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Abstract

We discuss dimension theory in the class of all topological groups. For locally compact topological
groups there are many classical results in the literature. Dimension theory for non-locally compact
topological groups is mysterious. It is for example unknown whether every connected (hence at least 1-
dimensional) Polish group contains a homeomorphic copy of [0, 1]. And it is unknown whether there is
a homogeneous metrizable compact space the homeomorphism group of which is 2-dimensional. Other
classical open problems are the following ones. Let G be a topological group with a countable network.
Does it follow that dim G = ind G = Ind G? The same question if X is a compact coset space. We also do
not know whether the inequality dim (G × H ) ≤ dim G + dim H holds for arbitrary topological groups G
and H which are subgroups of σ -compact topological groups. The aim of this paper is to discuss such and
related problems. But we do not attempt to survey the literature.
c⃝ 2017 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
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1. Introduction

All topological spaces under discussion are Tychonoff.
Dimension theory deals with dimensional invariants of topological spaces. It is intuitively

clear that a point is 0-dimensional, a line 1-dimensional, a plane 2-dimensional and the space that
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we live in 3-dimensional. But how should we define the dimension of an arbitrary topological
space and is it a topological invariant, i.e. do homeomorphic topological spaces have the same
dimension? A point is obviously not homeomorphic to a line, a line is not homeomorphic to a
plane, but how about a plane and the 3-dimensional Euclidean space? This problem resisted all
attacks at the beginning of the twentieth century and needed a breakthrough. That came from
Luitzen Egbertus Jan Brouwer (1881–1966).

A good definition of dimension was not available at that time, although already in 1843–
1844, Bolzano [19] wrote about it. His paper was published about 100 years after it was written,
so it did not have a strong impact. Actually, Bolzano’s definition was never used, but it is in
essence strongly related to the one that we are used to today. After a number of attempts by
various authors, the first serious attempt came from Poincaré (1854–1912) in [84]. Unfortunately,
Poincaré died soon after the publication of his article, and so he could not continue his line
of thinking. In 1913, in his famous paper ‘Über den natürlichen Dimensionsbegriff’ [21], a
translated version of which appears in this volume, building on the ideas of Poincaré, Brouwer
presented the first formal definition of dimension for a very wide class of topological spaces.
The definition was given in purely topological terms, so that it was immediately clear that the
dimension is preserved by homeomorphisms. He called this function the dimensionsgrad of
a topological space and proved that on Rn , it takes the value n. Hence a plane is indeed not
homeomorphic to 3-dimensional Euclidean space, but much more is true. These results and the
techniques Brouwer used shocked the mathematical world of his days.

Definitions of dimension also surfaced in the work of Pavel Samuilovich Urysohn (1898–
1924) and Karl Menger (1902–1985), see [106] and [68], who defined the so-called small
inductive dimension function ind. A heated discussion arose between Brouwer and Menger
concerning priority in defining the notion of dimension. But not so between Brouwer and
Urysohn who right before his death in 1924 together with his friend and co-author Pavel
Sergeyevich Alexandroff (1896–1982) visited Brouwer in his hometown Blaricum.
The story about their visit was told by many authors. Less well-known is that it was also told by
Alexandroff himself, 42 years after the meeting in Blaricum, at the time he was one of the world’s
leading mathematicians himself. The occasion was his visit to the Netherlands in 1968, shortly
after Brouwer’s death, during a lecture at Utrecht University about the role of Dutch Topology in
the period 1920–1930. In that lecture he discusses at length his visit to Brouwer. The text of the
lecture was published in Nieuw Archief voor Wiskunde [2] and we take the liberty of repeating
here some of what Alexandroff said about Brouwer.

Alexandroff writes that the volume of the journal with Brouwer’s article ‘Über den
natürlichen Dimensionsbegriff’ [21] got into the hands of Urysohn in the summer of 1923,
when Urysohn and he arrived in Göttingen. After Urysohn read Brouwer’s article, a lively
correspondence started between them. Among other things, Urysohn informed Brouwer about
his results on dimension theory obtained in the winter of 1921–1922. Brouwer was delighted
by Urysohn’s contributions, he fully appreciated the significance of his results. Urysohn also
brought to Brouwer’s attention a small discrepancy in how Brouwer formulated his definition
of dimension. The discrepancy relates to the definition of the concept of separating two sets,
which lies in the foundation of the concept of dimension. The correspondence between Brouwer
and Urysohn was devoted not only to dimension theory, but also to many questions in general
topology which constituted the essence of Alexandorff and Urysohn’s Mémoire sur les espaces
topologiques compacts [4], the manuscript of which already existed in the summer of 1923.
Brouwer invited Alexandroff and Urysohn to visit him in Blaricum. The visit took place in
the middle of July 1924 and lasted approximately one week (Fig. 1). It was decided that
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Fig. 1. Paul Alexandroff, Bertus Brouwer en Paul Urysohn.

Alexandroff and Urysohn would visit Brouwer again in the spring of 1925 for an extended period
of time—approximately for one year. With these plans in mind, Alexandroff and Urysohn left
the Netherlands somewhere between July 20 and July 25 and went to France. Only a month later,
on August 17, Urysohn died near Bourg de Batz in Bretagne while swimming in the ocean.

At the beginning of May 1925, Alexandroff visited Brouwer again, this time alone. Some
time later Menger and Vietoris joined them, along with the young Englishman Wilfred Wilson.
The mathematical life in Blaricum in the winter 1925–1926 was very intensive and even more so
when in the middle of December Emmy Noether arrived there to take part in the discussions.

In Amsterdam, Alexandroff spent a lot of time preparing several of Urysohn’s unfinished
papers for publication. He was very grateful for the excellent support he got from Brouwer. For
example, Brouwer read the papers and checked all the proofs. According to Alexandroff, his
work on the mathematical heritage of Urysohn was in fact joint work with Brouwer.

Alexandroff discusses many of Brouwer’s contributions to mathematics in his paper [2]. We
concentrate solely on dimension theory here. In the period that lasted from 1909 until 1913,
the theme was Brouwer’s method of simplicial approximation and his notion of the degree of
a mapping. Using his method, Brouwer made his most fundamental discoveries in topology. Of
these, Alexandroff mentions the following ones related to dimension theory: the invariance of
domain theorem (1910–1911), the fixed-point theorem (1911), and the first formal definition
of dimension (1913). He speaks about Brouwer’s breathtaking geometric intuition which he
blended in his mind with powerful set-theoretic thinking and set-theoretic imagination. Many
of Brouwer’s results on dimension theory of this period can be found in the book by Alexandroff
and Pasynkov [3].

Dimension theory is still a beautiful and vital area of mathematics today. For a survey on the
dimension theory of compact metrizable spaces in this volume, see Dranishnikov [34]. In this
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paper we will concentrate on the dimension theory of topological groups. For locally compact
topological groups there are many classical results in the literature. But dimension theory for
non-locally compact topological groups is mysterious, as we will demonstrate here. Many
fundamental problems remain unsolved for decade after decade. It is clear that a breakthrough is
needed, and we hope that the spirit of Brouwer will make this possible.

