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It is known that for each continuous image of N∗, there is a nowhere dense weak 
P-set of N∗ that maps irreducibly onto it. We generalize this for every compact 
space of weight at most c. This allows us to show that there is a weak P-set in N∗

which is homeomorphic to N∗. This generalizes a result of the first-named author 
and answers a problem posed before 1990.
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1. Introduction

Let N denote the discrete space of natural numbers. It is well-known that every countable subspace of 
N∗ (=βN \ N) is C∗-embedded in βN, [21, 6O(6)] (cf. [33, 1.5.2]). Hence if D is any countably infinite 
discrete subspace of βN, then its closure D is homeomorphic to βN. The remainder D \D is contained in 
N∗ and is what van Douwen called a trivial copy of N∗ in N∗. He asked around 19801 whether there also 
exist nontrivial copies of N∗ in N∗. This problem was not explicitly stated in one of his published papers. 
But it can be found as Question 20 in [23].
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Non-trivial copies exist in abundance under the Continuum Hypothesis (abbreviated CH) by Parovičenko 
[34] (for example, the boundary of any noncompact open Fσ-subset of N∗). They can be forced to exist in 
models of Martin’s Axiom, and it was long suspected, motivated by results in [17, 3.14.2] and related earlier 
results in [25] that under the proper forcing axiom, PFA, these would not exist. In fact, Just [25] showed 
that it was consistent, and by [17] the same holds under PFA, that no nowhere dense closed P-set of N∗ is 
homeomorphic to N∗. This result is highly relevant to our present paper and we will come back to it below.

In [13], the first author answered van Douwen’s problem in the affirmative: there does exist a nontrivial 
copy of N∗ in N∗. The proof was anticipated in [12], and used several tools that were developed in the 
theory of Čech-Stone compactifications following the results of Chae and Smith [5] and van Douwen [6] on 
remote points, and Kunen [28] on weak P-points. He used Aronszajn trees and remote point techniques to 
embed N∗ in a nontrivial way in the absolute E(2ω1) of 2ω1 , and then applied the result in [31, 2.4] that 
E(2ω1) can be embedded in N∗ as a weak P-set to conclude the proof.

The aim of this paper is to show that there is a nowhere dense weak P-set copy of N∗ in N∗. This is a 
significant improvement of [13] and answers a question that was around before 1990 (it was explicitly stated 
after Question 20 in [23] (we could not reconstruct its origin)). Hence Just’s result just quoted cannot be 
generalized to weak P-sets. However, our nontrivial copy of N∗ is not a c-OK set, so there is still room for 
improvement.

We say that a space X maps irreducibly onto a space Y , if there is a perfect map f : X → Y which is 
irreducible; this means that if A is a proper closed subset of X, then f(A) is a proper closed subset of Y .

As we stated above, the proof in [13] used that for every N∗ image there is a c-OK set in N∗ that maps 
irreducibly onto it, [31, 2.4]. The condition about being an N∗-image is a technical one needed in the proof. 
Our first main result is to show, somewhat unexpectedly, that the condition is superfluous.

Theorem 1.1. For every compact space of weight at most c, there is a c-OK set in N∗ that maps irreducibly 
onto it.2

This new result allows for broader applications than the old one. To put this into perspective, we note 
the following. It is known from [34] that every compact space of weight at most ℵ1 is an N∗ image. Hence 
under CH, every compact space of weight c is an N∗ image. While the statement ‘every compact space of 
weight c is an N∗ image’ is consistent with the failure of CH (see [4]), it is known to be consistent that there 
are many compact spaces of weight c that are not N∗ images. For those compact spaces there exist c-OK 
irreducible preimages by Theorem 1.1 but not by [31, 2.4]. An example of such a space is ω2 +1 (Kunen [26, 
12.7 and 12.3]). For more examples, see [33]. Other examples include the Stone space of the measure algebra 
of the real line, [14], and N∗ × N∗, [24]. For the proof of our main result, we need the Stone space of the 
measure algebra of 2ω1 , which has weight c and by the result in [14] is yet another example of a space for 
which it is consistent that it is not an N∗ image.

As in [13], we use an Aronszajn tree in 2ω1 in the proof of our main result. We let every node in the tree 
correspond to a remote point in the Stone space of a certain subalgebra of the measure algebra Mω1 on 2ω1 . 
This allows us to conclude that the embedding we are after is indeed a weak P-set.

Theorem 1.2. There is a nowhere dense weak P-set in N∗ that is homeomorphic to N∗.

Since st(Mω1) satisfies the countable chain condition, the nontrivial copy of N∗ in N∗ that we get from 
this result is not a c-OK set. This prompts the following problem.

Question 1.1. Is there a nowhere dense c-OK set in N∗ that is homeomorphic to N∗?

2 During final revision of the present paper, we came across Simon’s paper [37] which contains a similar result.
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We will now briefly explain the history of Kunen’s fundamental method from [28] for creating weak 
P-points in N∗.

Its motivation came from questions about the homogeneity of Čech-Stone remainders. Rudin [35] showed 
that N∗ contains a P-point under CH. From this he concluded that N∗ is not homogeneous under CH. 
The same conclusion was reached by Frolík [19] in ZFC alone. His proof is based on a cardinality argument 
and does not yield two points in N∗ with obvious different topological behavior. Whether or not there are 
P-points in N∗ in ZFC remained a formidable open problem in topology and set theory for a long time, 
until it was settled by Shelah [39] in 1978: it is relatively consistent that P-points in N∗ do not exist. Hence 
Rudin’s method can not be used to give an ‘honest proof’ (this terminology is due to van Douwen) of the 
nonhomogeneity of N∗. But help came from Kunen. A little earlier, he had a created in [27] a method for 
constructing special ultrafilters in ZFC. He used large independent families of sets in order to prevent certain 
transfinite constructions to stop prematurely. The ideas in [27] were refined in [28] for the construction of 
so-called c-OK points in N∗ (in ZFC). Since every c-OK point is a weak P-point, this finally gave an 
‘honest proof’ of the nonhomogeneity of N∗. Instead of independent families, he used a combinatorially very 
complicated independent matrix of sets to achieve this result. His method for constructing special ultrafilters 
in ZFC was used extensively by himself (see e.g., [1,2]) and others (see e.g., [36], [8,10,13], [30–32], [38]) to 
get more general results in the same spirit. Kunen’s method is also a central tool in the present paper.

2. Preliminaries

We follow Kunen [29, p. 11] to let ‘⊂’ denote inclusion. Moreover, we let fin denote the ideal of finite 
subsets of N. If A ⊂ N, then A∗ denotes the intersection of N∗ and the closure of A in βN.

If X is a space and A ⊂ X is closed, then A is a weak P-set in X if for every countable subset D of X \A, 
the closure of D and A are disjoint. A weak P-set consisting of a single point, is called a weak P-point.

