INVOLUTIONS OF /> AND s WITH UNIQUE FIXED POINTS
JAN VAN MILL AND JAMES E. WEST

ABSTRACT. Let 042 and op~ be the linear involutions of 2 and R, respec-
tively, given by the formula © — —z. We prove that although ¢2 and R are
homeomorphic [1], o2 is not topologically conjugate to oge. We proceed to ex-
amine the implications of this and give characterizations of the involutions that
are conjugate to 42 and to og~. We show that the linear involution z — —z
of a separable, infinite-dimensional Fréchet space E is topologically conjugate
to og2 if and only if E contains an infinite-dimensional Banach subspace and
otherwise is linearly conjugate to ogee.

1. INTRODUCTION

In 1966, R.D. Anderson conjectured that all involutions of the Hilbert cube ) =
II,,>1[—1, 1], with exactly one fixed-point are topologically conjugate to the linear
map x — —x and suggested it to the second author as a thesis problem. This
has come to be known as The Anderson Conjecture, which we denote by AC(Q).
See [29], [5] and [28] for more information about the validity of the conjecture. In
9] it is shown that the analogous conjecture for ¢2, AC(¢?), implies AC(Q) and
asked whether AC(Q) implies AC(¢?). In this paper, we first prove that AC(¢?) is
false and then study those involutions of spaces E homeomorphic to £? that have
unique fixed-points. This includes by the Anderson-Kadec Theorem ([6, Chapter
VI, §5] and [1]) all separable, infinite-dimensional, completely metrizable, locally
convex real vector spaces, which term we shorten to Fréchet spaces. (These
spaces, F, are characterized topologically as the complete, separable metric AR’s
such that any map f : N x Q — E may be approximated arbitrarily closely
by embeddings onto closed sets [27].) We use two standard models, ¢?, and
the countable product of lines, R>, more conveniently represented topologically
as 8 = II,>1(—1,1),. See [2] for a self-contained, elementary proof that ¢? is
homeomorphic to R*>. If X is a vector space, s, or (), we denote the involution

r — —x by ox. Note that z — f\xl applied coordinatewise conjugates oge~ to
Os.
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In Section 2, we state our results, and in Section 3 we specialize to the case
of linear involutions with a single fixed-point and show that AC(¢?) is false.
In particular, we give two different proofs of the following, illustrating different
phenomena:

Theorem 1.1. 0,2 is not topologically conjugate to os.

Thus, although ¢? is homeomorphic to s and therefore supports involutions
conjugate to o, the linear involutions o2, and o, contain enough information
about the linear structure to be topologically distinct. As the referee noted,
this can be formulated as follows: no homeomorphism from ¢? to R* is odd.
That is, for every homeomorphism f : #2 — R, there exists x € ¢? such that
f(=z) # —f(x).

In Section 4, we give a topological characterization of those involutions on
spaces homeomorphic to Fréchet spaces that are topologically conjugate to o
and show that the linear involution ox on a Fréchet space X is topologically
conjugate either to gy or to oy:

Theorem 1.2. Let X be a separable, infinite-dimensional Fréchet space. If X
contains an infinite-dimensional normable linear subspace, then ox 1is topologi-
cally conjugate to op2; otherwise, ox is linearly conjugate to or=, hence topolog-
cally conjugate to .

Section 5 is devoted to technical results needed to establish our characterization
of the involutions that are conjugate to o,. In Section 6, we prove our main
characterization, Theorem 2.16, of o, and give in Theorem 2.18, a collection of
equivalent conditions.

We mostly use standard terminology, for undefined notions see [10], [6] and [24].
Unless otherwise specified, neighborhoods are open sets. The symbol “~” will
mean “is homeomorphic to”, and “A(N)R” stands for “absolute (neighborhood)
retract for metric spaces”.

2. INVOLUTIONS WITH UNIQUE FIXED-POINTS: STATEMENT OF MAIN RESULTS

Definition 2.1. An involution of a space is based-free provided that it has a
unique fixed-point.

Definition 2.2. A based-free involution of £%, s or Q) is of type A, B, or C if it
is topologically conjugate to the linear involution o2, o, or og, respectively.

Definition 2.3. For a map ¢ : X — [0,1], the variable products, X x4 ¢*, and
X X4 s, are defined as follows:

(1) X x4 0% = {(2,9)|(¢(x) > 0) & ([| y |< ¢(2))}U(¢7H(0) x {0}) } € X x 2,
(2) ig;fSC—X{(%y) € X xs|(d(x) > 0) & (y € Hpz1(—(x), (x)) U(¢7"(0) X

A
< o
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We shall use ¢ generically to denote a map to [0,1] with ¢~!(0) a point, fre-
quently “x”, that is determined by context.
Henceforth, we let a be a based-free involution of E, where E = (?.

Definition 2.4. « is of compact type provided that there is a compact space
X with a based-free involution 3 and fixed-point * such that « is conjugate to
B =Bxyidp : X x4 2 = X x4 % where ¢ : X — [0,1] is a map with
¢~H(0) = {x}.

Definition 2.5. « is isovariantly movable if there is a basis V,, of neighborhoods
of the fixed-point, *, with the property that for each n there is an m > n such

that V,,, deforms isovariantly into V; for all j, with the deformation occurring
in V,.

Note that by elementary covering space theory, the analogous property for the
orbit space E/a is equivalent, where we require that V, \ {*} deform in V,,\ {x}.
We re-state Theorem 1.1.

Theorem 2.6 (Theorem 1.1). Involutions of type A and type B are not topolog-
ically conjugate.

Theorem 2.7. « is of type A if and only if the fixed-point x has a basis Vi D
Voo VoDV Do DV, D Vnﬂ D ... of mwariant neighborhoods such that
for infinitely many n, V, is contractible, and for infinitely many n, E\ V, is
contractible.

Corollary 2.8 (Characterization of involutions of type A). A based-free involu-
tion of a space £ homeomorphic to £2 is of type A if and only if the fixed-point
has a basis of invariant open neighborhoods, V,, that have bicollared, contractible
boundaries.

(Here, a bicollar of a subset A of a space S is an open embedding ¢ : Ax(—1,1) —
S with ¢(a,0) = a for each a € A.)

Wong [29] proved that a based-free involution on @ is of type C if and only if
the unique fixed-point has a neighborhood base of contractible, open, invariant
sets. Hence Theorem 2.7 and and Corollary 2.8 are analogs of Wong’s result. The
extra conditions about the contractibility of the sets £\ V,, and the contractible
boundaries are essential, as is demonstrated by Theorem 1.1. Corollary 2.8 allows
us to show that the linear involution oy of a Fréchet space X is either of type A
or of type B:

Theorem 2.9 (Theorem 1.2). Let X be a Fréchet space. If X contains an
infinite-dimensional normable linear subspace, then ox is topologically conjugate
to o2, otherwise, ox is linearly conjugate to ore, hence topologically conjugate
to 0.

Definition 2.10. Let 7' = TRP>™ = | J,,, RP" X[n, 00) be the telescope of RP*,
and let T}, = |J, -, RP™ x[m, 00). Define T = T U {*}, where {V,, = int(T;,) U

m>n
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{x}}, is a basis for x, and let T* = (T x [0,00)) U {*}, where {W,, = (T x
(n,00)) U {*}}, is a basis for *.

Remark 2.11. Both T and T* are AR’s by Lemma 5.2 because the point at oo is
a strong deformation retract.

Corollary 2.12. « is an involution of type A if and only if its orbit space F/a
is homeomorphic to T* x 2.

Theorem 2.13. Involutions of type B are of compact type.

Theorem 2.14. Let o be of compact type. Then « is of type B if and only if its
orbit space F/a is an AR.

Corollary 2.15. The following are equivalent:

(1) The Anderson Conjecture for Q.
(2) « is of type B if and only if it is of compact type.

