

CrossMark

Available online at www.sciencedirect.com

indagationes mathematicae

Indagationes Mathematicae 25 (2014) 35-43

www.elsevier.com/locate/indag

On topological groups with a first-countable remainder, III

A.V. Arhangel'skii^a, J. van Mill^{b,c,*}

^a Moscow, 121165, Russia

 ^b Faculty of Sciences, Department of Mathematics, VU University Amsterdam, De Boelelaan 1081^a, 1081 HV Amsterdam, The Netherlands
^c Faculty of Electrical Engineering, Mathematics and Computer Science, TU Delft, Postbus 5031, 2600 GA Delft, The Netherlands

Received 20 September 2012; received in revised form 8 July 2013; accepted 10 July 2013

Communicated by H.W. Broer

Abstract

We prove a general theorem that allows us to conclude that under CH, the free topological group over a nontrivial convergent sequence S has a first-countable remainder. It is also shown that any separable non-metrizable topological group with a first-countable remainder is Rajkov complete. © 2013 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

Keywords: Character; Remainder; Compactification; Topological group; First-countable; Metrizable; Rajkov complete; Continuum hypothesis

1. Introduction

In a series of papers, Arhangel'skii studied topological spaces having a compactification with a first-countable remainder. Specific attention was paid to topological groups that belong to this class. For details, and references, see e.g., [1–4].

Recently, the authors continued this study in [7,8] and obtained among other things the following results: a topological group with a first-countable remainder has character at most ω_1 ,

^{*} Corresponding author at: Faculty of Sciences, Department of Mathematics, VU University Amsterdam, De Boelelaan 1081^a, 1081 HV Amsterdam, The Netherlands. Tel.: +31 35 6938094.

E-mail addresses: arhangel.alex@gmail.com (A.V. Arhangel'skii), j.van.mill@vu.nl (J. van Mill).

^{0019-3577/\$ -} see front matter © 2013 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

has weight at most 2^{ω} , and is metrizable in case it is pre-compact. It was shown that moreover there exists a non-metrizable topological group with a first-countable remainder in ZFC, and a countable such space under CH (it was known by Arhangel'skii [2] that such a space cannot be countable under MA + \neg CH).

In this paper we continue these investigations. We prove a general theorem about spaces having a compactification with first-countable remainder that allows us to conclude that under CH, the free topological group over a nontrivial convergent sequence has a first-countable remainder. We also solve a problem in Juhász, van Mill and Weiss [14] in the negative. Spaces that have a strongly ω -bounded remainder play an important role in our investigations. We prove that a separable topological group with an ω -bounded remainder is Rajkov complete; this implies that any separable non-metrizable topological group with a first-countable remainder is Rajkov complete.

2. Preliminaries

Let \mathscr{P} be any topological property. It is natural to call a space \mathscr{P} -bounded if every subset with property \mathscr{P} has compact closure. In particular, if $P \equiv$ 'countable' then we obtain the wellknown class of ω -bounded spaces, and if $\mathscr{P} \equiv$ ' σ -compact' then we obtain the class that is called *strongly* ω -bounded in Nyikos [16]. For other concepts that are in the same spirit, see e.g. Juhász, van Mill and Weiss [14].

A space X has *countable type* if every compact subspace of X is contained in a compact subspace of X which has countable character in X. By a well-known result in Henriksen and Isbell [13], a space X is of countable type if and only if the remainder in any (or in some) compactification of X is Lindelöf.

If X is a space, then βX denotes its Čech–Stone compactification, and $X^* = \beta X \setminus X$. It follows by standard methods that a topological space X has an ω -bounded remainder if and only if every remainder of it is ω -bounded. Similarly for strongly ω -bounded. These well-known facts are left as exercises to the reader. A point $p \in X^*$ is said to be a *remote point* of X if $p \notin \overline{D}$, where D is any nowhere dense subset of X (here closure means closure in βX).