A closed subset A of a space X is κ-OK, where κ is a cardinal, Kunen [28], if for every sequence of 
neighborhoods {Un : n ∈ ω} of A, there is a κ-sequence of neighborhoods {Vα : α ∈ κ} of A such that for 
all n ≥ 1 and α1 < α2 < · · · < αn < κ, Vα1 ∩ · · · ∩ Vαn

⊂ Un. A κ-OK set consisting of a single point, is 
called a κ-OK point. It is clear that the property of κ-OK gets stronger if κ gets bigger. Moreover, every 
ω1-OK set is a weak P-set, Kunen [28].

For a space X, we let CO(X) denote its Boolean algebra of clopen sets.
Let B be a Boolean algebra. The underlying space of its Stone space, st(B), is the set of all ultrafilters in 

B. Its topology is generated by the collection {b+ : b ∈ B}, where b+ = {u ∈ st(B) : b ∈ u}. It is well-known 
that every compact zero-dimensional space X is uniquely determined by CO(X).

A space X is extremally disconnected if the closure of any of its open subsets is open. It is well-known, 
and easy to prove, that a compact zero-dimensional space is extremally disconnected iff CO(X) is complete.

If E is a subalgebra of B, then there is a natural continuous surjection fBE : st(B) → st(E) defined by 
fBE (u) = u ∩ E. And if X and Y are zero-dimensional compact spaces for which there is a continuous 
surjection f : X → Y , then E = {f−1(B) : B ∈ CO(Y )} is a subalgebra of CO(X). Moreover, st(E) and Y
can be identified, and fBE agrees with f under this identification. This is of course nothing but the Stone 
Representation Theorem, the details of which can be found in [22].

Let B be a Boolean algebra, E a subalgebra of it for which there exists an element b ∈ B \ E such 
that B is generated by E ∪ {b}. Let X = st(B), Y = st(E), and f : X → Y the canonical map. The 
element b ∈ B corresponds to a clopen subset B of X. Let C denote its complement. Put BY = f(B) and 
CY = f(C), respectively. Since B is generated by E ∪ {b}, is not difficult to show that f � B : B → BY and 
f � C : C → CY are homeomorphisms. This means that we can (and will) think of X as being homeomorphic 
to the subspace X ′ = (BY × {0}) ∪ (CY × {1}) of Y × 2. Hence f simply corresponds to the restriction of 
the projection Y × 2 → Y to X ′.
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Let X be a compact zero-dimensional space of weight κ ≥ ω. Then the Boolean algebra CO(X) of clopen 
subsets of X has size κ. A moment’s reflection shows that we can find subalgebras Bα of CO(X) for α ≤ κ, 
such that

(1) B0 = {∅, X},
(2) |Bα| ≤ |α| · ω,
(3) if β < α, then Bβ ⊂ Bα,
(4) Bα =

⋃
β<α Bβ , if α is a limit,

(5) if α is a successor, say α = β + 1, then there is an element B ∈ Bα \Bβ , such that Bα is generated by 
{B} ∪ Bβ ,

(6) Bκ = CO(X).

We now recall the notion of an independent linked family from Kunen [28], which is one of the central 
concepts in this paper.

Definition 2.1. Let F be closed subset of N∗, X a compact space and f : F → X a continuous surjection.

(a) If 1 ≤ n ∈ ω, an indexed family {Ai : i ∈ I} of infinite subsets of N is precisely n-linked with respect 
to (w.r.t.) 〈F, f〉, iff for all σ ∈ [I]n, f(F ∩

⋂
i∈σ A

∗
i ) = X but for all σ ∈ [I]n+1, 

⋂
i∈σ Ai ∈ fin.

(b) An indexed family {Ain : i ∈ I, 1 ≤ n ∈ ω} is a linked system w.r.t. 〈F, f〉 iff for each n, {Ain : i ∈ I}
is precisely n-linked w.r.t. 〈F, f〉, and for each n and i, Ain ⊂ Ai,n+1,

(c) An indexed family {Aj
in : i ∈ I, 1 ≤ n ∈ ω, j ∈ J} is an I by J independent linked family w.r.t. 〈F, f〉

iff for each j ∈ J , {Aj
in : i ∈ I, 1 ≤ n ∈ ω} is a linked system w.r.t. 〈F, f〉, and:

f
(
F ∩

⋂

j∈τ

⋂

i∈σj

(Aj
inj

)∗
)

= X,

whenever τ ∈ [J ]<ℵ0 , and for each j ∈ τ, 1 ≤ nj ∈ ω and σj ∈ [I]nj .

Lemma 2.2 (Kunen [28, 2.2]). There is a c by c independent family w.r.t. 〈F, f〉, where F = N∗ and 
f : F → {0} is the constant function with values 0.

If X is a space then βX denotes its Čech-Stone compactification. Moreover, X∗ denotes βX \X.

3. The proof of Theorem 1.1

Let X be a compact space of weight at most c.
For the proof of Theorem 1.1, it suffices to assume that the weight of X is c. Indeed, if X has weight less 

than c, then consider the topological sum Y = (X × {0}) ∪ (2c × {1}) of X and 2c. Then Y has weight c, 
and if Z is a c-OK set in N∗ that admits an irreducible map π onto Y , then π−1(X × {0}) is a c-OK set in 
N∗ as well and π � π−1(X × {0}) is irreducible.

It also suffices to assume that X is zero-dimensional, [33, 1.3.2].
So, to begin with the actual proof, let X be an arbitrary compact zero-dimensional space of weight c. 

Moreover, write CO(X) as 
⋃

α≤c
Bα, where the Bα’s are as in §2. For every α ≤ c, put Xα = st(Bα). 

Observe that X0 is a single point. Moreover, for β < α ≤ c, let fα
β : Xα → Xβ be the canonical continuous 

surjection.
Let {Gμ : (μ < c) & (μ even)} enumerate all nonempty clopen subsets of N∗. Moreover, let {〈Cμn : n ∈

ω〉 : (μ < c) & (μ odd)} enumerate all sequences of infinite subsets of N such that Cμ,n+1 ⊂ Cμn for each 
n ∈ ω. We assume that each sequence is listed cofinally often.
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Let A = {Aβ
αn : α < c, 1 ≤ n ∈ ω, β < c} be a c by c independent linked family w.r.t. 〈N∗, f〉

(Lemma 2.2).
By induction on μ < c we construct Fμ, fμ : Fμ → Xμ and Kμ such that

(1) Fμ is a closed subset of N∗, fμ : Fμ → Xμ is a continuous surjection, Kμ ⊂ c, and {Aβ
αn : α < c, 1 ≤

n ∈ ω, β ∈ Kμ} is an independent linked family w.r.t. 〈Fμ, fμ〉;
(2) K0 = c, F0 = N∗, and f0 = f ;
(3) ν < μ implies Fμ ⊂ Fν , Kμ ⊂ Kν , and the diagram

Fν

fν

��

Fμ

fμ

��

� ���

Xν Xμ

fμ
ν��

commutes;
(4) if μ is a limit ordinal, Fμ =

⋂
ν<μ Fν , and Kμ =

⋂
ν<μ Kν ;

(5) for each μ, Kμ \Kμ+1 is finite;
(6) if μ is even, either Fμ+1 ⊂ Gμ, or fμ+1(Gμ ∩ Fμ+1) 
= Xμ+1;
(7) if μ is odd, and Fμ ⊂ C∗

μn for every n, then there are clopen neighborhoods Eμα of Fμ+1 for α < c in 
N∗ such that for all n ≥ 1 and all α1 < α2 < · · ·αn < c we have Eμα1 ∩ · · · ∩Eμαn

⊂ C∗
μn.