Theorem 2.16 (Characterization of involutions of type B). Let o be a based-free
involution of a space E homeomorphic to (?. Then o is of type B if and only if
it 1s of compact type and is isovariantly movable.

Theorem 2.17. If o is of compact type, then
(1) E/a is LC" for all n,
(2) mo(E/a) =0 for all n,
(3) the singular homology groups H,(E/a) =0 for all n,
(4) E/a is an absolute extensor for finite-dimensional metric spaces.

Collecting these results and including an observation of R. Geoghegan and
H. Hastings (remarked independently to the second author in 1979 following the
publication of [28]), we have the following summary.

Theorem 2.18. Let o be a based-free involution of E of compact type, where E
is homeomorphic to (2. Then E/«a is an absolute extensor for finite-dimensional
metric spaces and the following are equivalent:

(1) « is of type B;

(2) E/a is homeomorphic to T x4 (%,

(3) « is isovariantly movable;

(4) E/a is an AR;

(5) E/a is homotopy equivalent to a CW-complez;

(6) E/a is contractible.

We let T and J both denote [0, 1]. Moreover, S™ for n > 0 denotes the n-sphere.

3. Two PROOFS OF THEOREM 1.1

We first collect in the following Lemma several well-known results that we need
to refer to.
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Lemma 3.1. The following are absolute retracts:
25,02\ {0}, s\ {0},Q, B(£?), S.(¢*), and C((?).
(Here, the last three are the closed ball in (* of radius € > 0, the sphere in (?

of radius € > 0, and the complement in (> of the open ball of radius € > 0,
respectively.) All except Q) are homeomorphic.

Proof. Both ¢? and s are AR’s by [13] and homeomorphic by [1]. Moreover,
B, is homeomorphic to £ by [6, Chapter VI, §2]. Also, ¢? \ {pt} and ¢* are
homeomorphic by [20]. Thus, C. =~ B, \ {0} ~ ¢*. Now, (? ~ S, \ {pt} by
stereographic projection, and S, \ {pt} =~ S. by an immediate application of [2,
Theorem 9.2]. Lastly, @ is a product of AR’s. [l

First Disproof of AC(¢?). By Lemma 3.1, £*\ {0} and s\ {0} are contractible, so
their orbit spaces are homotopy equivalent to RP*>. Again by Lemma 3.1, the
C.’s are contractible. Therefore the C./o,2’s are homotopy equivalent to RP*
and include into (¢*\ {0})/os by homotopy equivalences. In s, 0 has a basis of
invariant open sets V,, = H?zl(—%, %)1 x I;=,R;, and s\ V,, is homeomorphic to
(S"71 x [1,00)) x IjsnRy, so (s \ V,,) /o is homotopy equivalent to RP™™! and
does not include into (s \ {0})/os as a homotopy equivalence. Therefore, there
is no homeomorphism h of ¢?/o,2 onto s/o, carrying 0 to 0, since the inclusion
h(C./op) — (s\ {0})/os would factor through (s \ V,,)/os for sufficiently large
n. As RP* has non vanishing homology in infinitely many dimensions and RP"
does not, there is no equivariant homeomorphism from ¢? to s. 0

For every n > 1, let o,, be the antipodal map of S". Let Y be )  S™, the
topological sum (i.e., discrete union) of the S™, and let o : Y — Y be defined by
o|sn = op, for every n > 1.

Lemma 3.2 (van Douwen [12, §3]). If aY is a compactification of Y such that o
can be extended to a continuous f : aY — aY, then there exists y € aY \'Y such

that f(y) =y.

Proof. For the convenience of the reader, we repeat van Douwen’s proof. Assume
that f has no fixed point. Then there is a finite closed cover .# of aY such
that f(F) N F = () for each F € .#. Pick m so large that |#| — 2 < m. Then
G ={FNS™F € Z} is a closed cover of S™ no element of which contains an
antipodal pair. This implies by the Lusternik-Schirelmann Theorem, [14, Chapter
16, Corollary 6.2(3)]), that m+2 < |¥4| < |.#|, which is a contradiction. Hence f
has a fixed-point y which obviously belongs to aY \ Y. 0

Corollary 3.3. In Lemma 3.2, we may replace Y by Y* =Y U {x}, where x is
an isolated point and o (%) = .

Proof. There is a finite closed cover .# of aY™ such that precisely one member
F of Z contains * and such that F NY = (). The rest of the argument is the
same. U
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The second proof, from a different, and revealing, perspective, is this:
Second Disproof of AC((?). For each n > 1, define i,, : S™ — (2 by
in(x) = (nx1,...,nTpe1,0,0,- ).

Observe that i, is an embedding, and that o, agrees with the map o2 on 7,(S™).
Moreover, for each x € S™ we have ||i,(z)|| = n. Hence {i,(S")n > 1} is a
discrete collection of n-spheres in ¢2, embedded in such a way that each o, agrees
with the map o,2. This induces an equivariant embedding of Y* in ¢2. Hence
by Corollary 3.3, any equivariant compactification of 2 has a fixed point in its
remainder. However, () is an equivariant compactification of s having no fixed
point of o¢ in its remainder. This obviously does the job. 0

4. INVOLUTIONS OF TYPE A

Proof of Theorem 2.7. We may assume that £ = (2. By Lemma 3.1, only
the “if” direction needs proof. Since the V;’s are a basis for x and the spheres of
radius € in £2 are contractible by Lemma 3.1, we may select V;’s so that

(1) i = E,

( ) n+1 C Vna

(3) Van41 is contractible, for n > 0,

(4) E\ V, is contractible, for n > 1.

(5) for each n there is a not necessarily invariant neighborhood O,, of * con-
taining V5,, and with O,, C V4,_; that is contractible with boundary 00,
a contractible, bicollared #?-submanifold of E.

For m < n, let A(m,n) = Vap1 N (E\ Va,). By property (5), 90, is con-
tractible, hence an AR, so V3,11 retracts to Vo,iq \ O, and E \ V3, retracts to
O, \ Va,. These latter two sets are therefore contractible, so by [17, Corollary
0.20], there is a strong deformation retraction of A(m,n) to 00,,. Hence, A(m,n)
is contractible and A(m,n)/« is homotopy equivalent to RP*. We wish to find
a bicollared submanifold of A(m,n)/« that is also homotopy equivalent to RP*
and separates the boundary of V5, /a from the boundary of V4,41 in E/a. We
do this first by finding a separating submanifold and then improving it by handle
exchanges until it is homotopy equivalent to RP>°. Note that 00,, is a closed
set in F that separates the boundaries of V5,1 and Va,. So, 00, /a separates
OVomy1/a from OVs, /a, but is not necessarily a submanifold. Choose a triangula-
tion h: K x (* = E\{0}/a of E\{0}/a where K is a locally compact simplicial
complex with the property that if o is a simplex of K and h(o x (2)N 00, /a # ()
then h(o x €*) C A(m,n), [11].

We identify E\ {0}/a with K x (2. Let S be the union of all simplices ¢ of K
that o x ¢? meets V5, /a. Choose a (closed) regular neighborhood N of S. Then
ON is bicollared in K, so L = ON x ¢* is an {*-submanifold [27] of A(m,n) that
is connected, bicollared, and separates 0Va, from E'\ V,,_1/a in E'\ {0}/a. Let
M=(Nx*NAn-1,n)and P=A(n—1,n) \ int M.

