Proportionality in Multiwinner Voting with Weighted Seats

Julian Chingoma

LILAC Seminar

j.z.chingoma@uva.nl

February, 2023

Institute of Logic, Language and Computation (ILLC)
Complex Domains

- **Multiwinner Voting**: A job panel must produce a shortlist of k candidates to continue to the next interview stage.

- **Participatory Budgeting**: Citizens must decide on the public projects, each coming with a cost, that are to be implemented by the local municipality, subject to a budget.

 We look *another* such complex domain.
Talk Outline

- Standard Multwinner Voting (MWV) Model
- Proportionality in MWV.
- MWV with Weighted Seats.
Candidates $C = \{a, b, c, \ldots\}$.

Agents $N = \{1, \ldots, n\}$.

Each agent submits an approval ballot $A_i \subseteq C$.

Outcome is a committee $W \subseteq C$ of size k.
Proportionality in MWV

Definition (ℓ-cohesiveness)

For an integer $\ell \in \{1, \ldots, k\}$, a group of agents $N' \subseteq N$ is ℓ-cohesive if $|N'| \geq n \cdot \frac{\ell}{k}$ and $|\bigcap_{i \in N'} A_i| \geq \ell$.

Example

- Candidates $C = \{a, b, c, d\}$ with $k = 3$.
- Agents $N = \{1, 2, 3\}$.
- Approval ballots are $A_1 = \{a, b\}$, $A_2 = \{a, b, c\}$ and $A_3 = \{c, d\}$.
- $\{1, 2\}$ is 2-cohesive.
- $\{2, 3\}$ and $\{3\}$ are 1-cohesive.
Proportionality in MWV

Natural axiom: if a group is \(\ell \)-cohesive then \(\ell \) of their common candidates should be elected to the committee.

Definition (Strong Justified Representation (SJR))

A committee \(W \) provides SJR if for every \(\ell \)-cohesive group \(N' \), it holds that
\[
|W \cap \bigcap_{i \in N'} A_i| \geq \ell.
\]

However, this requirement is too strong, even when \(\ell = 1 \).

Example

- Candidates \(C = \{a, b, c, d\} \) with \(k = 3 \).
- Agents \(N = \{1, \ldots, 9\} \).
- Suppose 2 agents approve \(\{a\} \), another 2 agents approve \(\{d\} \), and 1 agent each approves of \(\{b\}, \{c\}, \{a, b\}, \{b, c\}, \{c, d\} \).
- Each candidate \(c \in \{a, b, c, d\} \) must be elected to provide SJR.
Proportionality in MWV

A weaker axiom: if a group is ℓ-cohesive then at least one group member should be represented by ℓ committee members.

Definition (Extended Justified Representation (EJR))

A committee W provides EJR if for every ℓ-cohesive group N', there exists an agent $i \in N'$ such that $|W \cap A_i| \geq \ell$.
Multiwinner Voting with Weighted Seats

Joint work with Ulle Endriss, Ronald de Haan, Adrian Haret and Jan Maly.
MWV with Weighted Seats

Example
Each seat represents a role and some roles are more valuable than others.
- The committee has 5 seats with the following roles:
 (chair, treasurer, secretary, member, member).

Example
Each seat has an associated budget that is available for the seat’s elected candidate to spend.
- The committee has 5 seats with the following budgets:
 ($3278, $1400, $560, $100, $4).
Model

🌟 Candidates $C = \{a, b, c, \ldots\}$.
🌟 Agents $N = \{1, \ldots, n\}$.
🌟 Each agent submits an approval ballot $A_i \subseteq C$.
🌟 A weight vector $\mathbf{w} = (w_1, \ldots, w_k)$ with a weight for each of the k seats.
🌟 W is the sum of all the weights.
🌟 Outcome is a committee $\mathbf{c} = (c_1, \ldots, c_k)$.
🌟 For any set of candidates $A \subseteq C$, the satisfaction from a committee \mathbf{c} is
$$\text{sat}(A, \mathbf{c}) = \sum_{j=1}^{k} \mathbb{1}_{c_j \in A} \cdot w_j.$$
Proportionality

For weight vector \mathbf{w}, the set of all possible satisfaction values is $\text{SAT}(\mathbf{w})$.

Example

If $\mathbf{w} = (5, 3, 1)$, then $\text{SAT}(\mathbf{w}) = \{1, 3, 4, 5, 6, 8, 9\}$.