Let us assume for a moment that this construction can indeed be carried out. Put Fc =
⋂

μ<c
Fμ. By 

compactness and the commutativity of the diagrams in (3), there is a continuous surjection fc : Fc → Xc = X

such that for every μ ≤ c, the diagram

Fμ

fμ

��

Fc

fc

��

� ���

Xμ Xc

fc
μ��

commutes. Observe that by (7), Fc is a c-OK-set in N∗. Hence it suffices to check that fc is irreducible. To 
check this, let B be a proper closed subset of F . For some μ < c, B ⊂ Gμ and F \Gμ 
= ∅. Hence Fμ+1 
⊂ Gμ, 
and so by (6), fμ+1(Gμ ∩ Fμ+1) 
= Xμ+1. Hence, clearly, fc(B ∩ Fc) 
= Xc.

Fix μ < c, and assume that the Fν , fν and Kμ have been found, for each ν < μ. If μ is a limit, then Fμ

and Kμ are determined by (4). Moreover, fμ : Fμ → Xμ is uniquely determined by the commutativity of 
the diagrams in (3), and (1) is immediate from compactness. Hence we may assume in fact that the Fν, fν
and Kν have been found, for each ν ≤ μ. We will construct Fμ+1, fμ+1 : Fμ+1 → Xμ+1 and Kμ+1.

Take an arbitrary β0 ∈ Kμ, and consider the sets C0 = Aβ0
1,0 and C1 = N \ C0 and observe that Aβ0

1,1 is 
almost contained in C1. Hence for k < 2, fμ(Fμ ∩ C∗

k) = Xμ by our inductive assumptions.
Consider the space Xμ+1. As we saw above, there is a closed cover {S0, S1} of Xμ such that Xμ+1 can 

be thought of as the subspace X ′
μ+1 = (S0 × {0}) ∪ (S1 × {1}) of Xμ × 2, and fμ+1

μ : Xμ+1 → Xμ is the 
restriction of the projection Xμ × 2 → Xμ to Xμ+1.

For k < 2, put Lk = f−1
μ (Sk) ∩(Fμ∩C∗

k). Clearly, fμ(Lk) = Sk for k < 2. Define g : Y = L0∪L1 → Xμ+1
by g(x) = 〈fμ(x), k〉 if x ∈ Lk, k < 2. Observe that fμ+1

μ ◦ g = fμ.

Claim 1. {Aβ
αn : α < c, 1 ≤ n ∈ ω, β ∈ Kμ \ {β0}} is an independent linked family w.r.t. 〈Y, g〉.

Indeed, let τ ∈ [Kμ \ {β0}]<ℵ0 , and for j ∈ τ, 1 ≤ nj ∈ ω and σj ∈ [c]nj . Then by our inductive 
assumptions, for k < 2 and P =

⋂ ⋂
(Aj

in )∗ we have
j∈τ i∈σj j
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fμ(Lk ∩ P ) = fμ(f−1
μ (Sk) ∩ (Fμ ∩ C∗

k) ∩ P ) = Sk ∩ fμ(Fμ ∩ C∗
k ∩ P ) = Sk,

from which the Claim is obvious.

Case 1. μ is even.

Put T = Gμ ∩ Y . If {Aβ
αn : α < c, 1 ≤ n ∈ ω, β ∈ Kμ \ {β0}} is an independent linked family w.r.t. 

〈T, g � T 〉, we set Fμ+1 = T , Kμ+1 = Kμ \ {β0} and fμ+1 = g � T . If not, there is τ ∈ [Kμ \ {β0}]<ℵ0 , and 
for each j ∈ τ , 1 ≤ nj ∈ ω and σj ∈ [c]nj such that

g(Y ∩
⋂

j∈τ

⋂

i∈σj

(Aj
inj

)∗) 
= Xμ+1.

Then let Fμ+1 = Y ∩
⋂

j∈τ

⋂
i∈σj

(Aj
inj

)∗, Kμ+1 = Kμ \ ({β0} ∪ τ), and fμ+1 = g � Fμ+1.

Case 2. μ is odd.

Assume first that there exists n such that Y 
⊂ C∗
μn. Then put Fμ+1 = Y , Kμ+1 = Kμ \ {β0} and 

fμ+1 = g � Y . If not, fix β ∈ Kμ \ {β0}, and let Kμ+1 = Kμ \ {β0, β}. For every α < c, put Dμα =⋃
1≤n∈ω Aβ

αn ∩ Cμn, Fμ+1 = Y ∩
⋂

α<c
D∗

μα, and fμ+1 = g � Fμ+1. We will show that these choices satisfy 
our inductive requirements.

That {Aβ
αn : α < c, 1 ≤ n ∈ ω, β ∈ Kμ+1} is an independent linked family w.r.t. 〈Fμ+1, fμ+1〉 is easy. By 

Claim 1, it suffices to observe that for arbitrary α1 < · · · < αn < c,

n⋂

k=1

D∗
μαk

∩ Y ⊇
n⋂

k=1

(Aβ
αkn

)∗ ∩ C∗
μn ∩ Y =

n⋂

k=1

(Aβ
αkn

)∗ ∩ Y.

To verify condition (7), let α1 < · · · < αn < c, and put

S = (Dμα1 ∩ · · · ∩Dμαn
) \ Cμn.

If n = 1, then S = ∅. If n > 1, then

S ⊂ Aβ
α1,n−1 ∩ · · · ∩Aβ

αn,n−1.

Hence S is finite since these Aβ
αj ,n−1 are precisely (n−1)-linked. From this we conclude that

(D∗
μα1

∩ · · · ∩D∗
μαn

) ⊂ C∗
μn,

as required.
The above proof was inspired by the proof of Theorem 3.1 in Kunen [28].
With precisely the same proof, we can generalize [31, 2.4], as follows. (We will not need this generalization 

in the rest of the proof. For the definition of nice filter, see [31].)

Theorem 3.1. Let X = ω × Z, where Z is a nonempty compact space of weight at most c and suppose that 
F is a nice filter on X. For any compact space Y of weight at most c, there is a c-OK set A in X∗ such 
that A ⊂

⋂
F∈F F ∗ that maps irreducibly onto Y .