3
4
5
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[Now we can trade handles in an analogous way to the way we will do in the
proof of (2) of Lemma 5.4. Here, however, there are three differences compared
to what we will be dealing with in Lemma 5.4. The first is that we already
have that L is connected and that 7y (L) maps onto m(A(m,n)/a). (Otherwise,
L = N x £2 would be disconnected, which would force E to contain an essential
loop.) The second is that we have to trade handles in an induction on dimension
to eliminate all higher homotopy groups. The third is that in Lemma 5.4 we
will be working in the compact case, but here the manifolds are nowhere locally
compact, so the homotopy groups may not be finitely generated. On the other
hand, the ¢?>-manifolds are homotopy equivalent to locally compact simplicial
complexes, so the homotopy groups will be countable. The fact that 2 ~ (2 x X,
where X is the intersection with the closed unit ball of ¢? of the axes of the
standard basis [25] allows us plenty of room to perform these exchanges.]

Let {gi}i>o be generators of the kernel G of the homomorphism of m(L) to
71(P) induced by the inclusion of L into P. Choose a discrete set of embeddings
g, of St freely representing the g;’s (i.e., freely homotopic to representatives of
the ¢;’s) in L x {1} C L x I, and select a discrete collection of embeddings
fi : D* = P x {1} extending g; such that f;*(L) = S*. For each 4, choose an
embedding g; : S x(?x[—1,1]xI — LxT onto a closed neighborhood of the image
of gl in LxT suc that g;(s,0,0,0) = gi(s) and g;(S* x £ x [—-1,1] x {0}) = gi(S* x
2 x[—1,1]x[0,1]NLx{1}. Extend g to an embedding f/ : D?x[—1,1]xI — PxI
with (f/)"Y(P x {1}) = D? x 2 x [~1,1] x {0} and (f))"(L) = g; (L x I).
Choose the ¢;’s and the f/’s so that their images form a discrete collection of
subsets of A(n — 1,n)/a. Now transfer the sets f/(D? x £ x (—=1,1) x [0,1))
from P x I to M x I, obtaining P and M’. The boundary L’ between P’ and
M'"is (L x T\ U, g/(S* x (=1,1) x [0, 1)) U (U, fI(D* x £2 x {—1,1} x TU D? x
(* x [-1,1] x {1}). Now there are strong deformation retractions of L x I onto
LxTI\U,§:(S" x 2 x (—=1,1) x [0,1)) and P x I onto P’, and G is the kernel of
the homomorphism m (L x I) — m(L x T\ |, G:(S* x €% x (—=1,1) x [0,1))) —
m1(L"). Moreover, this homomorphism is surjective. Hence, (L") = m(L)/G
and m (L") — m(P’) is injective. Performing the analogous procedure on L'
and M’ to eliminate the kernel of m (L") — m(M’), we obtain M, L;, and
Py. Then m(L;) injects into 71 (M;) and 7 (P;). Consider the homomorphism
m (M) — m(A(n — 1,n)/a) 2 Z/27. 1f g is in the kernel, then g is represented
by an embedded loop w C M; that bounds an embedded disc in A(n—1,n). This
disc may be assumed to intersect L, in a finite collection of circles. An innermost
(in the disc) such circle bounds a disc in either M; or P;. As the inclusions of 14
into M; and P; induce injections on 7y, this circle bounds a disc in L; which can
be pushed into the interior of P, or M, reducing the number of the circles, so
an induction yields an embedded disc in M; bounding w. Hence, the inclusions
of My and of P, into A(n — 1,n)/« induce injections on 7. It follows that the
fundamental groups of Ly, My, and P are all Z/27.
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We now observe that if we denote the pre-images of M, L, and P; under
the orbit map ¢ : £ — E/«, by M, etc., the restrictions of ¢ are cover-
ing projections and thus map m(M;) isomorphically to my(Mi), etc. Since
m(Ly), 7T1(]\N41) and 7 (P;) are all trivial, the Hurewicz Isomorphism Theorem
says that 7r2(L1) 7r2(]\~41) and my(P;) are isomorphic to the homology groups
Hy(Ly), Hy(M,), and Hy(P,), respectively. Applying the Mayer-Vietoris The-
orem in A(n — 1,n) = M, U P, we obtain a long exact sequence in singular
homology with integer coefficients

- — Hg(A(ﬂ — 1,n)) — HQ(Zl) — HQ(Ml) D Hg(pl) — Hl(A(TL — 1,7’2,)) — ...

As A(n —1,n) is contractible, its homology vanishes, and we find that HQ(Zl) =
HQ(Z\;[l)EBHQ(I-Z’l), so ma(Ly1) = mo(M;)@ma(Py). We are now in a position to apply
a construction analogous to the one we used for the fundamental group to replace
Ly, My, and Py by Lo, M5, and P, where we eliminate the kernels of the inclusion
homomorphisms my(L1) — mo(P;) and my(Ly) — mo(M;) while preserving their
fundamental groups. Since the kernel of the first homomorphism is the summand
of mo(L1) isomorphic to me(M7) and that of the second is the summand isomorphic
to mo(Py), m(Le) = 0, we have also arranged that mo(My) = me(FPs) = 0. The
general step in the induction proceeds exactly in this manner, and the final result
is the desired submanifold L,, that separates A(n—1,n)/a into two £ manifolds,
M, and P,, each homotopy equivalent to RP*°.

We now consider A(n — 1,n + 1)/a. Denote the closure of the component
of A(n —1,n+1)/a \ (L, U Ly,4+,) containing M, by Y,. By [17, Corollary
0.20] there are strong deformation retractions of Mn+1 to Ln+1 and of P to Ln,
so A(n — 1,n 4+ 1)/« retracts to Y, which is therefore homotopy equivalent to
RP> and has boundary components the Z-sets L, and ﬁnH In /2 let W,, denote
the annulus B1 \mtB L Then W, is homotopy equivalent to S 1, which is

contractible by Lemma 3 1 Thus W,, /o and Si/op are homeomorphlc to Y,

and L,.. Choose homeomorphisms ¢, : Y,, — Wyi1/ope,n=0,1,.... Using Z-Set
Unknotting in ¢*-manifolds (see [3] and [4]), we may adjust the (,’s so that

(1) GalL) = S /o,
(2) Cn(Ln+1) = Sn+2/o—é27 and
(3) Grtlz,y, = SnlLas-

For n > 1, the ¢,’s combine to give a homeomorphism ¢ : E\ {0}/a \ intPy —
B\ {0}/0p2, where B is the closed unit ball of /2. Let ¢y : Py — €2\ intB/o,
which extends (o|; . This extends ¢ to a homeomorphism of E \ {0}/a onto
¢*\ {0} /o which further extends to a homeomorphism of F/a to (?/o,2. Now
¢ lifts to a homeomorphism 5 : E — (% which conjugates o to 0. 0
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Proof of Corollary 2.8. By the van Kampen Theorem, the fundamental groups
of V,, and E \ V,, are trivial, and the Mayer-Vietoris Theorem shows that the sin-
gular homology groups of V,, and E \ V,, are zero. Observe that V,, and E\ V,
are ANR’s (actually, £2-manifolds), being the union of two relatively open ANR’s,
hence they are homotopy equivalent to CW-complexes [19]. By a theorem of
Whitehead [17, Chapter IV, Corollary 4.33], they are contractible. Since 9V, is
a Z-set in V,, and in E\V,,, V,, and E\ V,, are contractible. By 2.7, a is of Type
A. O

The following lemma is close to results in Bessaga, Pelczynski and Rolewicz [7,
Theorems 8 and 9] and Mazur and Orlicz [22, Theorem 3.1]. We are indebted to
Witold Marciszewski for informing us about this.

Lemma 4.1. Let X be a separable, infinite-dimensional Fréchet space. If X
contains no infinite-dimensional normable linear subspace, then X 1is linearly
homeomorphic to R>.

