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Let τ be an infinite cardinal. We prove that I and the Tychonoff cube Iτ can be 
split into two homeomorphic and homogeneous parts. If τ is uncountable, such a 
partition cannot consist of spaces homeomorphic to topological groups.
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1. Introduction

It is known that the real line R can be partitioned into two homeomorphic and homogeneous parts, [10]. 
Although it is not mentioned in [10], this was an answer to a question posed by the late Maarten Maurice. 
Since then, various similar results were obtained. Shelah [14] and, independently, van Engelen [6], showed 
that R can be partitioned into two homeomorphic rigid parts. Here a space is called rigid if the identity 
map is its only homeomorphism. See also [7] and [13] for other results in the same spirit.
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It was asked by the second author of the present paper whether the closed unit interval I = [0, 1] can 
be partitioned into two homogeneous and homeomorphic parts. In the present paper we give an affirmative 
answer to this question in Theorem 2.7, and this immediately leads to the following result:

Theorem 1.1. Let τ be any infinite cardinal. Then the Tychonoff cube Iτ can be partitioned into two homo-
geneous and homeomorphic parts.

We do not know whether a similar result holds for the finite dimensional cubes In, where 1 < n < ω. 
Theorem 1.1 suggests the question whether the homeomorphic parts can actually be chosen to be (homeo-
morphic to) a topological group. For uncountable τ , the answer is in the negative.

Theorem 1.2. Let τ be any uncountable cardinal. Then for every subspace A of Iτ which is (homeomorphic 
to) a topological group, we have that Iτ \A and A are not homeomorphic.

2. The closed unit interval can be conveniently split

We begin by reviewing the construction from [10]. Let Q be the set of rational numbers in R.

Lemma 2.1. [10, 2.3] If X ⊆ R is such that X = X + Q, then X is homogeneous.

In [10, §3], a subset A ⊆ R was constructed having the following properties:

(1) A is dense in R, and so is B = R \A,
(2) Q ⊆ A and A + Q = A (hence B + Q = B),
(3) the map φ : R → R defined by φ(x) = x+π sends A onto B.

These sets A and B are fixed here and used everywhere in the remaining part of the paper. Let D = π+Q. 
Then D is dense in B, and φ(Q) = D. If s, t ∈ D and s < t, then [s, t]A = [s, t] ∩A is called a clopen arc in 
A. Moreover, if p, q ∈ Q and p < q, then [p, q]B = [p, q] ∩B is called a clopen arc in B. Observe that clopen 
arcs in A respectively B are clopen subsets of A respectively B. If C = [s, t]A is a clopen arc in A, then 
λ(C) = t−s denotes its length. Observe that λ(C) ∈ Q. If C is a family of pairwise disjoint clopen arcs in 
A, then λ(

⋃
C ) =

∑
C∈C λ(C). Similarly for B.

We use some ideas in [11].

Lemma 2.2. If C0 and C1 are clopen arcs in A such that λ(C0) = λ(C1), then C0 and C1 are homeomorphic. 
Similarly for B. Moreover, if C is a clopen arc in A and D is a clopen arc in B such that λ(C) = λ(D), 
then C and D are homeomorphic.

Proof. Let C0 = [r0, t0]A and C1 = [r1, t1]A. Define f : C0 → C1 by f(t) = (t−r0) + r1. Since r1−r0 ∈ Q

and A + Q = A, it easily follows that f is a homeomorphism. Similarly for B.
Assume that C = [r, t]A and D = [p1, q1]B . Let r = π + p0 and t = π + q0. Then φ−1 sends C

homeomorphically onto the clopen arc [p0, q0]B of B. By the above, [p0, q0]B and [p1, q1]B are homeomorphic, 
hence we are done. �
Lemma 2.3. Let C be a family of pairwise disjoint clopen arcs in A such that ε = λ(

⋃
C ) ∈ Q. Then 

⋃
C

is homeomorphic to the clopen arc [π, π + ε]A. Similarly, let D be a family of pairwise disjoint clopen arcs 
in D such that δ = λ(

⋃
D) ∈ Q, then 

⋃
D is homeomorphic to the clopen arc [0, δ]B.
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Proof. We assume that C is infinite. The proof when C is finite is entirely similar. Assume that

C = {[π+r0, π+t0]A, [π+r1, π+t1]A, . . . , [π+rn, π+tn]A, . . . }.