Corollary 3.2. Let X = ω×Zn, where each Zn is a nonempty compact space of weight at most c and suppose 
that F is a nice filter on X. For any compact space Y of weight at most c, there is a c-OK set A in X∗

such that A ⊂
⋂

F ∗ that maps irreducibly onto Y .
F∈F
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Proof. Let Z be the one-point compactification of the topological sum of the spaces Zn. The nice filter 
F on X is also a nice filter on ω × Z. Hence the more general result is an immediate consequence of the 
previous result. �
Remark 1. By taking for F the co-finite filter on ω, we see that Theorem 1.1 is a consequence of Corollary 3.2.

4. Proof of Theorem 1.2

4.1. Measure algebras

For all undefined notions on measure theory, see Fremlin [18].
We let μ denote the standard Haar measure on the elements of the σ-algebra generated by the basic 

clopen sets, CO(2ω1), of 2ω1 . Hence for s ∈ Fn(ω1, 2), μ([s]) is equal to 2−| dom(s)|, where [s] denotes the 
usual basic clopen subset of 2ω1 determined by s.

Let Mω1 denote the measure algebra on 2ω1 . That is, Mω1 consists of equivalence classes of measurable 
subsets of 2ω1 , where two measurable sets are equivalent when their symmetric difference has measure 0.

We treat CO(2ω1) as a subalgebra of Mω1 . That is, we identify each [s] where s ∈ Fn(ω1, 2) with its own 
equivalence class in Mω1 .

In case α ∈ ω1 and dom(s) ⊂ α, we let [s]α be the associated clopen subset of 2α. Let prα denote the 
projection mapping from 2ω1 onto 2α where, prα(x) = x � α for x ∈ 2ω1 . If needed, we will use prβα for the 
projection map from 2β onto 2α in case α ≤ β. Of course [s]α = prα([s]).

For ω ≤ α ∈ ω1 we let Mα denote the measure algebra on 2α. Again, we treat CO(2α) as a subalgebra 
of Mα. We will abuse notation and use μ(b) to also denote the measure of b ∈ Mα since it should cause no 
confusion. The mapping ψα = pr−1

α denotes a canonical (measure preserving) embedding of Mα into Mω1 . 
We will let M ω1

α denote the range of ψα. This leads to the following diagram:

Mα

ψα

=pr−1
α

�� M ω1
α

� � �� Mω1

CO(2α)
��

��

pr−1
α

�� CO(2ω1)
� �

��

We note that Mω1 is equal to the union of the family {M ω1
α : α ∈ ω1}. For α ≤ ω1, let gα be the induced 

canonical mapping from st(Mα) onto st(CO(2α))(= 2α). Similarly, there is a canonical map from st(Mω1)
onto st(Mα) which we will denote by hα. This leads to the following diagram:

st(Mα)

gα

��

st(Mω1)
hα��

gω1

��
st(CO(2α)) CO(2ω1)��

2α 2ω1

prω1
α

��

The definition of hα(U ) for U ∈ st(Mω1) is the composition of U �→ (U ∩M ω1
α ) �→ ψ−1

α (U ∩M ω1
α ). And 

since we identify 2α with st(CO(2α)), gα(U ) for U ∈ st(Mα) is equal to U ∩ CO(2α).
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4.2. Aronszajn trees

Let T ⊂ 2<ω1 be an Aronszajn tree; specifically, T is downward closed, has no maximal elements, has 
no uncountable branches, and for α < β ∈ ω1, Tα = T ∩ 2α is countable and for each t ∈ Tα, there is an 
extension of t in Tβ .

We first note that we may assume that there is a sequence {t(ω, n) : n ∈ ω} ⊂ Tω satisfying that 
{tn = t(ω, n) � n+1 : n ∈ ω} is an antichain in 2<ω. Hence the collection of basic clopen sets {[tn] : n ∈ ω}
in 2ω1 is pairwise disjoint.

The following result is a consequence of [13, Lemma 2.9] (see also [11]).

Lemma 4.1. There is a sequence T = {t(α, n) : ω ≤ α ∈ ω1, n ∈ ω} ⊂ T satisfying, for all k ∈ ω and 
increasing {αj : j ≤ k} ⊂ ω1 \ ω,

(1) t(ω, n) = t(αk, n) � ω,
(2) there is an n̄ ∈ ω such that, for all j ≤ k and n > n̄, t(αj , n) = t(αk, n) � αj.

Proof. By [13, Lemma 2.9], there exists a family {s(α, n) : α ∈ ω1, n ∈ ω} ⊂ T such that

(3) for each α ∈ ω1, {s(α, n) : n ∈ ω} ⊂ Tα,
(4) for β < α, there is an n ∈ ω so that for all k ≥ n, s(β, k) ⊂ s(α, k).

The proof of [13, Lemma 2.9] shows that it is easy to arrange that t(ω, n) ⊂ s(α, n) for all ω < α. (Here the 
t(ω, n)’s are as above.) Hence it is clear that by putting t(α, n) = s(α, n) for all α ∈ ω1 \ ω and n ∈ ω, we 
have what we are looking for. �

Since t(α, n) is a point in 2α, we will abuse notation and let t̃(α, n) denote the Gδ-subset g−1
α ({t(α, n)})

of st(Mα).
The following result, which also was used in [13, Lemma 2.12], follows easily from the fact that T does 

not have cofinal branches.

Lemma 4.2. If D is any countable subset of 2ω1, there is a δ ∈ ω1 such that prδ(D) is disjoint from Tδ. 
Hence for all δ ≤ α ∈ ω1, prα(D) is disjoint from {t(α, n) : n ∈ ω}.

Corollary 4.3. If D is any countable subset of st(Mω1), there is a δ ∈ ω1 such that hδ(D) is disjoint from ⋃
{t̃(δ, n) : n ∈ ω}.

4.3. Remote points

The point x ∈ X∗ is called a remote point of X if x /∈ A for each nowhere dense subset A of X. Here 
closure means closure in βX. It was shown by van Douwen [6] and, independently, Chae and Smith [5], 
that every nonpseudocompact space of countable π-weight has a remote point. Not all nonpseudocompact 
spaces have remote points, [7]. The most general result about the existence of remote points is [9], where 
it was shown that every nonpseudocompact space which satisfies the countable chain condition and has 
π-weight at most ω1, has a remote point. Ideas that come from remote point proofs were used frequently 
in set theoretic topology in the last decades, and for various unrelated applications. For an example of this 
phenomenon in forcing, see e.g., [15,16].

We will make good use of remote points in the proof of our main result.
Say that an ultrafilter (point) U ∈ st(Mα) is t̃(α, n)-remote if



A. Dow, J. van Mill / Topology and its Applications 323 (2023) 108285 9
(1) gα(U ) = t(α, n), and
(2) U is not in the closure of any nowhere dense subset of st(Mα) \ t̃(α, n).

