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It is known that every remainder of a topological group is Lindelöf or pseudocompact. 
Motivated by this result, we study in this paper the question when a topological 
group G has a normal remainder. Under mild conditions on G we show that under 
the Continuum Hypothesis, if the Čech–Stone remainder G∗ of G is normal, then 
it is Lindelöf.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

All topological spaces under discussion are Tychonoff.
By a remainder of a space X we mean the subspace bX \X of a compactification bX of X. Among the 

best known remainders are the Čech–Stone remainders X∗ = βX \X for arbitrary spaces X and the 1-point 
remainders αY \ Y for locally compact spaces Y .

Remainders of topological groups are much more sensitive to the properties of topological groups than 
the remainders of topological spaces are in general. A nice example demonstrating this, is Arhangel’skii’s 

* Corresponding author.
E-mail addresses: arhangel.alex@gmail.com (A.V. Arhangel’skii), j.vanMill@uva.nl (J. van Mill).
URL: http://staff.fnwi.uva.nl/j.vanmill/ (J. van Mill).

1 The work of the first-named author is supported by RFBR, project 15-01-05369.
http://dx.doi.org/10.1016/j.topol.2017.04.008
0166-8641/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.topol.2017.04.008
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/topol
mailto:arhangel.alex@gmail.com
mailto:j.vanMill@uva.nl
http://staff.fnwi.uva.nl/j.vanmill/
http://dx.doi.org/10.1016/j.topol.2017.04.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.topol.2017.04.008&domain=pdf


28 A.V. Arhangel’skii, J. van Mill / Topology and its Applications 225 (2017) 27–33
Theorem from [4]: every remainder of a topological group is Lindelöf or pseudocompact. All remainders 
of locally compact groups are compact, hence both Lindelöf and pseudocompact. For non-locally compact 
groups there is a dichotomy: every remainder is either Lindelöf or pseudocompact.

Observe that if X is a separable and metrizable topological space, then it has a separable metrizable 
compactification. The remainder of this compactification is separable metrizable as well, and hence Lindelöf. 
This implies that the Čech–Stone remainder X∗ = βX \ X of X is Lindelöf, being a perfect preimage of 
a Lindelöf space. Hence all remainders of X are Lindelöf since every remainder is a continuous image 
of X∗. Similarly, if a space X has at least one Lindelöf remainder, then all remainders are Lindelöf. (This 
is folklore.)

In this paper we are interested in the question when the normality of a remainder of a topological group 
forces that remainder to be Lindelöf, or forces other remainders to be normal.

As we saw above, this is always the case for separable metrizable groups. But not always so, as can be 
demonstrated by an example that was brought to our attention by Buzyakova (for a different reason). Supply 
G = {0, 1}ω1 with the topology generated by all boxes that are determined by countably many coordinates. 
Then G is a topological group, is linearly ordered and hence has a linearly ordered compactification. Hence 
the remainder of G in this compactification is monotonically normal and therefore, hereditarily normal. But 
that remainder is not Lindelöf, simply observe that G is a P -space and that any P -space with a Lindelöf 
remainder is discrete. We will show that the Čech–Stone remainder of this topological group G is not normal. 
Hence it is not true that the normality of a specific remainder implies that all remainders are normal. Hence 
normal remainders behave differently compared to Lindelöf remainders.

There are many results in the literature on so called points of nonnormality in Čech–Stone remainders. 
A point x of a space X is said to be a point of nonnormality, if X \ {x} is not normal. It was shown 
by Gillman (see [9]) that under CH, every non-P -point is a point of nonnormality of ω∗. This also holds 
for P -points, as was shown independently by Warren [23] and Rajagopalan [20]. Hence under CH, all 
points of ω∗ are nonnormality points. The first nonnormality points in ω∗ in ZFC, were constructed by 
Błaszczyk and Szymański [8]. The question whether every point of ω∗ is a nonnormality point in ZFC remains 
unsolved and is a classical problem by now. More recent results on nonnormality points in Čech–Stone 
compactifications can be found e.g. in Bešlagić and van Douwen [7], Logunov [15], Terasawa [21], and 
Fleissner and Yengulalp [11].

So there is quite an extensive literature on nonnormality points in Čech–Stone remainders, and history 
tells us that these results and the remaining problems are complicated. It is only recently that the ques-
tion of when a remainder of a topological group is normal was asked for the first time in Arhangel’skii [5]
(Section 3). It was shown there that no Dowker space can be a remainder of a topological group (Theo-
rem 3.1).