For all undefined notions, see Engelking [11]. For information on topological groups, see Arhangel'skii and Tkachenko [6].

3. The theorem

It is a well-known result by Franklin and Rajagopalan [12] that the space $X = \omega \cup \{p\}$, where $p \in \omega^*$ is a *P*-point, has a compactification bX such that $bX \setminus X$ is $W(\omega_1)$, the space of all countable ordinal numbers. Hence $bX \setminus X$ is first countable. We will generalize this result to Theorem 3.1 below, which is our main tool for constructing spaces with a first-countable remainder.

Theorem 3.1 (*CH*). Let X be a strongly ω -bounded space of countable type with a compactification bX such that $w(bX) \leq 2^{\omega}$. Then there are a compact space Z and a continuous surjection $f:bX \to Z$ having the following properties:

(1) The restriction of f to $Y = bX \setminus X$ is a homeomorphism from Y onto f(Y),

(2) $f(Y) \cap f(X) = \emptyset$,

(3) Z is first-countable at all points of f(X).

Proof. We may assume that $bX \subseteq [\frac{1}{2}, 1]^{\omega_1}$. For every $\alpha < \omega_1$, let $\pi_{\alpha}: \mathbb{I}^{\omega_1} \to \mathbb{I}$ be the projection onto the α -th coordinate, and let $p_{\alpha}: X \to \mathbb{I}$ be the restriction of π_{α} to X.

Let \mathscr{E} be the family of all compact subspaces F of X such that $\chi(F, X) \leq \omega$. Observe that if $F \in \mathscr{E}$ then $\chi(F, bX) \leq \omega$ since X is dense in bX. The next three statements are obvious from our assumptions.

 $(\mathbf{C}_1) \ |\mathscr{E}| \leq \omega_1.$

- $(\mathbf{C}_2) \bigcup \mathscr{E} = X.$
- (C₃) There exists an increasing ω_1 -sequence $\{F_\alpha : \alpha < \omega_1\}$ of members of \mathscr{E} such that $\bigcup_{\alpha < \omega_1} F_\alpha = X$.

For each $\alpha < \omega_1$ we fix a decreasing sequence $\{W_{\alpha,n} : n < \omega\}$ of open neighborhoods of F_{α} in bX which is a base at F_{α} in bX. Fix a continuous function $g_{\alpha,n}: bX \to \mathbb{I}$ satisfying the following conditions for $\alpha < \omega_1$ and $n < \omega$:

 $\begin{array}{l} (\mathbf{s}_1) \ g_{\alpha,n}(F_\alpha) = \{0\}. \\ (\mathbf{s}_2) \ g_{\alpha,n}(bX \setminus W_{\alpha,n}) = \{1\}. \end{array}$

For every $\alpha < \omega_1$, put

$$\mathscr{H}_{\alpha} = \{ p_{\alpha} \cdot g_{\alpha,n} : n < \omega \}$$

and let

$$\mathscr{H} = \bigcup_{\alpha < \omega_1} \mathscr{H}_{\alpha}.$$

Let $f:bX \to \mathbb{I}^{\mathscr{H}}$ denote the diagonal map of the family \mathscr{H} . That is, $f(p)_h = h(p)$ for every $p \in bX$ and $h \in \mathscr{H}$. We claim that Z = f(bX) and f are as required.

Claim 1. For every $\alpha < \omega_1$, $f(F_\alpha)$ is metrizable and $f^{-1}(f(F_\alpha)) = F_\alpha$.

Pick $g \in \mathscr{H}_{\beta}$ for some $\beta > \alpha$. Then for some $n, g = p_{\beta} \cdot g_{\beta,n}$. But then $g(F_{\alpha}) = \{0\}$ since $g_{\beta,n}$ is identically 0 on F_{α} . So we conclude that

$$f(F_{\alpha}) \subseteq \left\{ q \in \mathbb{I}^{\mathscr{H}} : q_h = 0 \text{ for all } h \in \bigcup_{\beta > \alpha} \mathscr{H}_{\beta} \right\}.$$

Hence $f(F_{\alpha})$ is metrizable since $\bigcup_{\beta < \alpha} \mathscr{H}_{\beta}$ is countable.