We will say that a filter F on Mα is t̃(α, n)-remote if U is t̃(α, n)-remote for every F ⊂ U ∈ st(Mα). 
Of course one could also consider defining a notion like t̃(α, n)-weak-P or countable remote or whatever.

Definition 4.4. A T -sequence of ultrafilters is a sequence

UT = {U (α, n) : ω ≤ α ∈ ω1, n ∈ ω}

satisfying, for each ω ≤ α ≤ β ∈ ω1:

(1) U (α, n) ∈ st(Mα) and gα(U (α, n)) = t(α, n) for all n ∈ ω,
(2) for all but finitely many n ∈ ω, ψα(U (α, n)) is a subset of ψβ(U (β, n)).

A T -sequence of remote ultrafilters will mean that U (α, n) is t̃(α, n)-remote for all ω ≤ α ∈ ω1 and n ∈ ω. 
We let K(UT ) denote the closed subset of st(Mω1) that is equal to

(†)
⋂

{b+ : (∃ ω ≤ α ∈ ω1)(∃m ∈ ω)(∀n > m) b ∈ ψα(U (α, n)}.

Let us first discuss where the set K(UT ) is placed in st(Mω1). Recall the antichain {tn : n ∈ ω} ⊂ 2<ω

described in the definition of the sequence T . We have adopted the convention that we may regard [tn] as 
a member of Mω1 and thus {[tn]+ : n ∈ ω} is a sequence of pairwise disjoint nonempty clopen subsets of 
st(Mω1). By condition (1) in Lemma 4.1, [tn]+ ∈ ψα(U (α, n)) for every ω ≤ α ∈ ω1 and n ∈ ω. Let B be 
the closure of 

⋃
n∈ω[tn]+ in st(Mω1). By extremal disconnectivity of st(Mω1), there exists b ∈ Mω1 such 

that b+ = B. For every n ∈ ω, let bn = b \
⋃

m≤n[tm]+. Clearly, each bn is one of the elements in Mω1 that 
satisfies the condition in the definition of K(UT ). This means that

K(UT ) ⊂ b+ \
⋃

n∈ω

[tn]+.

Let g :
⋃

n∈ω[tn]+ → ω be such that g([tn]+) = n for all n ∈ ω. Since st(Mω1) is extremally disconnected, 
the closure b+ of 

⋃
n∈ω[tn]+ is its Čech-Stone compactification, [33, 1.2.2], hence g can be extended to a 

continuous map f from b+ to βω satisfying that f([tn]+) = n for all n ∈ ω.
We are now ready for the proof of our next main result in which we exploit the remote points and make 

similar use of the properties of the Aronszajn tree from above, as in [13, 2.10].

Theorem 4.5. If UT is a T -sequence of remote ultrafilters, then K(UT ) is a weak P-set in st(Mω1) and is 
homeomorphic to N∗.

Proof. We prove first that K = K(UT ) is a weak P-set. Let D be any countable subset of st(Mω1) that is 
disjoint from K. Choose δ ∈ ω1 large enough so that, for each d ∈ D there is an α < δ and a bd ∈ M ω1

α \ d
such that bd ∈ ψα(U (α, n)) for all but finitely many n ∈ ω. This uses simply that d /∈ K(UT ). By possibly 
increasing δ, we can also assume that hδ(D) is disjoint from 

⋃
{t̃(δ, n) : n ∈ ω} as per Corollary 4.3. Since 

U(δ, n) for n ∈ ω is t̃(δ, n) remote, this implies that the closure in st(Mδ) of hδ(D) is disjoint from the 
sequence {U (δ, n) : n ∈ ω}. Fix any d ∈ D and choose nd ∈ ω so that bd ∈ ψδ(U (δ, n)) for all n > nd (using 
Definition 4.4 (2)). Since bd ∈ M ω1

δ and bd /∈ d, we have that ψ−1
δ (bd) /∈ hδ(d). Topologically, this means 

that st(Mδ) \ hδ(b+d ) is a neighborhood of hδ(d) that meets {U (δ, n) : n ∈ ω} in a finite set. This proves 
that A = hδ(D) and B = {U (δ, n) : n ∈ ω} are weakly separated (i.e. A ∩B and A ∩B are empty). Since 
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st(Mδ) is extremally disconnected, weakly separated countable sets have disjoint closures, [21, Problem 9H]. 
Therefore there is a b ∈ Mδ satisfying that b ∈ U (δ, n) for all n ∈ ω and b /∈ hδ(d) for all d ∈ D. Of course 
this means that K ⊂ ψδ(b)+ and ψδ(b)+ ∩D = ∅.

Now we prove that K is homeomorphic to N∗. Consider the element b ∈ Mω1 and the map f : b+ → βω, 
discussed right before the formulation of the theorem. Observe that f(K) ⊂ ω∗. We will show that f � K

is 1-to-1 and onto ω∗.
To prove that f � K is onto we consider any finitely many {b+j : j ≤ k} ⊂ Mω1 as in the definition of 

K(UT ) (see (†)). Choose, for each j ≤ k, αj ∈ ω1 and mj so that bj ∈ ψαj
(U (αj , n)) for all n > mj . We 

may assume that αj ≤ αk for all j ≤ k. By condition (2) of Definition 4.4, there is an m such that, for all 
n > m, b = ∧{bj : j ≤ k} is an element of ψαk

(U (αk, n)). Of course [tn]αk
∈ U (αk, n) for all n, and this 

shows that b+ ∩ [tn] 
= ∅ for all n > m. It follows that f(b+) contains the closure of ω \m. Hence, by what 
we observed above, f(K) = ω∗.

Now we prove that f � K is 1-to-1. Let U and W be distinct elements of K. Choose any b ∈ Mω1 such 
that b ∈ U \W . We may choose α ∈ ω1 such that b ∈ M ω1

α . Let A = {n : b ∈ ψα(U (α, n))} and let a ∈ Mω1

be the element representing the equivalence class of the Borel set 
⋃
{[tn] \ b : n ∈ A} ∪

⋃
{[tn] : n ∈ ω \ A}

in 2ω1 . Since (a ∪ b)+ = a+ ∪ b+ and, clearly K ⊂ (a ∪ b)+, it follows that a ∈ W . Finally, we note that A
is in the ultrafilter f(U ) and ω \A is in f(W ). �
4.4. Existence of sequences of remote ultrafilters

We now show that the conditions of Theorem 4.5 are met.

Theorem 4.6. There is a T -sequence, UT , of remote ultrafilters.

Proof. For each n ∈ ω, choose a sequence {s(ω, n, �) : � ∈ ω} ⊂ 2<ω so that

(1) for each �, tn ⊂ s(ω, n, �),
(2) the members of {[s(ω, n, �)] : � ∈ ω} are pairwise disjoint,
(3) the sequence {[s(ω, n, �)]ω : � ∈ ω} converges to the point t(ω, n) in the space 2ω.