Surprisingly, we are unaware of any other question in the literature that asks for conditions on X that 
imply that X∗ is normal, or some remainder of X is normal, whereas for Lindelöf remainders such conditions 
are well-known (Henriksen and Isbell [13]). We will show that for G a nowhere locally compact topological 
group that contains a nonempty compact Gδ-subset, if the character of G is at most c, and G∗ is normal, 
then G∗ is Lindelöf under CH. We will formulate several applications of this result, for example to Moscow 
topological groups which constitute a rather large class of topological groups.

2. Preliminaries

We abbreviate Čech–Stone remainder as CS-remainder.
A subspace Y of a space X is said to be C∗-embedded in X if every bounded continuous function 

f : Y → R can be extended to a bounded continuous function f̄ : X → R. Here R denotes the space of real 
numbers.
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A cardinal is an initial ordinal, and an ordinal is the set of smaller ordinals. We use κ, λ and μ to denote 
cardinals; we always assume κ ≥ ω. Cardinals are endowed with the discrete topology.

By U(ω1) we mean the subspace of uniform ultrafilters on ω1, i.e.,

U(ω1) = {p ∈ βω1 : (∀P ∈ p)(|P | = ω1)}.

A point p ∈ βω1 \ U(ω1) is called subuniform.
An F -space is a space in which cozero-sets are C∗-embedded. Observe that Tietze’s Theorem implies 

that every closed subspace of a normal F -space is again an F -space. Also, every countable subspace of an 
F -space is C∗-embedded (Walker [22, p. 37]). It follows from Parovičenko’s characterization of ω∗, [19], that 
under CH, the space one gets from ω∗

1 by collapsing U(ω1) to a single point, is homeomorphic to ω∗. For 
details, see Comfort and Negrepontis [9] and [16, §1.4]. Observe that the collapsed set U(ω1) is a P -point 
in the quotient space.

It is known that for every locally compact, noncompact and σ-compact space X, the CS-remainder X∗

is an F -space. The proof is trivial, by a nontrivial observation of Negrepontis [18, Proof of Theorem 3.2]. 
If A ⊆ X∗ is an arbitrary Fσ-subset of X∗, then Y = X ∪ A is σ-compact, hence normal, hence A is 
C∗-embedded in Y being closed in Y , hence in βX since βY = βX. A normal space X is an F -space iff 
any two disjoint open Fσ-subsets of X have disjoint closures in X ([16, 1.2.2(b)]).

A nonempty space is small if βX has weight at most c. This is equivalent to the statement that 
|C∗(X)| = 2ω.

Woods [24] proved that under CH, each small countably compact F -space is compact.
For all undefined notions, see Engelking [10].

3. The main result

We begin by identifying some subspaces in X∗ that are (close to being) F -spaces.

Lemma 3.1. Let X be a space. If S is a compact Gδ-subset of βX such that S ∩X is compact, then every 
open Fσ-subset of S \X is C∗-embedded in its closure (in S \X, which coincides with its closure in X∗).

Proof. Let U be an open Fσ-subset of Y = S \X, and let y ∈ clX∗(U) \ U . Observe that y ∈ Y . Moreover, 
let f : U → R be a bounded continuous function. Since y /∈ S ∩ X, there is a compact neighborhood T

of y in S which misses the compact set S ∩X and which is a Gδ-subset of S. Clearly, T misses X and is a 
compact Gδ-subset of βX. Moreover, y is in the closure of U ∩ T . Put Z = βX \ T . Then Z contains X, 
hence βZ = βX and Z∗ = T . Since Z is locally compact and σ-compact, it follows that T is a compact 
F -space (see §2). Hence every open Fσ-subset of T is a cozero-set, and so C∗-embedded. We conclude that 
we can extend f�T to a continuous function f ′

y : (U ∩T ) ∪{y} → R. Since T is a neighborhood of y in S \X, 
this means that we can extend f to a continuous function fy : U ∪ {y} → R. The union of the fy’s is the 
desired extension of f . �
Corollary 3.2 (CH). Let X be a space such that X∗ is normal and pseudocompact. If S is a compact Gδ-subset 
of βX such that S ∩X is compact, then S \X is an F -space and has the property that each countable subset 
is C∗-embedded in βX and has compact closure in S \X.