We are indebted to Karl Hofmann, Dieter Remus, Dikran Dikranjan and Klaas Pieter Hart for
some helpful comments.

2. Selected equality theorems for classical dimension functions on topological groups

It is well-known, and easy to prove, that in every compact space quasi-components and
components coincide. This yields that if X is any non-empty locally compact hereditarily
disconnected space X , then ind X = 0 (Engelking [38, Theorem 1.4.5]). Here a space is called
hereditarily disconnected if it does not contain any connected subspace of size greater than 1.

For locally compact topological groups, the three basic dimension functions dim, ind and Ind
take the same values, as was shown by Pasynkov [81] in 1960. Earlier, Arhangel’skii [8] had
already shown equivalence of ind and dim. The proof is based on the fact that every locally
compact topological group is strongly paracompact, which means that every open cover of the
group can be refined by a star-finite open cover. Even in the class of metrizable spaces there are
examples of spaces M having the property that ind M ̸= dim M . The first, very complicated,
example of such a space was constructed by Roy [87] in 1962. But in the class of all locally
compact topological groups such examples do not exist. Later we will come back to the question
whether in the class of all topological groups the three basic dimension functions also take the
same values.

Theorem 2.1. Let G be a locally compact group. Then

(a) dim G = 0 iff G is hereditarily disconnected.
(b) If G is not hereditarily disconnected, i.e. if the component of the identity G0 is not trivial,

then dim G ≥ n ≥ 1 iff G contains a copy of the cube In .

This result is folklore. For compact groups, there are explicit references for this result, but
for locally compact groups we were unable to find any. We are indebted to Karl Hofmann for
providing us with the necessary details and references.

A topological group is called a pro-Lie group if it is topologically isomorphic to a closed
subgroup of a product of finite-dimensional real Lie groups.

A topological group G is almost connected if the factor group G/G0 (here G0 denotes the
identity component of G) is compact. So compact groups and connected groups are almost
connected.

Proof of Theorem 2.1(a). Clearly, G is hereditarily disconnected iff ind G = 0. And ind G = 0
iff dim G = 0 by Arhangel’skii’s result just quoted. □

Proof of Theorem 2.1(b). If G contains a copy of In , then clearly dim G ≥ n.
For the converse, first observe that by Montgomery and Zippin [70, Lemma 2.3.1], G has an

open (hence closed) subgroup U which is almost connected. Since every locally compact almost
connected group is a pro-Lie group (Yamabe [113,114]), we have that U is an almost connected
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pro-Lie group. Hence by Hofmann and Morris [48, Theorem 8.4], U contains a maximal compact
normal subgroup C , and a subspace E homeomorphic to Rm for some m ∈ N such that the map

(e, c) ↦→ ec : E × C → U

is a homeomorphism. Now C is homeomorphic to C0 × C/C0, where C0 is the component
of the identity of C (Hofmann and Morris [46, Corollary 10.38]). Observe that C/C0 is zero-
dimensional. Hence U is homeomorphic to a product of the form Rm

× K × Z , where K is a
compact connected group, and Z is a compact zero-dimensional space. As a consequence,

dim U = m + dim K + 0 = m + dim K = m + p,

where p = dim K (Hurewicz [50]). Hence if dim K = 0, then dim U = m ≥ n, and so
we are done. If p = dim K > 0, then K contains a copy of Ip by Hofmann and Morris
[46, Proposition 9.56], and so U contains a copy of Im

× Ip
≈ Im+p. There is a discrete space D

such that G and U × D are homeomorphic, simply because U is a clopen subgroup of G. Hence
dim G = dim U , and so we are done. □

So for finite-dimensional locally compact topological groups the picture is clear from the
perspective of dimension theory.

Theorem 2.1(b) can be generalized for infinite-dimensional locally compact groups in the
same way by using the fact that every compact infinite-dimensional group contains a copy of the
Hilbert cube Q (Hofmann and Morris [47]).

If we try to generalize the above classical results for locally compact groups for a wider class
of groups, we immediately run into problems. Let us say that a space X is totally disconnected
if for all distinct x, y ∈ X there is a clopen subset C of X such that x ∈ C and y ∈ X \ C . It is
clear that every totally disconnected space is hereditarily disconnected. The converse is not true,
however, even for subsets of the plane (Engelking [38, Example 1.4.7]).

Let E denote the subspace of Hilbert space ℓ2 consisting of all points having the property
that all their coordinates are rational. This is the famed Erdős space from [39], and it is known
to be both totally disconnected and 1-dimensional. Since it is clearly a subgroup of ℓ2, we
see that Theorem 2.1(a) cannot be generalized to arbitrary topological groups. Let Ec denote
the subspace of Hilbert space ℓ2 consisting of all points having the property that all their
coordinates are irrational. This is a Polish space, and is totally disconnected and 1-dimensional
as well. It was shown to be a (Boolean) topological group in Dijkstra, van Mill and Steprāns
[28, Proposition 4.3]. So even for Polish groups, Theorem 2.1(a) cannot be generalized.

Since there exist totally disconnected 1-dimensional groups, the question naturally arises
whether there are totally disconnected n-dimensional groups for every n. This was answered in
the affirmative by van Mill [109]; these examples are separable and metrizable but not complete
(they are Borel, though). This prompts the following open problem.

Question 2.2. Are there for every n ≥ 1 examples of totally disconnected n-dimensional Polish
groups?

Now let us turn our attention to Theorem 2.1(b). Even for 1-dimensional Polish groups, there
are fundamental open problems.

Question 2.3 (Dobrowolski). Let G be a nontrivial connected Polish group. Does G contain a
copy of I?
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Let G be a topological group with a closed subgroup H . If x, y ∈ G and x H ∩ y H ̸= ∅

then x H = y H . Hence the collection of all left cosets G/H = {x H : x ∈ G} is a partition
of G into closed sets. Let π : G → G/H be defined by π (x) = x H . We endow G/H by the
quotient topology. In other words, if A ⊆ G then {x H : x ∈ A} is open in G/H if and only if⋃

{x H : x ∈ A} = AH is open in G.
A space X is a coset space provided that there is a closed subgroup H of a topological group

G such that X and G/H are homeomorphic.
It was shown by Ungar [104] that every locally compact separable metrizable and ho-

mogeneous space is a coset space. His proof was based on the Effros Theorem from [36].
Pasynkov [82] showed that if Y is a compact coset space of some locally compact group, then the
dimension functions dim, ind and Ind take the same values on Y . Hence the dimension theory of
coset spaces is promising. See Hofmann and Morris [47] for the foundation of a cardinal-valued
dimension theory for coset spaces of the form G/H , where G is compact. This of course includes
the dimension theory of compact groups.