Definition (ℓ-WS-cohesiveness)

For an integer $\ell \in \text{SAT}(\mathbf{w})$, a group of agents N' is ℓ-WS-cohesive if $|N'| \geq n \cdot \frac{\ell}{W}$ and there exists a $C' \subseteq \bigcap_{i \in N'} A_i$ with $|C'| = t$ such that there exists a committee c where $\text{sat}(C', c) \geq \ell$, and $|N'| \geq n \cdot \frac{t}{k}$.

Definition (ℓ-WSJR)

A committee c provides ℓ-WSJR if for every ℓ-WS-cohesive group N', there exists an agent $i \in N'$ such that $\text{sat}(A_i, c) \geq \ell$.

Julian Chingoma

LILAC Seminar
Unfortunately, ℓ-WSJR is not always satisfiable.

Example

- Candidates $C = \{a, b, c\}$.
- Agents $N = \{1, 2, 3\}$.
- Weight vector $w = (3, 2, 1)$.
- Approval ballots are $A_1 = \{a\}$, $A_2 = \{b\}$ and $A_3 = \{c\}$.

Also, even if such a committee exists, it is computationally hard to compute it. **What now?** Weaken the axiom.
Weakening ℓ-WSJR: Part 1

Intuition: some cohesive group member is just one ‘swap’ away from the deserved satisfaction?

$I_c(A)$ is the vector of positions within the committee c of candidates in A.

Definition (ℓ-WSJR-1)

A committee c provides ℓ-WSJR-1 if for every ℓ-WS-cohesive group N', there exists an agent $i \in N'$ and some $j \in I_c(C \setminus A_i)$ such that either (i), we have $w_j + \text{sat}(A_i, c) \geq \ell$ if there exists some candidate $c \in A_i$ with $c \notin c$, or (ii), for some $h \in I_c(A_i)$, it holds that $w_j + \text{sat}(A_i, c) - w_h \geq \ell$.

Can ℓ-WSJR-1 always be satisfied?
Inspired by the Method of Equal Shares (MES) rule in standard MWV. The rule works in k rounds where agents pay to assign candidates to weights from $\mathbf{w} = (w_1, \ldots, w_k)$:

- In round $r \in \{1, \ldots, k\}$, agents consider assignments to weight w_r.
- $b_i(r)$ is agent i’s budget to start round r, and in round 1, we set $b_i(1) = \frac{W}{n}$.
- In round r, we say a pair (c, w_r) is q-affordable for some $q \in \mathbb{R}_{\geq 0}$, with c currently unelected, if:
 $$\sum_{i \in N: c \in A_i} \min(q, b_i(r)) \geq w_r.$$
- If no pair is q-affordable then go to the next round, otherwise, for a q-affordable pair (c, w_r) for a minimum q, assign c to w_r and continue to the next round.
Good news in the following *restricted setting*.

Party-list elections: An election where for every pair of agents $i, j \in N$, it holds that either $A_i = A_j$, or $A_i \cap A_j = \emptyset$, and for every agent i, we have $|A_i| \geq k$.

Theorem

w-MES satisfies ℓ-WSJR-1 on party-list elections.
Weakening ℓ-WSJR: Part 2

Use $\text{LowSAT}(w) = (\ell_1, \ell_2, \ldots, \ell_k)$ where $\ell_t = \sum_{j=1}^{t} w_j$.

Example

If $w = (5, 3, 3, 1)$, then $\text{LowSAT}(w) = (1, 4, 7, 12)$.

Definition (Lower ℓ-WS-cohesiveness)

For an integer $\ell \in \text{LowSAT}(w)$, a group of agents N' is lower ℓ-WS-cohesive if $|N'| \geq n \cdot \frac{\ell}{W}$ and there exists a $C' \subseteq \bigcap_{i \in N'} A_i$ with $|C'| = t$ such that there exists a committee c where $\text{sat}(C', c) \geq \ell$, and $|N'| \geq n \cdot \frac{t}{k}$.

Definition (Lower ℓ-WSJR)

A committee c provides lower ℓ-WSJR if for every lower ℓ-WS-cohesive group N', there exists an agent $i \in N'$ such that $\text{sat}(A_i, c) \geq \ell$.
Bad news! w-MES does not satisfy lower ℓ-WSJR.

Is lower ℓ-WSJR is always satisfiable? Yes, use MES as in standard MWV.

- Treat all seats as having weight 1.
- Run MES where each agent i has initial budget $b_i(1) = \frac{k}{n}$ instead of $\frac{W}{n}$.
- When a seat is bought for a candidate c, assign c to some weight.
- MES ensures that cohesive groups get the seats that they deserve.
Future Work

⭐ Test more rules.
⭐ Define other fairness notions.
⭐ More axioms for the setting.