Proof. Let Uy 2 Uy O ... be a basis at 0 of open, symmetric, convex sets. Set
Xo = X, and for each n, let X,, = {z € U,ltx € U, for allt > 0}. Then X,
is a closed linear subspace and X,, O X,.;. Denote by p, the quotient map
X — X/X,. Then p,(x) = pp(y) for all n only if z = y. Now, X/X, is
finite dimensional because if A C X/X,, is linearly independent and p,(b,) = a
for each a € A, then B = {b(a)|a € A} is linearly independent, and its linear
span intersects U, in a bounded, convex, relatively open set and is consequently
normable. Let p, be the restriction of p, to X,,_; for n > 0, and set E, =
Pn(Xn_1). Choose linear cross-sections g, : E, — X, 1 of the p,’s. Set f, =
id — gyopn: Xuo1 = Xpo1. Then f,(X,—1) C X,,. For x € X, let x; = fi(x)
and, inductively, z,, = f,(x,_1).
Let £/ =112, E;, and define T': X — E by

T(x) = (pr(x), pa(21), - -, Pn(Tn—1), - ).
Then T is continuous because X,, — 0. The inverse of T is the function S : £ —
X given by
S,y ) = XZ219:(1:)-

To see that S is well-defined and continuous, let &, : E — E by k,(yp,...) =
(Y1,Y2, -, Yn,0,0,... ) and set S, = Sok, : E — X. If j > n, g;,(E;) C X,, C U,,
soS—25,:F— X, 1 CU,_,. Therefore, the S,’s converge uniformly to S.

Now let T, : X — E' by x — (p1(x), pa(x1),...,pn(2),0,0,...). Then S, 0T, =
SokpoT and converges to SoT'. On the other hand, S, 0T, (z) = X ,g;op;i(z;) =
E?Zl(x,;_l — a:z) =ry—21+2 — 29+ +2T,_1 — T, =2 — T, and converges to
x. Thus, SoT =1id : X — X and T is a bijective linear homeomorphism onto
FE, which is isomorphic to R®°. 0

Proof of Theorem 1.2. Suppose that X contains an infinite-dimensional normable
linear subspace. Its closure is a Banach space, E. Let f : X — X/FE be the
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quotient map. Then X/FE is a Fréchet space, and by [23] there is a continuous
cross-section g : X/E — X for f,so h(z,y) = 1(g(x)—g(—x))+y defines an equi-
variant homeomorphism of X/FE x E onto X, where the involution on X/E X E
is (z,y) — (—z,—y). By [6, Chapter 1, Section 6], X/E may be regarded as
a closed linear subspace of a product 1I;>,Y; of Banach spaces, so 0 has a basis
(in X/E) of sets of the form U = X/EN(V x I1;5,Y;), where V C II1;<,,Y; is
open, symmetric, and convex. Denote the boundary of U in X/E by 0U. Again
applying [23], we see that U is homeomorphic to p(U) x ker(p), where p is the
projection of X/FE into Il1<;<,Y; and ker(p) is the kernel of p. Now p(U) is an
open, convex, symmetric neighborhood of 0 in the Banach space p(X/FE), and its
boundary (in p(X/E)), dp(U), is bicollared in p(X/E). As OU = 0p(U) x ker(p),
it is bicollared in X/F.

If W is a convex, symmetric, open neighborhood of the identity in E, then its
boundary is bicollared in E. It follows that (U x W) is bicollared in U x W.

[This is as follows. Let ¢; : O(U) x (=1,1) — C; € X/E and ¢y : (W) x
(—1,1) — Cy C FE be bicollaring homeomorphisms with ¢;(0(U) x (—=1,0)) C U
and cy((W) x (—=1,0)) € W, then C} x Cy is a neighborhood of 9(U) x (W) in
p(X/E)xW. Set L = ((—1,0] x {0})U ({0} x (—=1,0]) € (=1,1) x (—1,1). Then
(—1,1) x (—1,1) is a bicollar of L in (—1,1) x (=1,1), and x : ((U) x d(W)) x
((=1,1) x (=1,1)) = X/E x E by ((z,y), (s,t)) = c1(x, 8) X c2(y, t) is a bicollar
of (¢1(O(U) x (—=1,0]) x 9(W)) U (O(U) x ea(O(W) x (—=1,0])) in X/E x E. Sice
cg xid : (OU x (=1,1)) x W — X/E x E and id X ¢ : U x (OW x (—-1,1) —
W/E x E are bicollars of OU x W and U x oW, (U x W) is locally bicollared
in X/FE x E. Because locally collared sets are collared by Brown’s Collaring
Theorem [8], O(U x W), 0(U x W) is collared on both sides in X/E x E.]

We have now established that X has a basis at 0 of invariant, contractible, open
sets with bicollared boundaries. It remains to demonstrate that their boundaries
are contractible.

Consider U x W as above. We have (U x W) = (9(U) x W) U (U x 9(W)).
By [6, Chapter 3, Proposition 5.1], there is a homeomorphism X\ : W — W\ {0}
that is the identity on O(W). Because FE is a Banach space, radial projection
gives a deformation retraction r(z,t) = z(1 —t + H;—”) of W\ {0} to o(W),
and 7(x,t) = A7} (r(\(z),t)) is a deformation retraction of W onto d(W). Then
F:0W)xI— oW) by (z,t) — 7((1 —t)x,1) is a contraction of I(W) to a
point, say g, of d(W).

First applying 7 and then F' produces a homotopy of (U x W) into U x {z¢}.
Since U is contractible, this shows that (U x W) is contractible. By Corollary
2.8, the involution oy is topologically conjugate to oye.

If X contains no infinite-dimensional normable linear subspace, then X is lin-
early isomorphic to R* by the preceeding lemma. A linear isomorphism will
conjugate ox to ogre, which is conjugate to o;. 0J


Gebruiker
Notitie
This seems OK.
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5. BASED-FREE INVOLUTIONS OF COMPACT TYPE: LEMMAS AND
PROPOSITIONS

If Y is a space with an involution, v, we denote by p the orbit map ¥ — Y/v
and by ¢ a map from Y/~ to [0, 1] with ¢~!(0) = Fix(7), the fixed-point set of .

If AC Y/y we use A to denote p~'(A). The meaning should be clear from
context.

Lemma 5.2 below is well-known [21, Theorem 2.3|, [15], where its proof is
based on the familiar partial realization characterization of ANR’s. We shall use
it several times. We give a direct argument for the benefit of the reader. We need
the following lemma that we think is folklore and of which we present a proof
for the sake of completeness. We are indebted to Elzbieta and Roman Pol for
providing the proof.

If (X,d) is a metric space, then for ¢ > 0 and z € X we put N.(z) = {y €
X|d(z,y) < e}.

Lemma 5.1. Let X andY be metric spaces and let f : X — Y be continuous. As-

sume moreover thate : X — (0, 1] is continuous. Then there is a continuous func-
tion § : X — (0, 1] such that for every v € X we have f(Ns@)(x)) € Ne@)(f(2)).

Proof. Let G = {(z,y) € X x X|d(f(x), f(y)) < e(x)}. Then G is open and
contains the diagonal. Therefore, for each x € X there is an s > 0 such that
N(z,s)xN(z,s) is contained in G. Let ¢(z) be the supremum of all such numbers
s. We claim that ¢ is lower semicontinuous. Indeed, if p(z) > A, pick s > A +r
for some r > 0 such that N(z,s) x N(z,s) is contained in G. If y is in N(z,r),
then N (y, s—r) is contained in N(z, s), hence N(y, s—r)x N(y, s—r) is contained
in G and so p(y) > s—1r > A. Now if § : X — (0,1] is a continuous function
strictly between 0 and ¢, [16, 1.7.15(d)], for every z € X, N(x,d(x)) x N(x,d(x))
is contained in G, hence f(Ns)(2)) € Ne@)(f(2)). O

Lemma 5.2. Let Y be a metric space and suppose that the closed subset A CY
is a strong deformation retract of Y. If A is an AR and Y \ A is an ANR, then
Y is an AR.