It is not true that all homogeneous compact spaces are coset spaces of topological groups.
Fedorchuk [40] constructed a homogeneous compactum X such that dim X = 1 < ind X = 2.
Hence by the result of Pasynkov just quoted, X is not a coset space of any locally compact group.
In fact, it is known that X is not a coset space of any topological group whatsoever.

The following fundamental problem is still open [89]:

Question 2.4. Suppose that X is a compact coset space. Is ind X = dim X = Ind X?

One of the fundamental theorems of classical dimension theory belongs to Tumarkin and
Hurewicz. It says that dim X = ind X = Ind X , for every separable metrizable space X .
Arhangel’skii asked in this connection whether these equalities hold for every space with a
countable network [9]. In the special case that X is the union of a finite collection of separable
metrizable subspaces, the three classical dimension functions indeed agree on X , as was shown
by Charalambous [23]. But he also showed that in general, the answer to Arhangel’skii’s question
is in the negative. This situation motivates the next question which was posed in [11, Problem
6.12] and is still open.

Question 2.5. Suppose that G is a topological group with a countable network. Is it true that
dim X = ind X = Ind X?

It is known that for a positive answer, it is enough to show that ind G ≤ dim G.

Question 2.6. Suppose that X is a topological space which is a quotient space of a separable
metrizable space. Is it true that dim X = ind X = Ind X?

Question 2.7. Suppose that X is a coset space of a separable metrizable topological group. Is it
true that dim X = ind X = Ind X?

In 1961, Sklyarenko and Smirnov asked in [96] whether the three classical dimension
functions coincide for every normal topological group. This was answered in the negative by
Shakhmatov [89] in 1989: he constructed the first example of a normal topological group with
non-coinciding dimensions. Recall that the class of Lindelöf Σ -spaces is the smallest class
of (Tychonoff) spaces which contains all separable metrizable spaces, all compact Hausdorff
spaces, and is closed under continuous images, closed subspaces and finite products. Shakhmatov
constructed in [89] for each natural number n an example of a topological group Gn which is
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precompact, Abelian, Lindelöf Σ -space and satisfies the following conditions: dim Gn = n and
the other two dimensions ind Gn and ind Gn are infinite. It was also established by Shakhmatov
in the same paper that ind G = Ind G for every topological group G which is a Lindelöf Σ -
space. In particular, it follows that ind G = Ind G for every σ -compact topological group G.
He asked in [88] whether in fact for every σ -compact topological group all three dimension
functions take the same value. Another question he posed in [88, Question 1.6] is: does the
equality ind G = Ind G hold for every Lindelöf topological group G?

A topological group G is called ω-narrow if for every open neighborhood V of the neutral
element in G, there exists a countable subset A of G such that AV = G. A topological group
G is called R-factorizable if, for every continuous real-valued function f on G, there exist a
continuous homomorphism π : G → K onto a second countable topological group K and a
continuous real-valued function h on K such that f = h ◦ π .

Question 2.8 (Shakhmatov [88]). Is it true that dim G ≤ ind G, for every precompact (R-
factorizable, ω-narrow) topological group G?

Theorem 2.9 (Shakhmatov [88]). If G is an R-factorizable topological group, then the
conditions ind G = 0 and dim G = 0 are equivalent.

In particular, it follows from this theorem that the conditions ind G = 0 and dim G = 0
are equivalent for topological groups with a countable network and for subgroups of σ -compact
topological groups. It also follows that the equivalence of ind G = 0 and dim G = 0 holds for
precompact topological groups and for arbitrary subgroups of Lindelöf Σ -groups.

3. Homeomorphism groups of metrizable compacta

A particularly nice class of topological groups with many questions unanswered is the class
H (X ) of homeomorphism groups of metrizable compacta X . Of course, H (X ) is endowed
with the compact-open topology, which is in this case equivalent to the topology of uniform
convergence. If (X, ϱ) is a compact metric space, then the formula

ϱ̂( f, g) = max
x∈X

ϱ( f (x), g(x))

is a metric compatible with the topology on H (X ), and

σ ( f, g) = ϱ̂( f, g) + ϱ̂( f −1, g−1)

is a compatible complete metric. Since it is easy to show that H (X ) is separable, we conclude
that H (X ) is a Polish group.

If X is locally compact but not compact, then H (X ) with the compact-open topology need
not be a topological group. It is a classical result of Arens [7] that if X is moreover locally
connected, then H (X ) is a topological group. Arens’ condition was relaxed by Dijkstra [25] to
the condition that every point in X has a neighborhood that is a continuum. This prompts the
following problem:

Question 3.1. For which locally compact separable metrizable spaces X is it true that H (X )
endowed with the compact-open topology is a topological group?
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Let us consider the group H (I). If f ∈ H (I) then clearly f ({0, 1}) = {0, 1}. A moments
reflection shows that f is either (strictly) increasing or (strictly) decreasing. If f is increasing,
and so f (0) = 0 and f (1) = 1, then

{g ∈ H (I) : ϱ̂( f, g) < 1/2}

consists entirely of increasing homeomorphisms. Hence the collection of all increasing home-
omorphisms is open, and so is the collection of all decreasing homeomorphisms. We conclude
that

H0(I) = { f ∈ H (I) : f is increasing}

is a clopen subset of H (I). Clearly, H0(I) ≈ H (I) \ H0(I).

Example 3.2. H0(I) ≈ R∞ and H (I) ≈ {0, 1} × R∞.

This is due to Anderson [5]. The proof presented here was taken from Keesling [54], who
writes on Page 5, line -11: ‘The following proof was communicated to me by James West who
heard it from R. Connelly who heard it from Morton Brown’.

Proof. We will show that H0(I) ≈
∏

∞

n=0
∏2n

i=1(0, 1)n,i . Let

(xn,i ) ∈

∞∏
n=0

2n∏
i=1

(0, 1)n,i

be arbitrary. We will define an increasing homeomorphism h of I associated with (xn,i ). Suppose
that n is given and that we have defined sets

An = {0 = αn
0 < αn

1 < · · · < αn
2n = 1}

and

Bn = {0 = βn
0 < βn

1 < · · · < βn
2n = 1}

and a ‘partial’ homeomorphism h such that h(αn
i ) = βn

i for i = 0, 1, . . . , 2n . We extend h to a
set An+1 ⊇ An onto Bn+1 ⊇ Bn with each of An+1 and Bn+1 having 2n+1

+ 1 points. If n is odd,
then let zi be the midpoint of the interval [αn

i−1, α
n
i ] for i = 1, 2, . . . , 2n , and let

yi = h(zi ) = xn,i (βn
i − βn

i−1) + βn
i−1.

If n is even then let yi be the midpoint of the interval [βn
i−1, β

n
i ] for i = 1, 2, . . . , 2n , and let

zi = h−1(yi ) = xn,i (αn
i − αn

i−1) + αn
i−1.