Proof. Let A ⊆ S \X be countable, and let B denote the closure of A in S \X. Then B is a small F -space, 
being a separable closed subspace of the normal F -space S \X (Lemma 3.1). Clearly, S \X is countably 
compact. Hence B is a small countably compact F -space, and so is compact by Woods’ result quoted in §2. 
Since every countable subspace of an F -space is C∗-embedded in that F -space, we conclude that A is 
C∗-embedded in B, which is a compact subset of βX, and hence in βX. �
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Corollary 3.3 (CH). Let X be a nowhere locally compact space of character at most c such that X∗ is normal 
and pseudocompact. Then no nonempty compact subset of X is a Gδ-subset of X.

Proof. Striving for a contradiction, assume that K is a nonempty compact Gδ-subspace of X. Write X \K
as 

⋃
n<ω An, where each An is closed in X. Pick an arbitrary p ∈ K. For each n < ω, let Zn be a compact 

Gδ-subset of βX that contains p but misses clβX(An). Then S0 =
⋂

n<ω Zn is a compact Gδ-subset of βX
containing p and L = S0 ∩X is compact, being a closed subspace of K.

This defines S0. Since X∗ is pseudocompact, we may pick a point x0 ∈ S0 \X. Let {Uα : α < ω1} be a 
neighborhood base at p in S0 such that U0 = S0.

Suppose that we defined for some α < ω1, a decreasing sequence {Sβ : β < α} of compact Gδ-subsets 
of S0 such that p ∈ Sβ ⊆ Uβ , and points xβ ∈ (Sβ \X) \ {xγ : γ < β}. By Corollary 3.2, {xβ : β < α} has 
compact closure in S0. Hence we let Sα be a compact Gδ-subset of 

⋂
γ<α Sγ which contains p, is contained 

in Uα, and misses the closure of {xβ : β < α}. Since X∗ is pseudocompact, we may pick a point xα ∈ Sα\X. 
This completes the transfinite construction; put F = {xα : α < ω1}. Then F is clearly a free sequence and 
hence is discrete; it moreover converges to p by construction. The map α 	→ xα can be extended to a 
continuous map f : βω1 → E (here ω1 has the discrete topology), where E is the closure of F in βX.

Claim 1. If q ∈ E \X, then f−1(q) is a single point which is contained in βω1 \ U(ω1).

Indeed, let C be a closed neighborhood of q in βX that misses the compact set S0∩X. Observe that C∩F
is countable, hence C ∩ F has compact closure in S0 \X and is C∗-embedded in βX (Corollary 3.2). Now, 
f−1(C) is a closed neighborhood of f−1(q) in βω1 and f−1(C) ∩ ω1 is countable. Hence f−1(q) consists 
entirely of subuniform ultrafilters of ω1. Striving for a contradiction, assume that f−1(q) contains two 
distinct points, say a and b. Then there are disjoint subsets A and B of f−1(C) ∩ ω1 such that a is in the 
closure of A and b is in the closure of B. Then f(A) and f(B) are disjoint subsets of C∩F , and consequently 
have disjoint closures in βX since C ∩ F is discrete and C∗-embedded in βX. This is a contradiction, since 
both closures contain q.

Since F converges to p in βX, it is now clear that E \ F is homeomorphic to βω1/U(ω1). Hence CH
implies that X∗ contains a closed copy of the space ω∗ \ {t}, where t is a P -point of ω∗ (Comfort and 
Negrepontis [9]). But that space is not normal under CH, as was shown independently by Rajagopalan [20]
and Warren [23] (see also [17]). (Actually, we do not need CH here, since Kunen and Parsons [14] proved 
that βω1 \ U(ω1) is nonnormal in ZFC.) This is a contradiction. �

We now come to our main result.

Theorem 3.4 (CH). Let G be a topological group of character at most c which contains a nonempty compact 
Gδ-subset. Then if G∗ is normal, it is Lindelöf.

Proof. It is clear that we may assume that G is not locally compact. By Arhangel’skii [4], G∗ is either 
pseudocompact or Lindelöf. But G∗ is not pseudocompact by Corollary 3.3. Hence it is Lindelöf. �
Corollary 3.5 (CH). Let G be a countable topological group such that G∗ is normal. Then G∗ is Lindelöf and 
G is metrizable.

Proof. Since by Theorem 3.4 G∗ is Lindelöf, G contains a compact Gδ-subset of βG (Henriksen and Is-
bell [13]). This set has an isolated point since G is countable. But then G is first-countable, and hence 
metrizable by the Birkhoff–Kakutani Theorem. �
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Corollary 3.6 (CH). Let G be a topological group of character at most c which is a union of a countable 
pairwise disjoint family of compacta. Then if G∗ is normal, it is Lindelöf.

