We introduce some hypercube variables. To every vertex of G, except s and t,
we associate a bit; the bits in the ith layer we call b1[i], b2[i], b3[i]. To an s–t
path in G we associate an assignment of the bj[i] by setting the bits of vertices
visited by the path to 1 and the others to 0. For example, in the right-hand
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s

0

1

2

k−1

k

t

A1

A2

Ak

s

1 0 0

0 1 0

0 1 0

0 0 1

0 1 0

t

Figure 7.1: Illustration of the layer labelling and the path labelling used in the
proof of Theorem 7.15.

diagram in Fig. 7.1 we show an s–t path with the corresponding assignment of the
bits bj[i]. The assignments of the bj[i] corresponding to s–t paths are precisely
the assignments such that for every i ∈ [k] exactly one of b1[i], b2[i], b3[i] equals 1.
Let

V (b1, b2, b3) :=
∏
i∈[k]

(
b1[i] + b2[i] + b3[i]

)∏
s,t∈[3]:
s 6=t

(
1− bs[i]bt[i]

)
. (7.9)

Then the assignments of the bj[i] corresponding to s–t paths are precisely the
assignments such that V (b1, b2, b3) = 1. Otherwise, V (b1, b2, b3) = 0.

We will write f(x) as a hypercube sum by replacing each Ai[ji, ji−1] in (7.8)
by a product of affine linear forms Si(Ai) with variables b and x,∑

b

V (b1, b2, b3)Sk(Ak) · · ·S1(A1).

Define the expression Eq(α, β) := (1− α − β)(1− α − β) for α, β ∈ {0, 1}. The
expression Eq(α, β) evaluates to 1 if α equals β and evaluates to 0 otherwise.

• For any variable or constant x define

Si(M(x)) :=
(
1 + (x− 1)(b1[i]− b1[i−1])

)
·
(
1− (1− b2[i])b2[i−1]

)
· Eq

(
b3[i−1], b3[i]

)
.
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• For any permutation π ∈ S3 define

Si(Mπ) := Eq
(
b1[i−1], bπ(1)[i]

)
· Eq

(
b2[i−1], bπ(2)[i]

)
· Eq

(
b3[i−1], bπ(3)[i]

)
.

• For any constants a, b, c ∈ F define

Si(Ma,b,c) :=
(
a · b1[i−1] + b · b2[i−1] + c · b3[i− 1]

)
· Eq

(
b1[i−1], b1[i]

)
· Eq

(
b2[i−1], b2[i]

)
· Eq

(
b3[i−1], b3[i]

)
.

One verifies that

f(x) =
∑
b

V (b1, b2, b3)Sk(Ak) · · ·S1(A1).

Some of the factors in the expressions for the Si(Ai) are not affine linear. As a
final step we apply the equality 1 + xy = 1

2

∑
c∈{0,1}(x + 1 − 2c)(y + 1 − 2c) to

write these factors as products of affine linear forms, introducing new hypercube
variables.

7.5 Conclusion

We finish with an overview of inclusions, equalities and separations among the
classes VPk, VPe, VP and their approximation and nondeterminism closures
(when char(F) 6= 2), see Fig. 7.2. The figure relies on the following two simple
lemmas, proofs of which can be found in our paper [BIZ17].

Lemma 7.16 ([BIZ17, Prop. 5.10]). VP1 = VP1.

Lemma 7.17 ([BIZ17, Prop. 5.11]). VP1 ( VNP1 when char(F) 6= 2.
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VP1 VP2 VPe VP

VP1 VP2 VPe VP

VNP1 VNP2 VNPe VNP=

(

(

= =

(

= ⊆

( ⊆
[AW16]

7.17

=7.16 ⊆ ⊆(

⊆⊆(
7.10

7.15 [Val80]

[Val79]

Figure 7.2: Overview of relations among the algebraic complexity classes VPk,
VPe, VP and their approximation and nondeterminism closures (when char(F) is
not 2). The relations without reference are either by definition or follow directly
from the other relations.
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Glossary