Put

An+1 = An ∪ {zi : i = 1, . . . , 2n
}

and

Bn+1 = Bn ∪ {yi : i = 1, . . . , 2n
},

respectively.
Put A =

⋃
∞

n=1 An , and B =
⋃

∞

n=1 Bn . Then both A and B are dense in I, and h : A → B is
an order preserving bijection. Thus h has an order preserving extension h̄ : I → I. It is not hard
to prove that the assignment (xn,i ) → h̄ is a homeomorphism between

∏
∞

n=0
∏2n

i=1(0, 1)n,i and
H0(I). □
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The Anderson Theorem states that R∞ and ℓ2 are homeomorphic. See van Mill
[110, Chapter 6] for details. So Example 3.2 implies that H0(I) ≈ ℓ2 and H (I) ≈ {0, 1} × ℓ2.

The question naturally arises what can be said about the homeomorphism groups H (In) for
n ≥ 2. In fact, it is natural to think of the following closed subgroup of H (In):

H∂ (In) = {h ∈ H (In) : h ↾ ∂In
= 1∂In };

here ∂In is the union of the endfaces of In . It was shown by Luke and Mason [66] that H∂ (I2) is
an AR, which implies that H∂ (I2) ≈ ℓ2 (apply e.g., Dobrowolski and Toruńczyk [33]).

Question 3.3. Let n ≥ 3. Is H∂ (In) an AR?

This is widely open and is one of the most interesting open problems in infinite-dimensional
topology.

For n = ∞, the analogous problem was solved (observe that Q has no boundary).

Example 3.4. H (Q) ≈ ℓ2.

The proof of this is difficult. See Ferry [41] and Toruńczyk [103] for details.
Hence we see that already for a relatively simple space such as the closed unit interval I

its homeomorphism group H (I) is quite large (from almost every perspective, including the
dimension theoretic one). If C denotes the Cantor set {0, 1}

ω, then H (C) is easily seen to be
zero-dimensional. In fact, H (C) is homeomorphic to the space of irrational numbers P. Are
there interesting spaces X for which H (X ) is 1-dimensional, or, more generally, n-dimensional?
The answer to this naive problem is not so simple.

A space X is called almost zero-dimensional if it has an open base B such that every B ∈ B
has the property that X \ B is the union of clopen subsets of X .

Almost zero-dimensional spaces were introduced by Oversteegen and Tymchatyn [80]. They
proved that almost zero-dimensional spaces are at most 1-dimensional, and used this result to
conclude that the homeomorphism groups of various interesting spaces such as Sierpiński’s
Carpet and Menger’s Universal Curve, are at most 1-dimensional. For a simpler proof that almost
zero-dimensional spaces are at most 1-dimensional, see Levin and Pol [63].

Dijkstra [26] proved that the homeomorphism group of the n-dimensional Sierpiński carpet
Mn+1

n for n ̸= 3 is at least 1-dimensional. And also that the homeomorphism group of the
n-dimensional universal Menger continuum µn is at least 1-dimensional. He in fact proved that
the complete Erdős space Ec can be embedded in these groups, which is of independent interest.

The universal Menger continua µn were characterized topologically by Bestvina [15] who
also proved that they are homogeneous. Hence there exist homogeneous metrizable continua of
arbitrarily large dimension whose homeomorphism groups are 1-dimensional. This prompts the
following open problem, basically due to Brechner [20].

Question 3.5. Is there a homogeneous metrizable continuum X such that dim H (X ) = 0? And
is there a homogeneous metrizable continuum X such that 1 < dim H (X ) < ∞? Specifically,
is there a homogeneous metrizable continuum X such that H (X ) is of dimension 2?

If H (X ) is locally compact and X is metrizable, then H (X ) is zero-dimensional, by a result
of Keesling [53]. See also Hofmann and Morris [49] for a related result: if the homeomorphism
group H (X ) of a (Tychonoff) space X is compact, then it is a profinite topological group (hence
zero-dimensional).
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A classical object in continuum theory is the so-called pseudo-arc P . It is planar and
Bing showed in [16] that it is homogeneous. He proved moreover in [17] that each arc-
like hereditarily indecomposable continuum is homeomorphic to the pseudo-arc. As was
shown recently by Hoehn and Oversteegen [45], there are up to homeomorphism exactly 3
nondegenerate homogeneous plane continua: the circle, the pseudo-arc and the circle of pseudo-
arcs (Bing and Jones [18]). That solved a problem that traces its history back to the 1920 paper
of Knaster and Kuratowski [56].

It is unknown what the dimension is of H (P). The only thing that is known is that it does not
contain nontrivial continua (Lewis [64]).

Question 3.6. What is the dimension of H (P), where P denotes the pseudo-arc?

4. Some new dimension theorems for metrizable groups obtained by O. V. Sipacheva

The Katětov-Morita Theorem [51,71] says that dim X = Ind X , for any metrizable space X .
On the other hand, there are metrizable spaces X with ind X ̸= dim X . We already mentioned
that the first, very complicated, example of such a space was constructed by Roy [87] in 1962.
Much simpler examples of metrizable spaces witnessing the same phenomenon have been found
later (see, e.g., [60]). All these examples have small inductive dimension zero. See the very
interesting work of Mrowka [73,74] and Kulesza [61] for the troubles one gets into when trying
to get similar examples of larger small inductive dimension.

Miščenko [69] asked in 1964 whether the three classical dimensions coincide for metrizable
topological groups. This natural question remained open for a long time and some versions of it
were repeated by various authors.

Only in 2008, Miščenko’s question was answered in a remarkable paper of Sipacheva [94]. On
the way to the solution, she obtained a few additional interesting results of independent interest.
First, she studied when a space X can be embedded as a closed subspace into a metrizable
zero-dimensional topological group, and proved the following statement:

Theorem 4.1. A space X can be embedded in a metrizable topological group G with ind G = 0 if
and only if the topology of X is generated by a uniformity which has a countable base consisting
of open-and-closed sets. Moreover, if X can be embedded in a zero-dimensional metrizable
group, then it can be embedded in such a group as a closed subspace.

The proof of this theorem is quite involved. It is given in Section 1 of [94] and occupies,
approximately, half of this paper. Sipacheva mentions in [94] that Theorem 4.1 (without the
closedness assertion) was formulated by Miščenko [69], but its proof has never been published.

The next step in Sipacheva’s strategy is to use the above criterion to embed an appropriate
metrizable space with non-coinciding dimensions ind and Ind in a zero-dimensional metrizable
group. She describes here a space (a special case of Mrowka’s space in [73]) which can be
embedded as a closed subspace in a zero-dimensional metrizable group but is not strongly zero-
dimensional. This gives an example of a metrizable group with noncoinciding dimensions ind
and Ind. Thus, the next fact is established:

Corollary 4.2. There exists a metrizable topological group G with dim G = Ind G > ind G = 0.

The last statement answers some questions of Shakhmatov in [88] (see, in particular,
Question 1.26). It shows that Pasynkov’s theorem on the coincidence of the three classical
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dimensions for locally compact topological groups cannot be extended to all topological groups
which are paracompact p-spaces. This is so, since metrizable spaces are paracompact p.
However, we have the following generalization of the Katětov-Morita Theorem which is due
to Pasynkov [83]:

Theorem 4.3. If a topological group G is a paracompact p-space, then dim G = Ind G.