Claim 2. There is a sequence {s(α, n, �) : ω ≤ α ∈ ω1, n, � ∈ ω} satisfying

(1) {s(α, n, �) : n, � ∈ ω} ⊂ Fn(α, 2),
(2) for all n, � ∈ ω, s(ω, n, �) = s(α, n, �) � ω,
(3) the sequence {[s(α, n, �)]α : � ∈ ω} converges to the point t(α, n) in the space 2α,
(4) for all ω ≤ β < α, there is an m ∈ ω such that for all n > m and � ∈ ω, s(β, n, �) = s(α, n, �) � β.

Proof of Claim. We prove the Claim by constructing the family by recursion on α ∈ ω1. Assume that 
{s(β, n, �) : ω ≤ β < α, n, � ∈ ω} have been defined satisfying the conditions (1)-(4) of the Claim. 
Let {βα

j : j ∈ ω} be an enumeration of α \ ω (with repetitions allowed). For each k ∈ ω, let αk denote 
the maximum member of {βα

j : j ≤ k}. Choose by our inductive hypotheses and Lemma 4.1(2), any 
strictly increasing sequence {mk : k ∈ ω} chosen so that for all n > mk, all � ∈ ω and all j ≤ k, 
s(βα

j , n, �) = s(αk, n, �) � βα
j and t(βα

j , n) = t(α, n) � βα
j (apply Lemma 4.1(2) on {βα

j : j ≤ k} ∪ {α}). To 
see that mk can indeed be chosen independently of �, use the inductive assumption on convergence in (3).

For each k ∈ ω and mk < n ≤ mk+1 we define the sequence s(α, n, �). First choose �0 large enough so 
that t(αk, n) � ({βα

j : j ≤ k} \ {αk}) ⊂ s(αk, n, �) for all � > �0 (by inductive assumption (3)). For � ≤ �0, 
let s(α, n, �) = s(αk, n, �). For � > �0, define s(α, n, �) to be the union of s(αk, n, �) and t(α, n) � ({βα

j :
j ≤ �} \ αk). Since dom(s(αk, n, �)) ⊂ αk, s(αk, n, �) ∈ Fn(α, 2). Evidently, s(αk, n, �) = s(α, n, �) � αk for 
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all � and since the family {[s(αk, n, �)]αk
: � ∈ ω} is pairwise disjoint, so too is the family {[s(α, n, �)]α :

� ∈ ω}. We verify that {[s(α, n, �]α : � ∈ ω} converges to t(α, n). Consider any finite H ⊂ α. Since the 
family {[s(αk, n, �)]αk

: � ∈ ω} converges to t(αk, n) = t(α, n) � αk, there is a �̄ large enough so that 
t(αk, n) � (H ∩ αk) ⊂ s(αk, n, �) for all � > �̄. We may choose �̄ large enough so that H ⊂ {βα

j : j < �̄}
and it then follows that t(α, n) � H ⊂ s(α, n, �) for all � > �̄. We also note that for j < k and � ∈ ω, 
s(βα

j , n, �) = s(αk, n, �) � βα
j = s(α, n, �) � βα

j .
It follows that for all k ∈ ω, n > mk and � ∈ ω we have that s(βα

k , n, �) = s(α, n, �) � βα
k . This completes 

the proof of the Claim. �
Fix any n, � ∈ ω and α ∈ ω1, and let L (α, n, �) be the set of all b ∈ Mα such that

(1) b ⊂ [s(α, n, �)]α,
(2) b has measure greater than 2�−1

2� μ([s(α, n, �)]).

Claim 3. Let n, � ∈ ω and suppose that bj ∈ L (αj , n, �) for each j ≤ k < � where ω ≤ α0 ≤ . . . ≤ αk ∈ ω1
satisfies that s(αj , n, �) = s(αk, n, �) � αj. Then 

⋂
j≤k ψαj

(bj) ∩ [s(αk, n, �)] is not empty.

Proof of Claim. Of course ψαj
(bj) ∈ M ω1

αj
and is a subset of [s(αj , n, �], that has measure greater than 

2�−1
2� times the measure of [s(αj , n, �)]. Hence it follows from the fact that s(αj , n, �) = s(αk, n, �) � αj , 

that ψαj
(bj) ∩ [s(αk, n, �)] has measure greater than 2�−1

2� times the measure of [s(αk, n, �)]. Let J =
| dom(s(αk, n, �))| and since the measure of ψαj

(bj) ∩[s(αk, n, j)] is greater than 2
�−1

2J+� , it follows that the mea-
sure of [s(αk, n, �)] \ψαj

(bj) is less than 1
2J+� . Since k+1

2J+� ≤ �
2J+� < 1

2J , it follows that 
⋂

j≤k bj ∩ [s(αk, n, �)]
is not empty. �
Claim 4. For all α < β and n, � ∈ ω such that s(α, n, �) = s(β, n, �) � α,

ψα(L (α, n, �)) = {ψα(prα(b)) : b ∈ ψβ(L (β, n, �))}.

Proof of Claim. Let S0 = ψα(L (α, n, �)) and S1 = {ψα(prα(b)) : b ∈ ψβ(L (β, n, �))}. Consider any b ∈
L (α, n, �) and we show that ψα(b) ∈ S1. It suffices to show that ψα(b) ∩ [s(β, n, �)] has measure greater 
than 2�−1

2� μ([s(β, n, �)]. Since μ(b) > 2�−1
2� μ([s(α, n, �)]), we may choose a finite family A ⊂ {s ∈ Fn(α, 2) :

s(α, n, �) ⊂ s} so that a =
⋃
{[s] : s ∈ A } ∈ L (α, n, �) and 2�−1

2� μ([s(α, n, �)]) + μ(aΔb) < μ(a). Since ψα is 
measure preserving, to show that ψα(b) ∈ S1, it suffices to show that ψα(a) ∩ [s(β, n, �)] has measure greater 
than 2�−1

2� μ([s(β, n, �)]). This fact now follows from the fact that for each s ∈ A

μ([s]α)
μ([s(α, n, �)]α) = 1

2|dom(s)|−J
= μ([s]β ∩ [s(β, n, �)]β)

μ([s(β, n, �)]β)

where J = | dom(s(α, n, �))|. The reverse inclusion, namely that S2 ⊂ S1, follows similarly from the fact 
that for s(β, n, �) ⊂ s ∈ Fn(β, 2),

μ([s � α]α)
μ([s(α, n, �)]α) = 1

2|dom(s�α)|−J
≥ 1

2|dom(s)|−Jβ
= μ([s]β)

μ([s(β, n, �)]β)

where Jβ = | dom(s(β, n, �))|. �
We define a filter F (α, n) on Mα for all n ∈ ω ≤ α ∈ ω1. We let b ∈ F (α, n) if b ∈ Mα and there is an 

�b ∈ ω such that b ∩ [s(α, n, �)] ∈ L (α, n, �) for all � > �b.
Recall the definitions in the second paragraph of subsection 4.3.
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Claim 5. For each n ∈ ω ≤ α ≤ β ∈ ω1,

(1) F (α, n) is a t̃(α, n)-remote filter, and,
(2) if t(α, n) = t(β, n) � α, then ψα(F (α, n)) ⊂ ψβ(F (β, n)),
(3) if t(α, n) = t(β, n) � α, then {ψα(prα(b)) : b ∈ ψβ(F (β, n))} = ψα(F (α, n)).