〈n〉 n× · · · × n diagonal tensor. 47

〈a, b, c〉 matrix multiplication tensor. 48

G ∗H or-product. 42

G�H strong graph product, and-product. 35

α(G) stability number. 35

χ(G) clique cover number. 40

Kk complete graph on k vertices. 36

F θ(t) quantum functional. 96

G(t) GLn1 × · · · ×GLnk for t ∈ Fn1 ⊗ · · · ⊗ Fnk . 52

H(P ) Shannon entropy of probability distribution P . 52

h(p) binary entropy of probability p ∈ [0, 1]. 53

τ(Φ) hitting set number. 59

˜τ(Φ) asymptotic hitting set number. 60

ω matrix multiplication exponent. 47

P moment polytope. 94

P(X) the set of probability distributions on X. 52

R rank. 27
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142 Glossary

˜R asymptotic rank. 27

R(t) border rank. 50

R(G) rank of a graph, clique cover number. 40

R(t) tensor rank. 47

SR(t) slice rank. 58

Q subrank. 27

˜Q asymptotic subrank. 27

Q(t) border subrank. 50

Q(Φ) combinatorial subrank. 10

Q(G) subrank of a graph, stability number. 40

supp(t) support. 52

Θ(G) Shannon capacity. 35

ϑ(G) Lovász theta number. 41

G tH disjoint union. 36

W (t) Sn1 × · · · × Snk for t ∈ Fn1 ⊗ · · · ⊗ Fnk . 53

X(S,6) asymptotic spectrum of semiring S with Strassen preorder 6. 25

ζ(S)(t) gauge point. 51

ζθ(t) support functional. 52



Summary

Algebraic complexity, asymptotic spectra and entanglement
polytopes

Matrix rank is well-known to be multiplicative under the Kronecker product,
additive under the direct sum, normalised on identity matrices and non-increasing
under multiplying from the left and from the right by any matrices. In fact, matrix
rank is the only real matrix parameter with these four properties. In 1986 Strassen
proposed to study the extension to tensors: find all maps from k-tensors to the
reals that are multiplicative under the tensor Kronecker product, additive under
the direct sum, normalised on “identity tensors”, and non-increasing under acting
with linear maps on the k tensor factors. Strassen called the collection of these
maps the “asymptotic spectrum of k-tensors”. He proved that understanding
the asymptotic spectrum implies understanding the asymptotic relations among
tensors, including the asymptotic subrank and the asymptotic rank. In particular,
knowing the asymptotic spectrum means knowing the arithmetic complexity of
matrix multiplication, a central problem in algebraic complexity theory.

One of the main results in this dissertation is the first explicit construction of
an infinite family of elements in the asymptotic spectrum of complex k-tensors,
called the quantum functionals. Our construction is based on information theory
and moment polytopes i.e. entanglement polytopes. Moreover, among other
things, we study the relation of the recently introduced slice rank to the quantum
functionals and find that “asymptotic” slice rank equals the minimum over the
quantum functionals. Besides studying the above tensor parameters, we extend
the Coppersmith–Winograd method (for obtaining asymptotic combinatorial
subrank lower bounds) to higher-order tensors, i.e. order at least 4. We apply
this generalisation to obtain new upper bounds on the asymptotic tensor rank
of complete graph tensors via the laser method. (Joint work with Christandl
and Vrana; QIP 2018, STOC 2018.)

In graph theory, as a new instantiation of the abstract theory of asymptotic
spectra we introduce the asymptotic spectrum of graphs. Analogous to the
situation for tensors, understanding the asymptotic spectrum of graphs means

143
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understanding the Shannon capacity, a graph parameter capturing the zero-error
communication complexity of communication channels. In different words: we
prove a new duality theorem for Shannon capacity. Some known elements in the
asymptotic spectrum of graphs are the Lovász theta number and the fractional
Haemers bounds.

Finally, we study an algebraic model of computation called algebraic branching
programs. An algebraic branching program (abp) is the trace of a product of
matrices with affine linear forms as matrix entries. The maximum size of the
matrices is called the width of the abp. In 1992 Ben-Or and Cleve proved
that width-3 abps can compute any polynomial efficiently in the formula size.
On the other hand, in 2011 Allender and Wang proved that some polynomials
cannot be computed by any width-2 abp. We prove that any polynomial can be
efficiently approximated by a width-2 abp, where approximation is defined in the
sense of degeneration. (Joint work with Ikenmeyer and Bringmann; CCC 2017,
JACM 2018.)
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