The next open problem, which is a part of Question 1.27 in [88], becomes especially
interesting in the context of Sipacheva’s results discussed above.

Question 4.4. Is it true that ind G = dim G = Ind G for any Čech-complete topological group?

Even in the metric case this problem is not solved.

Question 4.5. Is it true that ind G = dim G = Ind G for any topological group which is
completely metrizable?

Question 4.6. Suppose that X = G/H , where G is a completely metrizable topological group,
and H is a closed subgroup of G. Is it true that ind X = dim X = Ind X?

A remarkable generalization of the dimension coincidence theorem for locally compact
topological groups was given by Tkachenko (see [101]):

Theorem 4.7. Suppose that H is a closed subgroup of a locally pseudocompact topological
group G. Then:

(a) dim G = ind G = Ind G;
(b) dim G = dim H + dim(G/H ) (and hence, dim(G/H ) ≤ dim G).

5. Embeddings in topological groups and dimension

It is well-known that every topological space X can be represented as a closed subspace of
a topological group (Markov’s Theorem, see [12, Chapter 9]). A very natural question is: can
we achieve in Markov’s Theorem that the dimension of G is the same as the dimension of X ,
where dimension is understood as one of the classical dimensions? In the preceding section, we
have already touched upon the topic in the title of this section. Note also that the third section
of [94] contains an example of a zero-dimensional metrizable space which cannot be embedded
in a zero-dimensional metrizable group. In this section, we consider situations of this kind in a
more systematic way.

In 1978, Bel’nov [14] proved that every space X can be represented as a closed subspace
of a homogeneous space Y with ind X = ind Y , dim Y = dim X , and Ind X = Ind Y . This
led him to ask whether every space X can be embedded in a topological group G such that
dim G = dim X . Answering this question, Shakhmatov showed, in particular, that the sphere S2

cannot be embedded in a 2-dimensional topological group, no matter which classical dimension
function is used. For his general result and the proofs, see [91]. See also the article of Kato [52]
in which it is shown that Shakhmatov’s results about the spheres Sn are a special case of a
remarkable general theorem on manifolds:
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Theorem 5.1 ([52]). A compact n-dimensional manifold Mn without boundary can be embedded
in an n-dimensional topological group if and only if Mn itself is homeomorphic to a topological
group.

Every zero-dimensional space (in the sense of dim) can be embedded as a closed subspace
of a topological group G with dim G = 0 [91]. Kimura [55] showed that the 1-dimensional
bouquet of two circumferences cannot be embedded in a 1-dimensional topological group. This
is a counterexample to Bel’nov’s question in the 1-dimensional case.

Vopěnka [111] constructed a compact space X such that dim X is finite and ind X is infinite.
It is unknown whether this space X can be embedded in a topological group G such that
dim X = dim G, [55].

Kulesza constructed in [59], for every n ≥ 1, an example of a compact n-dimensional
separable metrizable space which does not embed in an n-dimensional topological group. The
same paper contains the following result: the Kowalskij hedgehog with ω1 many “spines” Jω1 is
a 1-dimensional metric space such that every topological group, which contains it as a subspace,
is infinite-dimensional.

6. Some natural questions on subgroups and products of groups

It is easily proved by induction that the small inductive dimension ind is monotone with
respect to subspaces: if Y ⊆ X , then ind Y ≤ ind X . However, for the dimension functions dim
and Ind, the same is not true. Indeed, there exist a compact topological group G having a subspace
Y such that dim G < dim Y . Even in hereditarily normal spaces the dimensions dim and Ind
need not be monotone. The first to show this was Filippov. He proved in [42] that if there exists
a Souslin continuum, then there exists a zero-dimensional hereditarily normal space X , which
contains subspaces with any prescribed finite dimension dim or Ind. See also Pol and Pol [85]
for a similar result in ZFC: there exists a hereditarily normal space X with dim X = Ind X = 0
such that, for every n ∈ ω, there exists a subspace An of X with dim An = Ind An = n. It is also
known [91] that every Tychonoff space X such that ind X = 0 can be represented as a closed
subspace of an Abelian topological group G such that dim G = 0. It follows easily from this that
the dimension dim of topological groups is not monotonous with respect to closed subspaces.

Shakhmatov [88, Problem 2.1] stated in 1989 that the next general question is open:

Question 6.1. Suppose that H is a subgroup of a topological group G. Is it true that dim H ≤

dim G?

So far as we know, this question remains open until now. Tkachenko in [101, Problem 6.9]
also mentions this problem and especially emphasizes the case when G is normal and H is closed
in G. Shakhmatov collected in [88] many concrete cases in which the above inequality holds. We
mention some of them.

Theorem 6.2. Suppose that H is a precompact subgroup of a topological group G. Then
dim H ≤ dim G.

In particular, the inequality holds whenever the group G is precompact. Shakhmatov also
showed that the subgroup dimension inequality holds if the group G is Lindelöf or locally
pseudocompact (Theorems 2.4 and 2.5 in [88]). Hence, the inequality holds when H is a
subgroup of a σ -compact topological group G.
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Question 6.3 (Shakhmatov [88]). Suppose that H is an ω-narrow subgroup of a topological
group G. Is it true that then dim H ≤ dim G?

A positive answer to this question would, in our opinion, be an amazing general result.
An important subclass of the class of all ω-narrow topological groups is the class of

so-called R-factorizable topological groups (see the paragraph preceding Question 2.8). In
[88, Theorem 2.6], Shakhmatov attributes the following result to Tkachenko:

Theorem 6.4. If H is an R-factorizable subgroup of a topological group G, then the inequality
dim H ≤ dim G holds.

Indeed, we find this theorem in [102] and also in [101, Theorem 6.11]. In the second of these
two articles, while discussing Theorem 6.11, Tkachenko mentions that it can be also proved using
the fact that every R-factorizable subgroup is z-embedded in the ambient group and applying a
result of Chigogidze saying that dim is monotonous with respect to z-embedded subspaces.

In connection with Problem 6.3, it is natural to pose the following question:

Question 6.5. Given an arbitrary n ∈ ω, does there exist a separable metrizable topological
group Gn such that dim Gn = n and each separable metrizable n-dimensional topological group
H is topologically isomorphic to a topological subgroup of Gn?

Recall that a universal separable metrizable topological group with respect to topological
monomorphisms was constructed by Uspenskij [107] (see Shkarin [93] for the Abelian case).

A quite nontrivial situation also occurs with respect to the natural product inequality in
dimension theory. In 1930, Pontryagin [86] constructed 2-dimensional compact metrizable
spaces X and Y such that

dim(X × Y ) = 3 < dim X + dim Y = 4.

Question 6.6. Is it possible to embed X × Y in the product of three 1-dimensional metrizable
compacta?