Proof. Let E=Y \ A, and let G : Y xI — Y be a strong deformation retraction
of Y to A. Suppose that B is a closed subspace of a metric space Z and that
f: B — Y is continuous. Let By and Bg be f~}(A) and f~(E), respectively,
and let f : U — Y be an extension of f|p, to an open set U of Z \ B4. By
Lemma 5.1 there extsts a continuous ¢ : By — (0, 1] such that for every b € Bg,
f(Now) (b)) € Nagw,p) (f (b)) and ¢(b) < d(b, Z\U). Set V = UNU{Nyw () |b €
Bg} and let W be an open subset of Z \ B4 containing Br and with closure
(in Z \ By) contained in V. Let ¢ : Z \ B4 — [ be a Urysohn function with
W(Z\ (BUW)) =1 and ¢¥(Bg) = 0. Then the function h defined on the closure

in Z\ By of W by h(z) = G(f(2),%(2)) extends over the closure of Bg by f to

give a continuous extension h of f to W. Now hlowus, : OW U By — A and so
extends over Z \ W to a map h that extends h to Z. 0
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Lemma 5.3. Let a be an involution of E of compact type. Let B be a based-free
involution of a compact space X with fized point * such that o is conjugate to

B = Bx¢op1d X><¢Op€ —>X><¢op€ and set X = X \ {*}. Then

X/B is a locally compact, one-ended, ANR homotopy equivalent to RP>,
X/B x Q is homeomorphic to K x @ for some locally finite, 1-ended
simplicial complex K homotopy equivalent to RP,

(6) X/B x4 Q is homeomorphic with K x4 Q,

(7) « is conjugate to 4 =y x4 id : (K x4 02) U {x} = (K x4 %) U {}, where
~ is the covering transformation of the universal cover K of K.

)
) X is an AR,
)
)

Proof. As X is aretract of X ><¢0pf2, it is an AR because X ><¢op€2 is homeomorphic
to (2, which is an AR by Lemma 3.1. Also by Lemma 3.1,X X 40,¢*\{0} ~ ¢*\{0} is
an AR, hence so is its retract X. By [6, Chapter 3, Proposition 5.1], for any € > 0
there is a homeomorphism of B, onto B¢\ {0}, which extends to a homeomorphism
of /2 onto ¢2\ {0} that is the identity off B, so {*} is a Z-set in X X4, £*. Now
the composition

X = X x {0} = X Xpop 2 = & Xgop O\ {x} > 2\ {x} =X

shows that {*} is a Z-set in X.

The orbit map X — X/f is a two-fold covering projection with contractible
AR total space. Its orbit space is therefore a locally compact, 1-ended ANR and
homotopy equivalent to RP*. Therefore, X/5 x @ is a Hilbert cube manifold
by Edwards’ Theorem [10, 44.1]. By Chapman’s Triangulation Theorem [10,
Theorem 37.2], there is a locally finite simplicial complex K such that X/8 x Q
is homeomorphic to K x (). This homeomorphism extends to the one-point
compactifications of K x  and X x @, which are homeomorphic to K x4Q and
X /B%4Q, respectively. Thus, there is a homeomorphism f : X /8xsQ — K x4Q
with f(*) = *. Then f|(x/sx,q) lifts to an equivariant homeomorphism g from
(X X gop @) tO (K X gop @), Which extends to a homeomorphism g : X X gop Q —

(K U {*}) Xgop @ whose restriction to X Xgop 5 & X X g0p £2 conjugates 3 to 4.
(Here, we are using our convention about p.) 0

Therefore, we may assume that X = K. We pass back and forth between the
symbols for notational convenience. If Y is any of the locally compact spaces
without the fixed point under consideration, e.g., X, X/, K, K, X X4, Q, etc.,
we use the convention that the end e of Y 1is the collection of open sets V in'Y
which have compact complements. A neighborhood of e is a set containing one of
these V'’s.

Lemma 5.4. The complex K above may be chosen so that there is a basic se-
quence K, of closed neighborhoods of the end, e, of K satisfying the following:
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(1) K, CintK, 1 and K, =0,

(2) each K, is a connected subcomplex of K,

(3) the inclusions induce isomorphisms mi(K,) = m(90K,) = m1(K) = Z,
(4) K, contracts in K,_1 and K, U {*} contracts in K,_, U {x}.

Proof. Let K,~, and 4 be as in Lemma 5.3, and let {K,}, be a sequence of
subcomplexes with K\ int/X,, compact such that K, C intK,_; and ), K, = 0.
Then {K,}, is a basis for the end e of K. We show how to modify the choice
of the K,,’s to satisfy the lemma. Fix an equivariant homeomorphism f : /* —
(K U {*}) X gop £*> and denote by B, the open ball in £ centered at 0 of radius e.
By passing to a subsequence of the K,,’s, we may assume that for each n, there
is an €(n) > 0 such that

K Xgop 02 € f(Betny) € f(Ben)) UAf (Beny)) € (K1 U {x}) X gop €.

Then (K, U{*}) X yop > contracts in f(Bgny) and K, X gop £? contracts in F(Bemy \
{0}), as the latter is contractible (cf. proof of (1) in the foregoing lemma). Thus
the sequence

K, U {x} = (K, U {*}) x {0} C (K, U{*}) Xgop © C f(Ben)) = Kn1 U {x},

where the last map is projection in the variable product, shows that K, U {x}
contracts in K,,_; U {*} and K,, contracts in K,,_;.

By adding to K, a finite number of edges in K,,_;, we may require that K,
be connected. This also ensures that K, is connected. Passing to a subsequence
restores condition (3). We may further adjust K, so that its boundary 0K,
in K,_; is connected by (a) selecting paths w; of edges in K, connecting the
components of K, (b) "borrowing an interval from ()7 and replacing K by K xI,
and (c) replacing K,, by (K, xI)\J, int(2N;), where N; is a regular nelghborhood
of w; x {1} in K,, x I. Since K,, x I deformation retracts to (K, x I)\ |J, int(V;),
this preserves the connectedness of K,. We may next adjust the K,’s so that
0K, is connected. This may be arranged by adding to dK,, a loop X in K, that
generates 7 (K) in the same way that we added paths connecting its components
in the preceding adjustment.

If for n, the inclusion of 0K, into K induces an isomorphism on fundamental
groups, then by applying van Kampen’s Theorem in the universal cover K, we
see that the fundamental groups of K, K,,, 0K, and K \ intK, are all Z/27 and
the inclusions induce isomorphisms.

To prove that we can adjust the K,,’s so that the inclusion 6 of 0K, into K
indeed induces an isomorphism on fundamental groups, we note that we have
already arranged that 0., is surjective. Now denote p~ Y(0K,) by L. (With our
conventions, X = K and p : K — K is the covering pI‘OJeCtIOH) As L - K
equals L — 0K, — K, p.(m (L)) C kerd,. Since p,(m (L)) is a subgroup of
index 2 in m (0K,) and 6, # 0, p.(m (L)) = ker6,. It is also ﬁnitely generated
because L is a finite complex.
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We now proceed with a handle exchange argument analogous to the one we
used above to connect OK,. It is clear that we may replace K by K x I%. Choose
piecewise linear maps w; : S — 9K, x I% generating p,(m;(L)) and piecewise
linear maps \; : D? — K x I extending the w;’s. Because K, x I contracts in
K,_1 x I, we may require that \;(D?) C intK,_; x I and also the following:

(1) the images of the w;’s are embedded piecewise linearly and disjointly in

0K, x S°,

(2) the images of the \;’s are embedded piecewise linearly and disjointly in
iIltKn,1 X 55,

(3) the images A;|jp> are in general position in K x S® with respect to
0K, x S°.