We will now show that $f^{-1}(f(F_{\alpha})) = F_{\alpha}$. To prove this, pick an arbitrary $p \in bX \setminus F_{\alpha}$, and let $n < \omega$ be so large that $p \notin W_{\alpha,n}$. Put $h = p_{\alpha} \cdot g_{\alpha,n}$. Then

$$f(p)_h = h(p) = p_\alpha \cdot g_{\alpha,n}(p) = p_\alpha(p) \ge \frac{1}{2},$$

and

$$f(x)_h = h(x) = p_\alpha \cdot g_{\alpha,n}(x) = 0$$

for every $x \in F_{\alpha}$. This completes the proof of the claim.

Hence for every $\alpha < \omega_1$ we have that $f(F_\alpha)$ is a metrizable closed G_δ -subset of the compact space Z. Hence Z is first-countable at all points of f(X).

It also follows from the claim that $f(Y) \cap f(X) = \emptyset$.

We now claim that $f \upharpoonright Y$ is one-to-one. Indeed, if y(0) and y(1) are distinct elements of Y, then we may pick $\alpha < \omega_1$ such that $y(0)_{\alpha} \neq y(1)_{\alpha}$. Fix n so that $y(0), y(1) \notin W_{\alpha,n}$. Then

$$p_{\alpha} \cdot g_{\alpha,n}(y(0)) = p_{\alpha}(y(0)) = y(0)_{\alpha}$$

and, similarly, $p_{\alpha} \cdot g_{\alpha,n}(y(1)) = y(1)_{\alpha}$, so we are done.

From this we get that for every $y \in Y$ we have $f^{-1}(f(y)) = \{y\}$. Hence f restricts to a homeomorphism on Y. \Box

Observe that in order to be in a position to apply Theorem 3.1, we need a nowhere locally compact space X which has a compactification bX such that $w(bX) \leq 2^{\omega}$ while moreover $bX \setminus X$ is strongly ω -bounded and of countable type. Then Theorem 3.1 tells us that $bX \setminus X$ can be replaced by a first-countable remainder.

Corollary 3.2 (*CH*). If Y is a nowhere locally compact Lindelöf space with a strongly ω bounded remainder and $w(Y) \leq 2^{\omega}$, then Y has a compactification with a first-countable remainder. Even more is true: for every compactification of Y, there exists a smaller compactification with a first-countable remainder.

Proof. Simply use the fact that $\beta Y \setminus Y$ has countable type by the Henriksen and Isbell Theorem from [13]. \Box

Corollary 3.3 (*CH*). Every strongly ω -bounded space X of countable type such that $w(X) \leq 2^{\omega}$ can be mapped onto a first-countable space R by a perfect mapping (then automatically R is strongly ω -bounded and $w(R) \leq 2^{\omega}$).

We will now discuss the assumptions in Theorem 3.1. We will first show that CH is essential.

Let Seq denote the set of all finite sequences of elements from ω . Moreover, let p be a free ultrafilter on ω . Define a topology \mathscr{T} on Seq by the rule: $V \subseteq$ Seq is open iff for every $s \in V$, the set $\{n < \omega : s \cap n \in V\} \in p$. Here $s \cap n$ denotes the concatenation of s by n. It is easy to verify that Seq with this topology is Tychonoff, zero-dimensional, perfect and extremally disconnected. For details and variations, see Arhangel'skii and Franklin [5] and Dow, Gubbi and Szymański [10].