By Lemma 2.2,

[π+r0, π+t0]A ≈ [π, π+(t0 − r0)]A,

[π+r1, π+t1]A ≈ [π+(t0 − r0), π+(t0 − r0)+(t1 − r1)]A,
...

[π+rn, π+tn]A ≈ [π+
∑

j≤n−1
(tj − rj), π+

∑
j≤n

(tj − rj)]A,

...

Since all sets involved are clopen, the union of these homeomorphisms gives us that
⋃

C ≈ [π, π +
∑
j<ω

(tj − rj)]A = [π, π + ε]A.

The proof for B is entirely similar. �
Corollary 2.4. Let C and D be collections of pairwise disjoint clopen arcs in A respectively B such that 
λ(
⋃

C ) = λ(
⋃

D) ∈ Q. Then 
⋃

C and 
⋃

D are homeomorphic.

Proof. Let γ = λ(
⋃

C ) = λ(
⋃

D). By Lemma 2.3,
⋃

C ≈ [π, π + λ]A,
⋃

D ≈ [0, λ]B .

Hence we are done by Lemma 2.2. �
In the proof of the next result, we use the well-known result from Calculus, that for every t ∈ I there is 

a subset A of N such that 
∑

n∈A 2−n = t. For more on this topic, see Ferdinands [8].

Lemma 2.5. Let q ∈ Q be such that 0 < q < 1. Then {0} ∪ [0, q]B (with the subspace topology it inherits 
from R) is homeomorphic to the clopen arc [0, q]B.

Proof. Put q0 = q. For every n ≥ 1, put qn = 2−nq. Moreover, put t0 = q and for n ≥ 1, tn = tn−1 − qn.
Let x ∈ B ∩ (2, 3). Pick r ∈ Q such that r < x < r + q. Let F ⊆ N be such that 

∑
n∈F qn = x − r. 

Observe that F has to be infinite since x is irrational. Put G = N \ F . Then 
∑

n∈G qn = r + q − x. It also 
follows that G is infinite.

Put r0 = r. There clearly is a sequence (rn)n≥1 of rational numbers in (r, x) such that (rn)n ↗ x while 
moreover for every n ≥ 1 we have

rn − rn−1 = qμ(n),

where μ(n) is the n-the element of F (ordered as a subset of N). Put s0 = r+q. There similarly is a sequence 
(sn)n≥1 of rational numbers in (x, r + q) such that (sn)n ↘ x while moreover for every n ≥ 1 we have

sn−1 − sn = qν(n),
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where ν(n) is the n-the element of G (ordered as a subset of N).
Let μ(n) ∈ A. By Lemma 2.2 we may pick a homeomorphism

gn : [tμ(n), tμ(n)−1]B → [rn−1, rn]B .

Similarly, if ν(n) ∈ B, we may pick a homeomorphism

hn : [tν(n), tν(n)−1]B → [sn, sn−1]B .

Since all sets involved are clopen, the function f : {0} ∪ [0, q]B → [r, r + q]B defined by

f(x) =

⎧⎪⎪⎨
⎪⎪⎩

gn(x) (tμ(n) < x < tμ(n)−1),
hn(x) (tν(n) < x < tν(n)−1),
x (t = 0),

is a homeomorphism. Hence we are done by Lemma 2.2. �
The following can be proved with the same method.