From (3) we get that \; '(0K, x S°) is a finite union of disjoint simple closed
curves C; in D?. A C is termed an innermost C; provided that the disc Dy it
bounds in D? contains no other C;. In this case, \;(Ds) is contained in K,, x I°
or in (intK, ; \ intK,) x I°.

We proceed to eliminate C, by altering K, xI6. Assume that \;(D,) C K, x S°.
Let N be a small regular neighborhood of \;(D,) in K, x I5. Note that the
boundary of N in K, x I° is homeomorphic to N N (K, x S°) and that there
is a homeomorphism of K, x I% onto (K, x I°) \ intN that carries 0K, x I°
to (0K, x I°) \ intN. (Here, intN refers to the interior of N in K, x I°.) Let
M, = (K, x I \ intN. Now, OM,, = (ON U (0K, x I%)\ (int N N (9K, x I9)).
Thus A\, ' (OM,,) = N\ (K, x 19\ C,. If \(D,) C K \ intK,, the process is
analogous.

An induction on the Cj’s eliminating innermost ones at each step taking care
to choose the N’s sufficiently close to the images of the D,’s as not to interfere
with each other terminates with the elimination of the generator [w;]. Repeating
the process for each |w;] eliminates the kernel of the inclusion homomorphism 6,.
The result, M, of the successive alterations of K,, x I° is a subset of the original
K,,_1 xI% and for some m > n, we have K,,, x I8 C M. This observation allows us
to perform the construction inductively on the K,’s by passing to an appropriate
subsequence at each step. O

Corollary 5.5. For eachn > 1 and ¢ > 2, the inclusion homomorphism m;(K,,) —
mi(K,—1) is zero.

Proof. Let w : S* — K, represent an element of 7;(K,). As S’ is simply con-
nected, w lifts to a map @ : S* — K,,, which is null-homotopic in K,_;. Such a
homotopy will project under p to a null-homotopy of w. 0

As K is homotopy equivalent to RP*, which is an Eilenberg-MacLane space
of type K(Zs,1), two maps (,n : L — K of a space L homotopy equivalent to a
CW-complex are homotopic if and only if they induce the same homomorphism
on m (L) [17, §1B.9].
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It will be convenient to let Ky denote K. In the following lemmas, we assume
that simplicial complexes, if not locally compact, are endowed with the weak
topology.

Lemma 5.6. If L is a simplicial complex of dimension at most m, then any two
maps (,n : L — K, that induce the same homomorphism on 71 (L) are homotopic
in K, where | = max{n—m,0}. If (|5, = n|L, for some subcomplex L, of L, then
the homotopy may be taken to be stationary on L.

Proof. Because (, = n, : m(L) — K, they are equal in K. As K is an Eilenberg-
MacLane space of type (Z/27Z,1), m;(K) = 0 for ¢ > 1 and there is a homotopy
F:LxI— K with f, = ( and f; = n that is stationary on L;. We proceed to
deform F' into K,,_qim - Define G on

(LxIx{0})U(Ly xIxJ)U(Lx{0,1} xJ)— K

by G(x,s,t) = F(x,s). For each vertex v € L\ Ly, choose a path w : [ — K,
from ¢(v) to n(v) such that w U F|y«1 defines a null-homotopic loop in K. Set
G(v,s,1) = w(s) and extend over {v} x I x J by a null-homotopy in K. Now, for
each edge €' = (v;,v;) of L, G exhibits a null-homotopy in K of its restriction
to (e! x {0,1} x {1}) U ({v;, v;} x I x {1}), so by Lemma 5.4(2) there is a null-
homotopy in K,,. Define G on e' x I x {1} using such a null-homotopy. Extend
G over e! x I x J using the fact that m;(K) = 0 for i > 2.
Assume inductively that j > 1 and G is defined on

(LxIx{0})U(Lx{0,1} xJ)U ((L’UL) xIxJ)

and that G(L? x I x {1}) C K,,_j41. Let e = /! be a (j+1)-simplex in L\ L.
By 5.5 we may extend G over e x I x {1} with values in K,,_;. Then we extend
over e X [ x J in K, completing the induction. U

Lemma 5.7. Let o be an involution of compact type. Assume the notation of

Lemmas 5.3 and 5.4. If f: S™ — K, = K, U {*} is a map, then f extends to a
map f: D™ — K; , where | = max{n—m,0}.

Proof. This is again an application of Lemma 5.4. Let L be a triangulation of
S™\ f71(x). We construct by induction on skeleta a map G : L x [0,00) — K
with G(z,0) = f(«) and for each é-simplex e’ of L, G(e' x [I,00)) C Ky (ei)ti—i,
where [ > 0 and n(e') = max{s|f(e¢’) C K }. For each vertex, v define G on
{v} x [0, 00) inductively so that G({v} x [I,00)) C Ky ({v})+:- For each 1-simplex
el = (vg,v1), let G : e' x {I} — K1)+ be a path from G(vy, 1) to G(vy,1) such
that the loop defined on (e' x {I —1,1}) U ({vg,v1} x [l — 1,1]) is null-homotopic
in K,e1y4-1 and extend G over e' x [l — 1,1] by such a homotopy. Now extend
over the 2-skeleton as follows. Let e* be a 2-simplex of L. For each I, G is
defined on d(e* x {l}) and is null-homotopic in K2y, so we can extend G
over e? x {I} by such a homotopy. Now G : d(e* x [I,l + 1]) — Kp(e2)4, and
extends over e? x [I,1 + 1] with values in K, 2)4;—1. Now for each 3-simplex e,
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G(9e* x {l}) C K31 and so G extends to take e® x {I} into K, (s)44—1. This
defines G : d(e® x [I,1 +1]) = K (e3y+1-1, s0 it extends to map e* x [I,1 + 1] into
K (e3y41—2- Inductively, assume that G is defined on (L x {0})U(L? x [0, 00)) with
G(e? x{l}) C Kpeiysi—ji2 and G(e/ x [I,141]) € Kp(eiy+i—j+1- Then G extends to
carry /1 x {I} into K ei+1y41—j1 and et x [ 141] into K ei1y41—j, completing
the induction. Define f(z) = * if x = ty for y € f~(*) and G(”x” e —1)if

F(iE) # * 0

Proposition 5.8. With the above notation, if f : L — I:( 1s a map of a simplicial
complex to K, then there is a homotopy F' : L x I — K from f to the constant
map f1(L) = * such that

(1) if €™ is an m-simplex of L and f(e™) C Kpemy, then F(e™ x I) C
Kn(em)—rm and
(2) F is stationary on f~'(x).

Proof. Define F on (Lx{0})U(f~1(x)xT)U(Lx {1}) by F(z,s) = f(z)if s <1
and F(z,1) = *. Now let L triangulate f~'(K) and extend F over L; x [0,1) by
induction on the skeleta of L; using the construction of the proof of Lemma 5.6
and a homeomorphism of [0,1) onto [0,00). O

The technique used in the proof of the following result, may be known to shape
theorists. We include the details for the benefit of the reader.

Proposition 5.9. If a is movable, then there is a proper homotopy F' : Kx1 — K
such that

(1) fo=
(2) for each n, fi(Kn) C K1, and

(3) for each n F((K \ int(Kpq1)) X ]I) C K,_s.