In this connection, we note that, for every n ∈ N, the Euclidean space Rn has an (n − 1)-
dimensional subspace Mn such that dim(Mn)k

= n − 1, for every positive integer k, Anderson
and Keisler [6] (see Kulesza [58] for similar examples that are even Polish). This statement can
be strengthened as follows:

Theorem 6.7. For every n ∈ N, there exists a separable metrizable topological group Gn such
that dim(Gn)k

= n − 1, for every positive integer k.

Question 6.8. Given any n ∈ ω, does there exist a Polish topological group Gn such that
dim(Gn)k

= n − 1, for every positive integer k?

The inequality dim(X × Y ) ≤ dim X + dim Y (which we call below the sum–product
inequality) holds for compact spaces and for metrizable spaces. It also holds for paracompact p-
spaces (see [79], where it is shown that the finite products of such spaces have a certain special
structure which guarantees that the inequality holds). It even holds for paracompact Σ -spaces
(see [57]). The question of whether the sum–product inequality holds for all paracompact spaces
is still open.

However, spaces satisfying the opposite inequality dim(X × Y ) > dim X + dim Y do
exist, [112]. The following problem can be found in print in [88]:



A.V. Arhangel’skii, J. van Mill / Indagationes Mathematicae 29 (2018) 202–225 215

Question 6.9. Does the inequality dim(G × H ) ≤ dim G + dim H hold for arbitrary topological
groups G and H? What if the factors are equal?

The answer to this question is not known even if the groups are Lindelöf.

Theorem 6.10 ([88, Theorem 3.3]). If G and H are precompact topological groups, then
dim(G × H ) ≤ dim G + dim H.

In connection with this result, the following two questions seem to be in order.

Question 6.11. Does the inequality dim(G× H ) ≤ dim G+dim H hold for arbitrary topological
groups G and H which are subgroups of σ -compact topological groups?

Observe that if both G and H are σ -compact, then the answer to the last question is “yes”,
since it is in the affirmative for all Lindelöf Σ -groups.

Question 6.12. Does the inequality dim(G× H ) ≤ dim G+dim H hold for arbitrary topological
groups G and H with countable Souslin number?

Question 6.13. Does the inequality dim(G × H ) ≤ dim G + dim H hold for arbitrary Lindelöf
topological groups G and H with countable Souslin number?

A much more general situation is covered by the next question. Thus, a positive answer to it
would be, in our opinion, an important theorem.

Question 6.14 ([88, Theorem 3.4]). Does the inequality dim(G × H ) ≤ dim G + dim H hold
for arbitrary ω-narrow topological groups G and H?

We would like also to mention one more remarkable result of Nagata [75,76]: any n-
dimensional metric space can be topologically embedded in a topological product of n+1 metric
spaces that are all 1-dimensional.

Question 6.15. Is it possible to embed any n-dimensional (possibly, non-metrizable) compactum
in a product of n + 1 1-dimensional compacta?

Some deep results on the dimension of product spaces, which are relevant to the results
we are discussing in this section, can be found in Morita’s paper [72]. In particular, it is
proved there that if X is a normal space and Y is a locally compact paracompact space, then
dim(X × Y ) ≤ dim(X ) + dim(Y ). Furthermore, if, in addition, Y is a polyhedron, then, in the
preceding inequality, equality holds. Hence, if X is a topological space such that the product
space X × I, where I is the closed unit interval, is homeomorphic to a subspace of the Euclidean
space R3, then dim(X ) = 2.

Several basic questions of this kind are open for the other classical dimension functions. Does
the inequality I nd(G × H ) ≤ Ind G + Ind H hold for arbitrary topological groups G and H?
This natural general question was also posed by Shakhmatov in [88, Question 3.10]. He observed
that even in the precompact case the answer to it is unknown. See however Theorem 6.10.
Note also the next result of Shakhmatov [88]: if G and H are any Lindelöf Σ -groups, then
Ind(G × H ) ≤ Ind G + Ind H . See also the discussion of this theorem in [101, Theorem 6.12]
where some other interesting questions are posed.
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7. L.G. Zambakhidze’s problem

At the early stage of development of topology and dimension theory, it was not immediately
clear how to define zero-dimensionality in topological spaces. We have already discussed this
problem in the preceding sections. Let us add here that Brouwer was interested in scattered
spaces as well. Recall that a space X is scattered if every nonempty subspace Y of X contains
an isolated point (of Y ). Clearly, scatteredness can be considered as an exotic version of zero-
dimensionality. Note, however, that there are scattered spaces which are not zero-dimensional.
See Solomon [99] and Terasawa [100].

A base B of a space X is called a bc-base [13] if the boundary B(U ) = U\U of every member
U of B is compact. Spaces with a bc-base are also called rimcompact. A separable metrizable
space has a bc-base if and only if it can be compactified by a zero-dimensional remainder (de
Groot [24], Freudenthal [43,44]; see also [1]).

In this section, we call a nonempty space X zero-dimensional if X has a base consisting of
clopen subsets, that is, if ind X = 0. Notice that a base consisting of clopen subsets is, obviously,
a bc-base. Thus, every zero-dimensional space and every locally compact space, as well as the
free topological sum of such spaces, have a bc-base.

Outside the class of separable metrizable spaces, the existence of a bc-base for X is no longer
equivalent to the existence of a compactification bX with a zero-dimensional remainder. This
was demonstrated by Sklyarenko [95] who proved that a Tychonoff space of countable type has
a compactification bX with a zero-dimensional remainder if and only if X has a bc-base, and
Smirnov [98] constructed a space X which does not have a bc-base but has a compactification
bX such that ind(bX \ X ) = 0. For every positive n ∈ ω, Charalambous [22] constructed a space
Xn with a bc-base such that, for every compactification b(Xn) of Xn , the remainder b(Xn) \ Xn

is normal and n-dimensional.
For topological groups, the situation is different:

Theorem 7.1 (L.G. Zambakhidze [115]). If a topological group G has a zero-dimensional
remainder in some compactification, then G has a bc-base.

About 12 years ago, in a conversation with Arhangel’skii, Zambakhidze asked whether every
non-zero-dimensional topological group with a bc-base is locally compact. Several partial results
in this direction were obtained in [13]. Some of them we list below.

We note that the product of two spaces with a bc-base need not have a bc-base.

Proposition 7.2. Let G × H be the product of a zero-dimensional non-locally compact
topological group G with a locally compact non-zero-dimensional topological group H. Then
G × H does not have a bc-base.

Proof. By Theorem 2.1, H contains a copy of I. Hence G × H contains a closed homeomorph of
G×I. Striving for a contradiction, assume that G×H has a bc-base. Then so does G×I since the
property of having a bc-base is hereditary with respect to closed subsets. Let e denote the neutral
element of G. There is an open neighborhood U of (e, 0) whose boundary R is compact and has
the property that πI(U ) is a proper subset of I. Here πI : G × I → I denotes the projection.
Clearly, πG(R) is a compact subset of the open subset πG(U ) of G. Here πG : G × I → G
denotes the projection. Since G is nowhere locally compact, there is g ∈ π (U ) \πG(R). Observe
that {g} × I is connected and intersects U as well as the complement of the closure of U , but
misses R. This contradicts the connectivity of I. □
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Hence, the topological group R × Q, where R is the usual topological group of real numbers
and Q is the usual topological group of rational numbers, does not have a bc-base.