Let $[\omega]^{<\omega}$ be the set of all finite subsets of ω . Clearly, the symmetric difference operator \triangle makes $[\omega]^{<\omega}$ a Boolean group. For a free ultrafilter p on ω , define a topology \mathscr{T}_p on $[\omega]^{<\omega}$ as follows:

$$U \in \mathscr{T}_p \iff (\forall F \in U)(\{n < \omega : F \triangle n \in U\} \in p).$$

It is not difficult to see that \mathscr{T}_p is extremally disconnected.

This topology is due to Louveau [15] who proved that if p is selective, then \mathscr{T}_p is compatible with the group structure on $[\omega]^{<\omega}$. The topological group thus obtained is denoted by L(p) and hence is an example of a non-discrete extremally disconnected topological group.

It was shown by Vaughan [23] that L(p) and Seq (for the same ultrafilter p) are homeomorphic.

Theorem 3.4. If p is a selective ultrafilter on ω of character greater than ω_1 , then Seq is a countable non-discrete topological group whose Čech–Stone remainder is strongly ω -bounded but none of its remainders is first-countable.

Proof. That Seq^{*} is strongly ω -bounded was proved in [10, Remark 1]. It is easy to see that the character of Seq is greater than ω_1 . Just observe that the space $\omega \cup \{p\}$ is a subspace of Seq. Hence Seq does not have a first-countable remainder since any topological group with a first-countable remainder has character ω_1 by Arhangel'skii and van Mill [7, Theorem 2.1].

Hence in Theorem 3.1 CH is indeed essential since for example under MA + \neg CH there exist selective ultrafilters on ω and they have character $2^{\omega} > \omega_1$ [18].

The question of whether the assumption on strong ω -boundedness is essential in Theorem 3.1 is very natural. We will answer it in the negative by using a powerful recent result of Dow [9]. For basic facts on Čech–Stone compactifications, see van Mill [22].

Theorem 3.5 (\diamond). There are a σ -compact nowhere locally compact space X and a compactification bX of X such that $bX \setminus X$ is ω -bounded (and clearly of countable type) while moreover every compactification cX of X such that $cX \leq bX$ has the property that $cX \setminus X$ is not first-countable.

Proof. Put $K = \omega \times \omega^*$, and for every *n*, let $K_n = \{n\} \times \omega^*$. Dow [9] recently proved that under \diamond , *K* has a remote point *p* which is simultaneously a *P*-point of K^* . Put $S = \beta K \setminus \{p\}$. Since countable subsets of *K* are nowhere dense, it clearly follows that *S* is ω -bounded. It is not strongly ω -bounded though since it is not compact and contains a dense σ -compact subspace. We now put $X = (\beta K)^{\omega} \setminus S^{\omega}$ and $bX = (\beta K)^{\omega}$. We claim that *X* and *bX* are as required. Clearly, $bX \setminus X = S^{\omega}$ is ω -bounded. We let \triangle denote the diagonal in the product $(\beta K)^{\omega}$ and, by abuse of notation, identify it with βK . Hence we consider *p* to also be a point of *X*. Assume that cX is a compactification of *X* such that $cX \leq bX$ and assume, striving for a contradiction, that $cX \setminus X$ is first-countable. Let $f: bX \to cX$ be a continuous surjection that restricts to the identity on *X*.

Fix *n* for a while, and let $g_n = f \upharpoonright K_n: K_n \to cX \setminus X$. Since $f(K_n)$ is first-countable, the fibers of the map g_n are all closed G_{δ} -subsets of K_n . But every closed G_{δ} -subset of ω^* has a dense interior. For every $s \in f(K_n)$, let U_s^n denote the dense interior of $g_n^{-1}(\{s\})$. Let F_n be the complement in K_n of the union of the disjoint family $\{U_s^n : s \in f(K_n)\}$. Then F_n is a closed nowhere dense subset of K_n .