Lemma 2.6. Let q ∈ Q be such that 0 < q < 1. Then {1} ∪ [1−q, 1]B (with the subspace topology it inherits 
from R) is homeomorphic to the clopen arc [0, q]B.

We now come to the main result in this section.

Theorem 2.7. The closed unit interval I = [0, 1] can be partitioned into two homogeneous and homeomorphic 
sets.

Proof. Put E = (0, 1) ∩A and F = [0, 1]B = (0, 1) ∩B, respectively. Observe that E and F are homogeneous 
being both open subsets of zero-dimensional homogeneous spaces (this is folklore). Also, both E and F are 
the union of a family of pairwise disjoint clopen arcs in A respectively B such that λ(E) = λ(F ). Hence 
E ≈ F by Corollary 2.4.

Let us now consider the space F , and let 0 < q < 1/2 be rational. Then by Lemmas 2.5, 2.6 and 2.2 we 
have that {0} ∪ [0, q]B ≈ [0, q]B and {1} ∪ [1, 1−q]B ≈ [q, 2q]B . Moreover, [q, 1−q]B is homeomorphic to 
[2q, 1]B , again by Lemma 2.2. Hence we conclude that {0} ∪ F ∪ {1} is homeomorphic to F .

The partition {E, F ∪ {0, 1}} of I is consequently the one we are after since we already observed that E
and F ≈ F ∪ {0, 1} are homeomorphic and homogeneous. �

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. By Keller’s Theorem [9] (see also [12]), Iω is homogeneous. This implies that Iτ
is homogeneous for every infinite cardinal τ . Let {E, F} be the partition of I into homeomorphic and 
homogeneous parts from Theorem 2.7. Then {E × Iτ , F × Iτ} is the required partition of I × Iτ ≈ Iτ . �
3. Topological groups

We show here that Theorem 1.1 for uncountable cardinals cannot be improved to the case of a split-
ting into homeomorphic topological groups. For information on topological groups, see Arhangel’skii and 
Tkachenko [4].

The following result is well-known, its proof is included for completeness sake.
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Lemma 3.1. Let G be a topological group. If S is a Gδ-subset of G containing the neutral element e of G, 
then there is a closed subgroup N of G such that

(1) N ⊆ S,
(2) N is a Gδ-subset of G.

Proof. Write S as 
⋂

n<ω Un, where each Un is open in G and e ∈ Un. Recursively, pick open symmetric 
neighborhoods Vn of e such that V 2

n+1 ⊆ Vn ⊆ Un (see [4]), and let N =
⋂

n<ω Vn. �
Theorem 3.2. If G is a dense subset of Iτ , where τ is uncountable, such that Iτ \ G is Lindelöf, then G is 
not a topological group.

Proof. Striving for a contradiction, assume that G is a topological group.
We may assume by homogeneity that the element of Iτ with constant coordinates 0 is the neutral element 

e of G. Since Iτ \G is Lindelöf, there is a compact Gδ-subset S0 of Iτ such that e ∈ S0 ⊆ G.
There is a countable subset A0 of τ such that

S1 = {x ∈ Iτ : (∀α ∈ A0)(xα = 0)} ⊆ S0.

By Lemma 3.1, we may pick a closed subgroup N1 of G which is a Gδ-subset of G such that N1 ⊆ S1. 
Clearly, N1 is a Gδ-subset of S1 and hence is a compact Gδ-subset of Iτ . There is a countable subset A1 of 
τ such that A0 ⊆ A1 while moreover

S2 = {x ∈ Iτ : (∀α ∈ A1)(xα = 0)} ⊆ N1.

Continuing in this way, it is easy to construct by recursion countable subsets An of τ and closed subgroups 
Nn of G such that for every n,

(1) An ⊆ An+1,
(2) Sn+1 = {x ∈ Iτ : (∀ α ∈ An+1)(xα = 0)} ⊆ Nn ⊆ Sn.