Question 7.3. Does there exist a non-locally compact non-zero-dimensional semitopological
(paratopological) group G with a bc-base?

Subsets A and B of a topological group G will be called translation-disjoint if for any open
neighborhood O of the neutral element e of G there exists c ∈ O such that cA and B are disjoint.

We will call a base B of a space X a bcs-base if the boundary B(U ) = U \ U of every
member U of B is σ -compact. The spaces with a bcs-base are called rim-σ -compact.

Theorem 7.4 ([13]). Suppose that G is a non-σ -compact topological group with a bcs-base,
and that G =

⋃
i<ωYi , where each Yi is a separable metrizable Fσ -subspace of G. Then

(1) G can be written as A ∪ B, where A and B are zero-dimensional and A is σ -compact,
(2) ind(G) = Ind(G) = dim(G) ≤ 1,
(3) any σ -compact subspace of G is zero-dimensional.

Corollary 7.5 ([13]). Every σ -compact non-locally compact topological group with a bc-base
is zero-dimensional.

Theorem 7.6 ([13]). Suppose that G is a non-locally compact topological group with a bc-base.
Then every compact subspace of G is zero-dimensional.

Corollary 7.7. Let X be a space such that the free topological group F(X ) of X has a bc-base.
Then the subspace An of F(X ) consisting of reduced words of length ≤ n is zero-dimensional.

However, we do not know the answer to the next question:

Question 7.8. Suppose that the free topological group F(X ) of a Tychonoff space X has a
bc-base. Is F(X ) zero-dimensional?

Theorem 7.9 ([13]). Suppose that a non-locally compact topological group G has a zero-
dimensional remainder in a compactification b(G). Then

(a) ind(G) ≤ 1;
(b) ind(b(G)) ≤ 2.

Recall that, under the assumptions in the above statement, the topological group G has a
bc-base by Zambakhidze’s Theorem 7.1.

As an application, let us consider compactifications of the space of rational numbers Q. The
1-dimensional sphere S1 can be interpreted as a compactification of Q. The remainder S1

\ Q
of Q in this compactification is homeomorphic to the space P of irrational numbers. Notice that
ind(P) = 0, and P is homeomorphic to a topological group. In this connection we mention the
next easy to establish but rather unexpected (in our opinion) fact:

Proposition 7.10 ([13]). If a zero-dimensional remainder of Q is homeomorphic to a topological
group, then it is homeomorphic to the space P of irrational numbers.
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Corollary 7.11 ([13]). If b(Q) is any compactification of Q such that the remainder satisfies
the condition ind(b(Q) \ Q) ≥ 2, then it is not homeomorphic to any topological group.

Question 7.12. Does there exist a compactification bQ of Q such that the remainder Y =

b(Q) \ Q is homeomorphic to a 1-dimensional topological group?

The next question of Zambakhidze remains the main open problem here:

Question 7.13 ([13]). Is every non-locally compact topological group with a bc-base zero-
dimensional? What if, in addition, the group is assumed to be precompact?

A related question is:

Question 7.14. Suppose that G is a non-locally compact topological group with a zero-
dimensional remainder. Is it true that G itself is zero-dimensional? What if, in addition, the
group is assumed to be precompact?

If the answer to Problem 7.12 is in the affirmative, then the answer to Zambakhidze’s question
is in the negative.

Question 7.15 ([13]). Is every metrizable non-locally compact topological group with a bc-base
zero-dimensional?

The answer to the next question may very well be in the affirmative.

Question 7.16. Is every non-locally compact topological group with a bc-base totally discon-
nected?

Question 7.17. Can a non-locally compact topological group with a bc-base contain a
topological copy of the usual space of reals?

8. Miscellanea

1. A fundamental fact concerning the behavior of the dimension of topological groups under
open continuous homomorphisms was established in [10]:

Theorem 8.1. Every topological group can be represented as a quotient group of some
topological group G such that dim G = 0.

In his paper [91, Corollary 4.3], Shakhmatov proves a more precise ‘precompact’ version of
this theorem: Every precompact (Abelian) group G is a quotient group of a precompact (Abelian)
group H so that dim H = 0 and w(H ) = w(G). His proof uses the technique of free precompact
groups. Dikranjan [32, Theorem 1.2] gave a direct constructive proof (free of free topological
groups ) of the ‘abelian’ option of Shakhmatov’s theorem.

A similar statement holds for Abelian topological groups. The next question was posed in
[10, Question 12].

Question 8.2. Let τ be an infinite cardinal number and H be a topological group with w(H ) ≤ τ .
Is it true that there exists a topological group G such that w(G) ≤ τ , dim G ≤ 0, and H is a
quotient group of G?
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The version of this question with ind G ≤ 0 instead of dim G ≤ 0 (also formulated in [10])
was answered positively by Tkachenko (see [88]).

The next general question, listed as Question 7.3 in [88], seems to be folklore. The first listed
author of the present paper remembers that in the sixties, P.S. Alexandroff regularly discussed
version (i) of it during his Topology Seminars at Moscow University.

Question 8.3. Is it possible to represent an arbitrary nonempty space Y as an image of a space
X under a continuous mapping f such that dim X = 0, w(X ) ≤ w(Y ), and f satisfies one of the
following conditions: (i) f is perfect; (ii) f is open; (iii) f is quotient?

This can be related to another general problem which was also posed by Shakhmatov in [88]:

Question 8.4. Suppose that f is a continuous mapping of a space X to a space Y . Then do there
exist a Tychonoff space Z , and continuous mappings g : X → Z and h : Z → Y such that
f = h ◦ g, dim Z ≤ dim X , and w(Z ) ≤ w(Y )?

Some other versions of this fundamental open problem are also considered by Shakhma-
tov [88], where several examples and partial positive results in this direction are given.
2. Recall that a topological space X is said to be totally disconnected if each point in X is the
intersection of a family of subsets of X which are both open and closed.

It is a natural question whether for every totally disconnected topological group (G, T ) there
exists a topology T ∗ on G such that T ∗

⊆ T , ind(G, T ∗) = 0, and (G, T ∗) is a topological
group. But such a topology does not always exist since Megrelishvili [67] constructed a totally
disconnected minimal topological group which is not zero-dimensional, using the famed Erdős
example (see below).

Dikranjan in [30] established that every countably compact hereditarily disconnected topo-
logical group is zero-dimensional; he also proved in [29] that this theorem does not extend to
all pseudocompact groups, there are counterexamples that are even not totally disconnected.
Dikranjan also mentions in [31] the following result of Shakhmatov: every totally disconnected
pseudocompact topological group G admits a weaker zero-dimensional group topology.