Proof of Claim. It follows from Claim 3 that ψα(F (α, n)) is a filter on M ω1
α , which of course ensures that 

F (α, n) is a filter on Mα. For each �0, 
⋃
{[s(α, n, �)]α : � > �0} ∈ F (α, n), which ensures by (3) in Claim 1

that gα(U ) = t(α, n) for all F (α, n) ⊂ U ∈ st(Mα).
Suppose that F (α, n) ⊂ U ∈ st(Mα). It remains to show that U is a remote t̃(α, n)-filter. Let D ⊂

st(Mα) be nowhere dense and disjoint from t̃(α, n). For each � ∈ ω, the set D� = D∩ [s(α, n, �)]α is nowhere 
dense. Let A� denote the set of b ∈ Mα satisfying that b ⊂ [s(α, n, �)]α and b+ ∩ D� = ∅. In fact A� is 
an ideal in the complete Boolean algebra Mα and the join of A� = [s(α, n�)]α since D� is nowhere dense. 
Therefore μ([s(α, n, �)]α) is the least upper bound of the set {μ(b) : b ∈ A�}. Choose b� ∈ A� such that 
μ(b�) > 2�−1

2� μ([s(α, n, �)]α).
The element b =

⋃
�∈ω b� ∈ F (α, n) and b+ ∩ D� = b+� ∩ D� = ∅ for all � ∈ ω. Furthermore b+ ⊂

t̃(α, n) ∪
⋃

�∈ω b+� , and so b+ ∩D is empty.
Statements (2) and (3) of the Claim follow immediately from Claim 4. This completes the proof of 

Claim 5. �
We are now almost done with the proof. Recall that we aim at constructing a sequence such as in 

Definition 4.4. The following notion is convenient for the rest of the proof.

(
) For δ ∈ ω1, a Tδ-sequence of F -ultrafilters is a sequence {U (α, n) : ω ≤ α < δ, n ∈ ω}
satisfying for each ω ≤ α ≤ β < δ:
(a) F (α, n) ⊂ U (α, n) ∈ st(Mα), hence gα(U (α, n)) = t(α, n) for all n ∈ ω,
(b) for all but finitely many n ∈ ω, ψα(U (α, n)) is a subset of ψβ(U (β, n)).

Claim 6. If {U (α, n) : n ∈ ω ≤ α < δ} is a Tδ-sequence of F -ultrafilters for some δ ∈ ω1, then there is a 
sequence {U (δ, n) : n ∈ ω} so that the sequence extends to a Tδ+1-sequence of F -ultrafilters.

Proof of Claim. Fix a monotone increasing sequence {αk : k ∈ ω} cofinal in δ. By the assumptions 
(Lemma 4.1, Claim 5 and (
)), there is a corresponding strictly increasing sequence {nk : k ∈ ω} satis-
fying that, for all n > nk:

(1) t(αk, n) = t(δ, n) � αk,
(2) ψαj

(U (αj , n)) ⊂ ψαk
(U (αk, n)) for all j ≤ k,

(3) ψαk
(F (αk, n)) ⊂ ψδ(F (δ, n)),

(4) {ψαk
(prαk

(b)) : b ∈ ψδ(F (δ, n))} ⊂ ψαk
(F (αk, n)).

Fix any k ∈ ω and nk < n ≤ nk+1. Since F (αk, n) ⊂ U (αk, n), it follows from (4), that the family 
G (δ, n) = ψαk

(U (αk, n)) ∪ ψδ(F (δ, n)) has the finite intersection property in M ω1
δ . We may therefore 

choose U (δ, n) ∈ st(Mδ) such that F (δ, n) ⊂ U (δ, n) and G (δ, n) ⊂ ψδ(U (δ, n)). Similarly, by (2), we 
have that ψαj

(U (αj , n)) ⊂ ψδ(U (δ, n)) for all j ≤ k. For this reason, it follows that for all n > nk, 
ψαk

(U (αk, n)) ⊂ ψδ(U (δ, n)).
Now let α < δ. Choose any k ∈ ω so that α ≤ αk. By the definition of Tδ-sequence of F -ultrafilters, there 

is an m ∈ ω such that ψα(U (α, n)) ⊂ ψαk
(U (αk, n)) for all n > m. Therefore, for all n > max(m, nk), we 

have that ψα(U (α, n)) ⊂ ψδ(U (δ, n)). This completes the proof of Claim 6. �
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Hence we are done. �
In view of Theorem 1.1, there is a c-OK set in N∗ that maps irreducibly onto st(Mω1). That map must 

be a homeomorphism by the fact that st(Mω1) is extremally disconnected. Since a weak P-subset of a weak 
P-subset of a space is a weak P-set in that space, this completes the proof of Theorem 1.2.

5. Remarks

Let us first remark that st(Mω1) satisfies the countable chain condition. This implies that the nontrivial 
copy of N∗ in N∗ that we get from the proof of Theorem 1.2, is not an ω1-OK set (and hence not a c-OK 
set) by Kunen [28, 1.4]. This explains Question 1.1, which we repeat here for the sake of completeness.

Question 5.1. Is there a nowhere dense c-OK set in N∗ that is homeomorphic to N∗?

In the area ‘special points in compact spaces’, many problems motivated by Kunen’s results are still 
open. An important one the affirmative solution of which would yield an ‘honest’ proof of Frolík’s theorem 
from [20], is:

Question 5.2 (Dow [8]). If X is extremally disconnected and compact, does X contain a point x such that 
for any countable discrete subset D ⊂ X \ {x} we have x /∈ D?

It was shown in [3], that the answer is affirmative for compact extremally disconnected spaces X satisfying 
πχ(X) = πw(X) ≤ c.

Another one, that goes in a completely different direction, is:

Question 5.3 (Kunen [30, 6.1]). Let X be a compact space of weight c in which every nonempty Gδ has 
nonempty interior. Is there a weak P-point in X?

It is clear that this is true under CH.
These are just a couple of the many open problems of the type: is there a set (or point) in a given space 

which cannot be ‘touched’ by elements of a given collection of subsets in its complement?
Going in a different direction we suggest the following question.

Question 5.4. Is every closed subset of N∗ homeomorphic to a subset that is a weak P-set?

We finish by stating and sketching the proof of another result in the same spirit as Theorem 1.2, which 
is an example of this and also illustrates the flexibility of the techniques used in this paper.