Proof. By choosing a subsequence of the K,’s, we may assume from the mov-
ability hypothesis that for each n, there is a (not necessarily proper) homo-
topy G™ : K, xI — K,_; such that gon) . K, — K,_; is inclusion and
gi")(Kn) C K,y1. Therefore, by concatenating the G’s (as is done in mul-
tiplying in the fundamental group) we obtain for each m > n a homotopy
Hmm) = QM) GOt o GO n X I — K, that deforms K, into K, 1
in K,—1. Set l(n) =n+1+ dlm(K \ 1nt( Kpi0)). Let Iy 0K, x O(I x I) — K
be given by

(1) T (z,s,0) =z,

(2) Dol 0.1) = HO—HO-0)( 1)

(3) Tp(z,1,t) = H® (x t),

(4) Fn(x,s, 1) = (x s), where ©,, is a homotopy from A" """ V|9K,, to
(

p{M )9k, provided by Lemma 5.6.
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Note that as A" """V (9K,) C Kj(n-1) and P (K, C Ky,
On(0K, X T) C K,

where m > [(n —1) —dim(0K,,) > n—14+1+dim(K \ int(K,11)) —dim(0K,,) >
n+ dim(0K,) + 1 — dim(0K,) =n+ 1.
Extend T',, to 0K, x (I x I) x [0, 1] by setting

T, (z,s,t,u) = HO2O=D)D (25 1), ).

Then I', (0K, x 0(I x 1) x [0,1]) € K,_3 and I', (0K, x 0(I x 1) x {1}) C K9

Let €, : 0K, x [0,1] — 0K, x (([0,3] x {0,1}) U ({0} x [0,1])) x {1} and
0 1 0K, x[0,1] — 0K, x (([3,1]x{0,1})U({1} %[0, 1])) x {1} be homeomorphisms
with €, = §,, on 0K, x {0,1}. Lemma 5.6 provides a homotopy A,, from I',, o 4,
to I';, o ¢, that is stationary on 0K, x {0,1} and takes values in K,, where
v=1I(n—2)—dim(0K,)—1>I(n—2)—dim(K \int(XK,)) =n—1. Now A, can
be regarded as an extension of I';, over 0K, x I xIx {1}. Using a homeomorphism
of (O(I xT) xT)uU (I x1T)x {1} onto I x I that is projection on A(I x I) x {0}
allows us to regard A,, as a map of 0K, x I x I into K,,_3 carrying 0K, x I x {1}
into K41 such that A, (z,s,0) = x.

Set A = {(s,t) € [-3,3] x[0,1]] =L <s <L} andletv:Ix1I— A, be
defined by (s,t) — (£(2s —1),t). Now define i, : 0K, x A = K by p,(x, s,t) =
An(, 77 (5, 1)).

We use pu,, to interpolate between

H = Lin=1) | K 1\int(K,,) and Hmlm) | K \int (K1)

Let N, be the neighborhood of 0K, that is the union of all simplices of K that
contain a point of K,,. Each such simplex, ¢ is the join of cNOK,, and its face 7,
determined by the vertices that are not in 0K, and each point of int(N,,)\ 0K, is
uniquely representable as (1—s)y(z)+sz(z), where y(z) € cNOK,, and z(x) € 7,.
If necessary, subdivide K so that each N, N N, ;1 = (.

Set A, = {(z,t)|]z = (1 — s)y(x) + s2(x),0 < s <t} C (K1 \ Kpp1) X 1
B, = {(z,t) € A,|s < £}, and L,, = (K, \int(K 1)) x D)\ (int(B,,) Uint(B,41)).
Now let (, : A, — A, be given by

(2,8) = (1 = $)y(@) + sz(2),) == (1 — & y(@) + 5'=(2), 1)

where s’ = max{2(s — £),0}. Define 7, : (K, \ intK, 1) x I = (K, \intK 1) x I
by
Gt), i (o) € (Ko x )N 4,
nn(xat) = Cn+1(x7t)7 if (x7t> € (KTL
(x,1), if (z,t) € (K,
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For (z,t) € B, where x = (1 — s)y(z) + sz(z), put s = s if x € int(K,), and
s=—sifx €int(K,_1). Define F : K x I — K by

F(z,t) = H O o (2,1), i (2,t) € Ly
U (), 5, 1), if (z,t) € B,,.

Now F (K, x {1}) C K, for each n. If F(z,t) € K, then z € K \ K,,4, so F
is proper. 0

Corollary 5.10. If « is movable then there is a proper map H : K x[0,00) — K
such that

(1) ho = id,

(2) H(K, x [0,00)) C K,,_3, and

(3) for each m and n, H(K,, X [n,00)) C Kpin.

Proof. Using the homotopy F' of Proposition 5.9, let F"(x,t) = f;ofio... fi(x) be
the n-fold composition. Now define H(z,t) = fs o fi*(z), where u is the greatest
integer less than or equal to t and s =t — u. 0J

Corollary 5.11. If o is movable then X /3 contracts to * by a homotopy u
satisfying

(1) p is stationary on *, and
(2) 7 () = ({=} x DU (X/B x {1}).

Proof. Corollary 5.10 gives the result for K by extension to the one-point com-
pactification. The function G : K x4 Q x I — K x4 Q defined by ((z,y),t) —
(z,(1 — t)y) is a strong deformation retraction of K x4 @Q to K x {0}. Let ¢ :
X/B— X/BxsQ and k : X/Bx4Q — X /B be the inclusion and projection, re-
spectively. By Lemma 5.3(6), there is a homeomorphism f : X /3x,Q — K x4Q.
Necessarily f(*) = * because it is the only point with non simply connected com-
plement. Then ko f~'o(G* F)o fou contracts X /f3 to * as desired, where G * F/
is the concatenation of homotopies. 0

Corollary 5.12. If o is movable then X /j is an AR.
Proof. This is by Corollary 5.11 and Lemma 5.2. U

Remark 5.13. Corollary 5.12 follows from Theorem 4.6 of [15] together with our
Theorem 2.17, which depends on Lemma 5.3, Lemma 5.4, and Proposition 5.9.
The reader familiar with Shape Theory will immediately recognize that Lemmas
5.3 and 5.4 imply the pro-homotopy hypotheses of [15] and can dispense with our
5.5, 5.6, and 5.7. The presentation given here is more direct.

Corollary 5.14. If « is movable, then the homotopy u of Corollary 5.11 lifts to
an equivariant strong deformation retraction, i, of X to * with the property that

A7) = ({x} x DU (X x {1}).
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6. BASED-FREE INVOLUTIONS OF COMPACT TYPE: PROOFS

We defined the notion of a variable product of a space X with s respectively ¢2
in §2. For the arguments in this section we need variable products of a different
type. They are variable products where the second factor is ). Indeed, if X is a
space and r : X — [ is a map, then

X %, Q= U{{x}xH Nolz € X} C X xQ

is called a wariable product. A basm fact is the following result: if @ x, @ is a
variable product, then @ %, Q ~ @, [10, 14.1].

Observe that the difference between these variable products and the ones that
we discussed in §3, is that we use closed instead of open intervals. From the
context it will be clear what type of variable products we are dealing with.

6.1. Proof of Theorems 2.13, 2.14, and Corollary 2.15. In the next proof,
we use the notion of a skeletoid. In [24, §6.5], this notion is defined and developed
in the context of Hilbert cubes. However, it extends easily to arbitrary Hilbert
cube manifolds. To be explicit, we state the simplest of these extended versions.

Definition 6.1. Let M be a Hilbert cube manifold. A subset A C M is a
skeletoid for M provided that
(1) A=, A,, where A, C A, and each A, is a compact Z-set in M,
(2) If K CU C M is a compact Z-set lying in an open set of M, n € N, and
€ > 0, there is an m > n and a homeomorphism h : M — M such that
(a) h(K )C Am>
(b) hla, =
(c) (hzd)<e and
(d) hlanw =id.

Remark 6.2. The property of being a skeletoid is clearly preserved by homeomor-
phisms. Using the Estimated Homeomorphism Extension Theorem for Hilbert
cube Manifolds [10, Lemma 19.1], we may require in (2) above only that h :
K UA, — A, be a Z-embedding and drop condition (d).

Then via a straightforward induction on charts, Theorem 6.5.2 of [24] becomes

Proposition 6.3. If A and B are skeletoids in M and e : M — (0,1) is con-
tinuous, then there is a homeomorphism h : M — M such that h(A) = B and

d(h(z),z) < €(x).