Put A =
⋃

n<ω An. Then since τ is uncountable,

⋂
n<ω

Nn = {x ∈ Iτ : (∀α ∈ A)(xα = 0)} ≈ Iτ .

Hence Iτ is a topological group and consequently does not have the fixed-point property (no nontrivial 
translation has a fixed-point), which contradicts the Brouwer Fixed-Point Theorem. �

We are now in the position to present a proof of Theorem 1.2. We use a factorization result in [1], the 
key feature of which is that it concerns continuous functions on dense subspaces of products of separable 
metrizable spaces [4, Corollary 1.7.8 (see also Theorem 1.7.7)]. This result is also stated and applied in 
the book [2, Lemma 0.2.3]. It implies that every continuous realvalued function on a dense subset of a 
Tychonoff cube depends on countably many coordinates. Therefore, if A is a dense pseudocompact subset 
of some Tychonoff cube Iτ , then Iτ is the Čech-Stone-compactification βA of A. Indeed, for every continuous 
function f : A → R there is by Corollary 1.7.8 in [4], a countable subset L of τ and a continuous function 
g : πL(A) → R, where πL : Iτ → IL is the projection, such that g(πL(a)) = f(a) for all a ∈ A. However, 
since A is pseudocompact, πL(A) = IL, which evidently implies that f can be extended over Iτ .

As usual, a space is called nowhere locally compact if no point in it has a compact neighborhood.
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Proof of Theorem 1.2. Assume the contrary. First observe that A is nowhere locally compact. Indeed, if A
would contain a point with a compact neighborhood (that is, A is somewhere locally compact), it would 
be locally compact at all points by homogeneity and so its complement would be compact implying that 
A would be compact; this is clearly impossible. This also gives us that A is dense. For if A would not be 
dense, Iτ \A would be somewhere locally compact, and so A would be somewhere locally compact.

The Dichotomy Theorem from [3] implies that B = Iτ \ A is pseudocompact or Lindelöf. But it cannot 
be Lindelöf by Theorem 3.2. Hence B is pseudocompact and so A is pseudocompact. Since A is dense in 
Iτ , it follows by the above that Iτ = βA.

We complete the proof now in two ways. The first proof is as follows. Since A is a pseudocompact 
topological group, βA is a topological group by the Comfort-Ross theorem [5]. But Iτ is not a topological 
group (this is the same argument as at the end of the proof of Theorem 3.2).

The second proof is more direct and avoids the use of the complicated Comfort-Ross Theorem.
We have already shown in the first part of the proof of this theorem that Iτ = βA. It follows similarly 

that Iτ = βB.
Fix a homeomorphism f of A onto B. This homeomorphism f can be extended to a continuous mapping 

h : Iτ → Iτ .

Claim: This mapping h is a homeomorphism of Iτ onto itself.

Indeed, f−1 is a homeomorphism of B onto A. Since Iτ = βB, this homeomorphism f−1 can be extended 
to a continuous mapping g : Iτ → Iτ . The composition g ◦ h is a continuous mapping of Iτ onto itself such 
that g(h(a)) = a, for every a ∈ A. Since A is dense in the cube and g ◦ h is continuous, it follows that 
g(h(x)) = x for each x ∈ Iτ . Evidently, this implies that h and g are homeomorphisms and g = h−1. The 
Claim is proved.

So h has no fixed-points, since A and B are disjoint and h(A) = B. Hence, the proof can be completed 
as at the end of the proof of Theorem 3.2. �

In the zero-dimensional case, the case of Cantor cubes instead of Tychonoff cubes, Theorem 1.2 does not 
hold. Indeed, let κ be an infinite cardinal, and let p be a free ultrafilter on κ. The set

A = {x ∈ {0, 1}τ : {α : xα = 1} ∈ p}

is a subgroup of {0, 1}τ of index 2. Hence A as well as its complement are homeomorphic to topological 
groups.

We do not know whether every compact topological group can be split into two homeomorphic and 
homogeneous parts.
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