Theorem 5.1. There is a copy X of N∗ in N∗ having the following properties:

(1) There is a countable subset E contained in N∗ \X such that the closure of E contains X,
(2) for every countable discrete subset F in N∗ \X, the closure of F misses X.

We recall that the proof in [13], roughly speaking, boils down to the following. In 2ω1 , we attach a 
compatible ultrafilter in the absolute E(2ω1) of 2ω1 , to every node of an Aronszajn tree in 2ω1 . In the 
proof of Theorem 1.1, we did the same thing in the Stone space of the measure algebra Mω1, with a subtle 
difference: the compatible ultrafilters were chosen to be remote points. And that last fact combined with 
Theorem 1.1 exactly made our construction work. The remote points in the proof were found by exploiting 
the natural measure on st(Mω1). But this does not work in E(2ω1) for example because in 2ω1 there are 
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many closures of countable discrete sets with positive measure. Hence the proofs of Theorems 1.2 and 5.1
are different when it comes to remote points. Instead of measures, we use the ideas in [5], [6] and [31, 
Lemma 1.2]. The reader who made it this far, will have no problem checking that the proof of Theorem 5.1
can be completed along the same lines of that of Theorem 1.2, once the following facts about remote points 
have been verified.

It will be convenient to say that a collection of nonempty subsets F of a space X is remote if for every 
nowhere dense subset D of X there exists F ∈ F such that D ∩ F = ∅. Moreover, F is n-linked if for all 
G ∈ [F ]≤n we have 

⋂
G 
= ∅. If F is a collection of subsets of a set X, and f : X → Y , then f(F ) denotes 

the collection {f(F ) : F ∈ F}.
Let n ≥ 1, and let F be an n-linked collection of sets. For every 1 ≤ i ≤ n, let

F(i) =
{⋂

G : G ∈ [F ]≤i
}
.

Hence F = F(1) ⊂ F(2) ⊂ · · · ⊂ F(n), and ∅ /∈ F(n).
For the remainder of this section, X and Y are zero-dimensional compact spaces of countable weight, 

and f : X → Y is a continuous, open surjection. (X stands for 2α and Y for 2β for certain ω ≤ α ≤ β < ω1, 
and f for the projection 2β → 2α.) Moreover, for some n ≥ 1, F is an n-linked remote collection of clopen 
subsets of Y . Hence Y 
= ∅, and the same is true for X.

We will now show how to find an n-linked remote collection of clopen subsets of X which is compatible 
with f and F . This is what we need to make the proof work.

Lemma 5.2. For each nowhere dense subset D of X, there exists a nonempty clopen subset C of X such that 
C ∩D = ∅ and f(C) ∈ F .

Proof. Let D be any nowhere dense subset of X. We assume without loss of generality that D is closed. 
Put

E = {y ∈ Y : f−1(y) ⊂ D}.

Then E is closed in Y (since f is open) and obviously nowhere dense. Hence we may pick F ∈ F such that 
F ∩E = ∅. Now, for every y ∈ F we have that f−1(y) \D 
= ∅. Since F is clopen, for such y we may pick a 
clopen subset Cy in X such that Cy ⊂ f−1(F ) \D and Cy ∩ f−1(y) 
= ∅. The clopen cover {f(Cy) : y ∈ F}
of F has a finite subcover. Hence we may pick a finite A ⊂ F such that 

⋃
y∈A f(Cy) = F . We conclude that 

the clopen set C =
⋃

y∈A Cy is as required. �
Put U (0) = {X}, and for every 1 ≤ i ≤ n, let

U (i) = {U ∈ CO(X) : f(U) ∈ F(i)}.

Observe that for 0 ≤ i ≤ n, ∅ /∈ U (i).

Corollary 5.3. For each 0 ≤ i ≤ n−1, U ∈ U (i) and nowhere dense subset D in X, there is some U ′ ∈ U (i+1)

such that U ′ ⊂ U \D.

Proof. Fix 0 ≤ i ≤ n−1, and U ∈ U (i). Let g = f�U : U → f(U). Then g is a continuous and open 
surjection. Moreover, G = {F ∩f(U) : F ∈ F} is a remote (n−i)-linked collection of clopen subsets of f(U). 
If D ⊂ X is nowhere dense, then D∩U is nowhere dense in U (as well as in X). Hence by Lemma 5.2, there 
exist a clopen subset U ′ in U and an element F ∈ F such that U ′ ⊂ U \D and g(U ′) = f(U ′) = F ∩ f(U). 
Hence U ′ is as required. �
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Lemma 5.4. There is a remote collection G of clopen subsets of X such that for every m ≤ n and M ∈ [G ]m, 
f(
⋂

M ) contains an element from F(m). Hence G is n-linked.

Proof. Let D be the collection of all nowhere dense subsets of X, and fix D ∈ D for a while.
Recall that U (0) = {X}. Let 1 ≤ i ≤ n. Enumerate U (i) as {U i

k : k ∈ ω} (repetitions permitted). 
Moreover, for an arbitrary nowhere dense set D ⊂ X, put

H(D, i) = {k ∈ ω : U i
k ∩D = ∅}.

By Corollary 5.3, H(D, 1) 
= ∅. Let κ(D, 1) = minH(D, 1), and, for 2 ≤ i ≤ n, define κ(D, 2), . . . , κ(D, n)
by recursion, as follows:

κ(D, i) = min{k ∈ ω : (∀ s ≤ κ(D, i−1))(∃ t ≤ k)(t ∈ H(D, i) &U i
t ⊂ U i−1

s )}.

Again by Corollary 5.3, κ(D, i) is well-defined. Finally, put

F (D) =
n⋃

i=1

⋃
{U i

k : k ≤ κ(D, i) and k ∈ H(D, i)}.

Observe that F (D) is clopen, misses D, and is nonempty.

Claim 7. If L is a subfamily of D of cardinality e, where 1 ≤ e ≤ n, then
⋂

L∈L F (L) ⊇ Ue
l for some 

l ≤ max{κ(L, e) : L ∈ L }.

We prove this by induction on e. The case e = 1 is trivial, so assume the claim to be proven for all 
1 ≤ i < j, where j ≤ n. Let L be a subfamily of D of cardinality j. Put

κ = max{κ(L, j − 1) : L ∈ L },

and take L0 ∈ L such that κ = κ(L0, j − 1). Put L ′ = L \ {L0}. By our inductive assumption,
⋂

L∈L ′

F (L) ⊇ U j−1
l′

for some l′ ≤ max{κ(L, j − 1) : L ∈ L ′}. Since

l′ ≤ max{κ(L, j − 1) : L ∈ L ′} ≤ κ(L0, j − 1),

there is some l ≤ κ(L0, j) such that U j
l ⊂ U j−1

l′ . Therefore, 
⋂

L∈L F (L) ⊇ U j
l and since l ≤ κ(L0, j) ≤

max{κ(L, j) : L ∈ L }, this completes the inductive proof.
Hence G = {F (D) : D ∈ D} is as required. �
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