Question 8.5 (Arhangel’skii, see [88, Question 8.4]). Suppose that (G, T ) is a topological
group such that ind G = 0. Then does there exist a topology T ∗ on G such that T ∗

⊆ T ,
dim(G, T ∗) = 0, and (G, T ∗) is a topological group?

A similar question has been asked by Arhangel’skii about topological spaces (see [88]):

Question 8.6. Suppose that (X, T ) is a topological space such that ind X = 0. Does there exist
a topology T ∗ on X such that T ∗

⊆ T and dim(X, T ∗) = 0?

Shakhmatov published in [88] the following general versions of the above questions (see
Questions 8.6 and 8.7):

Question 8.7. Suppose that (X, T ) is a topological space. Does there exist a topology T ∗ on X
such that T ∗

⊆ T and dim(X, T ∗) ≤ ind(X, T )?

Question 8.8. Suppose (G, T ) is a topological group. Does there exist a topology T ∗ on G
such that T ∗

⊆ T , dim(G, T ∗) ≤ ind(G, T ), and (G, T ∗) is a topological group?
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In the same paper, Shakhmatov asked whether dim G = ind G = Ind βG for every minimal
topological group.

Again, let E denote Erdős space, the subspace of Hilbert space ℓ2 consisting of all points
having the property that all of its coordinates are rational. It is a totally disconnected 1-
dimensional subgroup of ℓ2. As was shown by Erdős [39], every clopen subspace of E is
unbounded in norm. Take the collection of all clopen subsets of E as the basis for a new topology
T on E . This topology is obviously weaker than the usual separable metrizable topology on E .
It is not metrizable, though. It was shown by Dijkstra and van Mill [27, Remark 5.7] that the
character of (E, T ) is uncountable.

Question 8.9. Is the topology T compatible with the group structure on E?

Observe that (E, T ) is a homogeneous space.
3. The class of topological spaces represented by topological fields is very special. See [92] for
details. At present, it is not much known about dimensional aspects of the theory of topological
fields.

For every n ≥ 1, Ursul [105] constructed an example of a separable metric n-dimensional
topological field Pn . The field Pn is not homeomorphic to Rn or Cn . This remarkable result shows
that the dimension theory of topological fields can be quite nontrivial. Shakhmatov in [92] asked
the following question:

Question 8.10. Does there exist a topological field F such that not all classical dimensions of F
coincide?

It is well-known that non-metrizable compacta cannot be embedded in topological fields.
4. The spheres in the Euclidean space contributed to the birth of the idea of inductive definition
of the classical dimension ind. Of course, this refers to a very special situation. However, Jun-iti
Nagata proved the next remarkable general theorem [77,78]:

Theorem 8.11. If X is a metrizable space, and Ind X ≤ n for some n ∈ ω, then the space
X is metrizable by a metric ρ such that for every closed subset F of X and every ε > 0, the
dimension Ind of the boundary of the ε-neighborhood Oε(F) of F does not exceed n − 1.

Question 8.12. Suppose that G is a metrizable topological group with Ind G ≤ n for some
n ∈ ω. Is the topological group G metrizable by a left-invariant metric ρ such that for every
closed subset F of X and every ε > 0, the dimension Ind of the boundary of the ϵ-neighborhood
Oϵ(F) does not exceed n − 1?

5. Duda noticed that in the definition of inductive dimension one may interchange the steps
corresponding to ind and Ind. In this way, one obtains continuum many new inductive dimension
functions. For details, see [35].

Egorov and Podstavkin studied in [37] the dimension function Dind whose definition is due
to Arhangel’skii. In the definition of Dind the ideas of the definitions of the dimensions ind and
dim are unified in a natural way. We put Dind X = −1 if X = ∅. Proceeding by induction, we
let Dind X ≤ n if every open cover γ of X can be refined by a disjoint family η of open sets
such that Dind(X \

⋃
η) ≤ n − 1. If in this definition we also assume that each γ is finite, and

require that each η be finite, then the dimension function so obtained is denoted by Dindf. Their
investigation was extended by Kulpa [62] who proved, in particular, that Dind X = Dind β X , for
every normal space X .
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Question 8.13. How are Dind G and Ind G (Dindf G and Ind G) related, when G is a topological
group?

6. Any connected linearly ordered topological space without endpoints can be considered as
a natural generalization of the usual space R of real numbers. Below we call such spaces
generalized lines. Taking the topological product of any two generalized lines, we obtain a space
which may be called a generalized plane. Similarly we can define generalizations of the usual
three-dimensional space R3, and so on.

Löttgren and Wagner [65] proved a generalized Jordan curve theorem for any generalized
plane. Moreover, Slye [97] introduced five axioms for an abstract set S which imply the
generalized Jordan curve theorem in S. It is not difficult to see that these axioms hold for the
generalized plane. Hence, the main result in [65] can be easily derived from the results in [97].

Van Dalen used the techniques and results of Löttgren and Wagner in his Ph.D. thesis [108]
to prove the following theorem on the invariance of domain:

Theorem 8.14 ([108, Chapter 3]). Let X be a generalized plane and U be an open subset of X.
Then, for every one-to-one continuous mapping f of U into the space X, the set f (U ) is open
in X.

For other interesting results on generalized planes and their n-dimensional versions, see [108].
It was shown there, in particular, that to study and understand some basic phenomena occurring
in the Euclidean finite-dimensional spaces, we do not have to rely upon the concept of distance;
in fact, we can completely exclude the real numbers from our considerations.
7. The construction of a free topological group is a powerful method for defining a topological
group starting with an arbitrary topological space. Results we mention below concern dimension
of free topological groups. Some of them play an essential role in the proofs of the results
mentioned in 1. A space is called a paracompact σ -space if it is paracompact and has a σ -discrete
network. It was established in [10] that the free topological group F(X ) of any metrizable space
X is a paracompact σ -space. Using this result, Arhangel’skii established in [10] the following
fact:

Theorem 8.15. If X is any metrizable space (paracompact σ -space) such that dim X = 0, then
dim F(X ) = 0.

We now refer the reader to [101] where the next theorem due Tkachenko and Sipacheva is
discussed:

Theorem 8.16. If X is any space such that dim X = 0, then ind F(X ) = ind A(X ) = 0.

It has been asked by Arhangel’skii whether ind X = 0 alone suffices to show that ind F(X ) =

0. The negative answer to this question was obtained by Shakhmatov [90]. He established that
there exists a space X such that ind X = 0, ind F(X ) ̸= 0, and ind A(X ) ̸= 0. In addition, X
can be chosen to be normal or pseudocompact. However, the following basic problem posed by
Arhangel’skii [10] in 1981 still remains open:

Problem 8.17. Is it true for arbitrary space X that if dim X = 0, then dim F(X ) = 0
(dim A(X ) = 0)?

Another challenging old open problem from [10] is this one:

Problem 8.18. Is it true for arbitrary metrizable space X that if ind X = 0, then ind F(X ) = 0
(ind A(X ) = 0)?
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