Proof of Theorem 2.13. Note that s/os and /oy are AR’s (e.g., by Lem-
mas 3.1 and 5.2). Let Y = @ Xyop s, where ¢ and p are as usual with p : Q —
Q/og. We adopt the metric topology on the quotient set () x s/({0} x s) so that
it is homeomorphic to Y. As {0} is a Z-set in @), {0} x s is a Z-set in Q X s,
so @ x s/({0} x s) is homeomorphic to s, see, for example, [6, Corollary 2.2 in
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Chapter VI, and so is Y. Therefore 7 = 0 X 4op id is an involution of compact
type. We show that 7 is conjugate to o;.

By @-manifold stability [24], there is a homeomorphism f : (Q/ogx,Q)\{0} —
Q/og \ {0}. Let f:Q/og x4 Q — Q/ag be the extension of f. Let

A ={(a,) € (Qoq) x4 Ql(a # 0) &[(3n) (b € {—r(a),r(a)})]},

and let B = (@ \ s)/og. Then A is a skeletoid in (Q/og x4 Q) \ {0} and
B is a skeletoid in Q/og \ {0}. Hence f(A) is a skeletoid for Q/og \ {0}, so
there is a homeomorphism ¢ : Q/og \ {0} — Q/og \ {0} carrying f(A) onto
B. It extends to QQ/og. Letting g be the extension of g to Q)/og, we have that

0 f(Q)og x4 8) =58/0s If h:Q X4, Q@ — Q is an equivariant homeomorphism
covering g o f, then h|y conjugates 7 to oy, so 0y, is of compact type and so are
all involutions of Type B. 0

Proof of Theorem 2.14. Without loss of generality, we may assume that £ =
s. If a is of Type B, then « is conjugate to o, so s/a ~ s/os, which is an AR,
e.g., by Lemma 5.2.

If s/ is an AR, then because « is of Compact Type, there is a based-free
involution 8 : X — X on a compact space and an equivariant homeomorphism
fis— X Xyop § conjugating a to = X gop ids + X Xgop § = X Xyop 8. Let
=5 X gop 1o © X Xgop @ — X Xgop Q. By Lemma 5.3, X X4, @ is an AR
that is the one-point compactification of the Hilbert cube manifold X X 4, Q by
the addition of the Z-set {x}. By Torunczyk’s Characterization of the Hilbert
cube [26], X X 40, @ is a Hilbert cube. By Lemma 5.2, the orbit space, X X 40, Q/f3,
of (3 is an AR, so by [28] there is a homeomorphism g : X X 4o, @ — @ conjugating
5 to 0g. Since 5 extends ﬁ and o extends oy, go f conjugates a to o showing
that « is of Type B. O

Proof of Corollary 2.15. If « is a counter example to (2), then by Theo-
rem 2.13, it must be of compact type but not of Type B. By Theorem 2.14,
E/a is not an AR. Since « is of compact type, it is conjugate to 5 B xid :
X Xgop 8 — X Xgop 8 for some based-free involution 8 of a compact AR X. The
discussion in the previous paragraph shows that § is a counter example to the
Anderson Conjecture for Q.

On the other hand, if 5 is a counter-example to the Anderson Conjecture for @),
then by [28], @/ is not an AR. As in the proof of 2.14 we see that ) X 4o, s is the
result of adding the Z-set {(0,0)} to the Hilbert manifold Q\{0} X 4ops C Q X 4ops
to obtain an AR (again by 5.2), which is therefore homeomorphic to s [27]. Hence,
@ =B Xpop id 1 Q Xgop 2 — Q X g0p £* is a counter example to (2). O

6.2. Proof of Theorems 2.16 and 2.17. We continue to use the terminology
established in the previous subsection.
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Proof of Theorem 2.16. It follows from the definition that if « is of type B
then it is movable, and from Theorem 2.13 that it is of compact type. Conversely,
the proof of Theorem 2.14 establishes that if « is of compact type then X X 4, Q
is a Hilbert cube and that a is of type B if § is of type C. By [28] this is true
if and only if the orbit space (X X 4o, Q)/5 is an AR. This is true if and only if
X /B, which is a retract of (X X g0, Q)/B, is an AR (using Lemma 5.2). If « is
movable, then X /f3 is an AR by Corollary 5.12. O

Proof of Theorem 2.17. We have homeomorphisms E/a ~ X /8 x40? ~ K X,
¢?, where K is as in 5.3. It suffices to prove the results for K. That K is LC"
for all n is Lemma 5.7. That K is path connected and m,(K) = 0 for n > 0
follows from Proposition 5.8. That the singular homology groups of K vanish is
Proposition 5.8 and the fact that each element of H,(K) may be represented by
a map of a finite simplicial complex into K ([17, pages 108-9]). That K is an
absolute extensor for finite dimensional metric spaces now follows from (1)-(3)
and [19, Chapter V]. O

6.3. Proof of Theorem 2.18.

Lemma 6.4. If F : X/B x 1 — X/B is any homotopy, then F is homotopic to
a homotopy that is stationary on * by a homotopy G : X /B x I x J — X /B that
is stationary on X /B x {s € [|F(*,s) = *}.

Proof. We use the notation of Lemma 5.3. Let ' : X /8 x1 — X/ x1 be defined
by F(xz,t) = (F(z,t),t). Let A= (a,b) C I be one of the maximal open intervals
on which F(x,s) # . Let N C X/8 x [a, ] be a closed neighborhood of {*} x A
in X/B x [a,b] satisfying

(1) N (X/B x{a,b}) = {(x,a), (x,b)},

(2) FINNX/B x (a,b)) € X/B x (a,b),

(3) NN (X/B x (a,b)) is simply connected.
By Lemma 5.4, N may be chosen to be of the form (J;o, Knu) X [ai, b;], where
the a;’s decrease to a, the b;’s increase to b, and the n(i)’s increase to co. Let m
be the largest integer such that F(N) C K,, x [a,b]. Set N' = NN X/ x (a,b).
Then N’ = N\ {(x,a), (,b)} is also simply connected and F|y: lifts to a map
0:N' — K, x (a,b).

Since by Lemma 5.4, K,,,U{*} contracts to % in K,,_;U{*}, there is a homotopy

O : N'xJ = (Kn_1U{x})x[a,b] from 6 to 6; that is constantly # on ON, where
(NN (X/Bx{s})) = (x,s) for each s € [a,b]. Then po® extends to a homotopy
that is constantly F107 N x J and deforms F to a homotopy G : X /B x I that
carries (%, s) to (*,s) 1or each s € [a,b]. Performing this construction for each
of the intervals A produces the desired deformation of F' to a homotopy that is

stationary on . U
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Proof of Theorem 2.18. The initial conclusion is Theorem 2.17(4). We have
that (1) implies (2) by Theorem 2.14, that (2) implies (3) is immediate, and that
(3) implies (4) is Corollary 5.12. That (4) implies (6), and (6) implies (5) may be
found in [19]. That (4) is equivalent to (1) is Theorem 2.16. Therefore, it remains
to show that (5) implies (4). We use the notation established in Lemmas 5.3 and
5.4.

Assume that E/a = X /8 x4 s and that X/ is homotopy equivalent to some
CW-complex L. Let f : X/8 — L and g : L — X/ be homotopy inverses.
By Theorem 2.17, all homotopy groups of X/ vanish, so the same is true of L,
which is therefore contractible by Whitehead’s Theorem (see [19, Chapter V]).
Therefore, we may assume that g is constant. Since X /f is path-connected, we
may assume that g(L) = *, so there is a homotopy F : X /3 x I — X/ from the
constant map * to the identity. By Lemma 6.4, we may choose F' to be stationary
on *. Then F is a deformation retraction of X /3 to *. By Lemma 5.2 X /f is an
AR. U
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