Let G denote Buzyakova’s topological group that was discussed in §1. It is a P -space and so βG is basically 
disconnected, [12, 6M.1], and hence an F -space, [12, 14N.4]. Countable subspaces of βG are consequently 
C∗-embedded in βG. Observe that G has character ω1, and that since G is a P -space, every countable subset 
of G∗ has compact closure in G∗. Hence by using the same arguments as in the proof of Corollary 3.3, it 
follows that G∗ is not normal in ZFC (by the result of Kunen and Parsons [14], we do not need CH here).

4. Moscow spaces and groups

Recall that a topological space X is said to be Moscow if the closure of any open subset U of X is the 
union of some family of Gδ-subsets of X (Arhangel’skii [2]).

Quite a few large classes of Moscow spaces and groups are productive. For example, the product of every 
family of first countable spaces is a Moscow space. The class of Moscow spaces also contains all spaces 
of countable pseudocharacter and all extremally disconnected spaces. Under mild restrictions, topological 
groups are Moscow. For example, all locally bounded groups, every subgroup of a σ-compact group, groups 
with countable Souslin number and Fréchet–Uryson groups are Moscow. The notion of a Moscow space was 
shown to interact especially well with homogeneity (see [2]), so no wonder that it works especially well in 
the class of topological groups.

For details and references, see Arhangel’skii [1] and [3] and the applications of the main result, obtained 
in the preceding section, to Moscow topological groups given below.

Theorem 4.1 (CH). Let G be a Moscow topological group of character at most c. Then if G∗ is normal, it is 
either Lindelöf or C∗-embedded in βG.

We need the following result that is of independent interest.

Proposition 4.2. Suppose that G is a Moscow non-locally compact topological group, and Y = bG \G is the 
remainder of G in a compactification bG of G. Furthermore, suppose that A and B are open subsets of Y
that have disjoint closures in Y . Then either 1) the closures of A and B in bG are disjoint, or 2) there 
exists a nonempty compact Gδ-subspace of G.

Proof. Assume the closures of A and B in bG are not disjoint, and fix x ∈ bG such that x ∈ A ∩B.
Fix open subsets U , V of bG such that A = U ∩Y , and B = V ∩Y . Clearly, Y is dense in bG. Therefore, 

A and B are dense in U and V , respectively.

Claim 1. The intersection of the closures in bG of U and V is a compact subset F of G, that is, U ∩ V =
F ⊆ G.

This is so, since the closures of A and B in Y are disjoint.
It follows from Claim 1 that x ∈ G. Therefore, x belongs to the closures in G of the open subsets U ∩G

and V ∩G of G. Since G is Moscow, it follows that there are closed in G Gδ-subsets K1 and K2 of G such 
that x ∈ K1 ⊆ U and x ∈ K2 ⊆ V . Then K = K1 ∩K2 ⊆ U ∩V = F ⊆ G. Therefore, K is closed in F , and 
hence, K is compact. Clearly, K is a Gδ-subset of G, which is as desired. �

Observe that the last statement can be reformulated as follows:
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Theorem 4.3. Suppose that G is a Moscow topological group such that no nonempty compact subset of G
is a Gδ in it. Then G∗ is C∗-embedded in the Čech–Stone compactification βG of G, that is, G is the 
CS-remainder of its CS-remainder G∗.

This theorem reduces Theorem 4.1 to Theorem 3.4. Simply observe that if the second alternative in 
Proposition 4.2 holds, then Theorem 4.1 indeed follows from Theorem 3.4. If the first alternative in Propo-
sition 4.2 holds, then, clearly, G∗ is C∗-embedded in βG and hence, Theorem 4.1 holds in this case as 
well.

Corollary 4.4 (CH). Let G be a topological group of character at most c. Suppose also that G satisfies at 
least one of the following conditions:

(1) The Souslin number of G is countable.
(2) The tightness of G is countable.
(3) G is σ-compact.
(4) G is submetrizable.
(5) G is a Lindelöf Σ-space.
(6) G is extremally disconnected.
(7) The κ-tightness tκ(G) of G is countable.

Then if G∗ is normal, it is either Lindelöf or C∗-embedded in βG.

Recall that the κ-tightness tκ(G) of G is countable, if for every point x in the closure of an open subset U
of G belongs to the closure of some countable subset of U .

Problem 4.5. Let G be a precompact topological group of uncountable weight. Is G∗ nonnormal?

For partial answers to this question, see Arhangel’skii and van Mill [6].
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