Since p is a remote point of K, p is not in the closure of the nowhere dense set $F = \bigcup_{n < \omega} F_n$. Hence there is a clopen set C in K which contains p in its closure and is contained in the complement of F. The compact set $C_n = C \cap K_n$ is covered by $\{U_s^n : s \in f(K_n)\}$. Hence there is a finite subset G_n of $f(K_n)$ such that $C_n \subseteq \bigcup_{s \in G_n} U_s^n$. Since p is in the closure (in cX) of f(C), we conclude that p is in the closure of the countable subset $\bigcup_{n < \omega} G_n$ of $cX \setminus X$. Since X is nowhere locally compact, the remainder $cX \setminus X$ is dense in cX. Since it is first-countable, this implies that p has countable π -character in X. Since the restriction to X of the projection $(\beta K)^{\omega} \rightarrow \beta K$ onto the first factor space is open, this shows that p has countable π -character in βK , which is absurd. \Box

Problem 3.6. Is there in ZFC a nowhere locally compact Lindelöf space X having no firstcountable remainder while X^* is ω -bounded? What if X in addition is a topological group?

4. Applications to topological groups

For topological groups with special properties, the property of having a first-countable remainder can be characterized as follows under CH:

Theorem 4.1 (*CH*). Suppose that G is a Lindelöf non-locally compact topological group with a strongly ω -bounded remainder. Then the following conditions are equivalent:

- (i) *G* has a first-countable remainder.
- (ii) The weight of G equals ω_1 .

Proof. The implication (ii) \Rightarrow (i) is a consequence of Corollary 3.2. For (i) \Rightarrow (ii), we first use Arhangel'skii and van Mill [7] to conclude that the character of G is ω_1 . But a Lindelöf

topological group with character ω_1 clearly has weight ω_1 . (Observe that G does not have countable weight since it has a strongly ω -bounded remainder.)

The first topological group with a first-countable remainder which is countable and not metrizable, was constructed by the authors under CH in [8]. This example is not a familiar topological group. The results in this paper allow us to conclude that many familiar topological groups have the same property.

Corollary 4.2 (*CH*). If G is the free (Abelian) topological group over any infinite separable compactum, then G has a first-countable remainder (clearly, G is not metrizable).

Proof. It is known that *G* is a k_{ω} -space, see e.g. Ordman [17] and Arhangel'skii and Tkachenko [6, Theorem 7.4.1]. Moreover, by an unpublished result of van Douwen (see [14, Proposition 5.3]), the Čech–Stone remainder of any k_{ω} -space is strongly ω -bounded. (This was independently and unaware of van Douwen's result also established in Arhangel'skii [2].) Hence G^* is strongly ω -bounded and of countable type since *G* is Lindelöf being σ -compact. Since *G* has weight 2^{ω} , being separable, we are done by Theorem 4.1. \Box

We finish this section by answering the first part of Questions 6.4 and 6.5 in Juhász, van Mill and Weiss [14] in the negative.

Corollary 4.3 (CH). There is a first-countable strongly ω -bounded space which has a dense hereditarily Lindelöf subspace and is neither ccc-bounded nor compact.

Proof. Let *Y* be the remainder of the compactification *bG* that was constructed in Corollary 4.2. It is clear that *Y* is not compact, *G* being nowhere locally compact. But *Y* is strongly ω -bounded and hence a Baire space. Since *Y* has weight 2^{ω} , as *bG* is separable, it follows that *Y* has a dense Luzin (hence hereditarily Lindelöf) subspace by van Douwen, Tall and Weiss [21]. Since both *G* and *Y* are dense in *bG*, we conclude that *Y* is *ccc*.

5. Rajkov completeness

A topological group G is called *Rajkov complete* if all of its Cauchy filters (with respect to the two-sided uniformity) converge. It is known that a closed subgroup of a Rajkov complete topological group is Rajkov complete, that every Čech-complete topological group is Rajkov complete and that a metrizable group is Rajkov complete if and only if it is Čech-complete. It is also known that for every topological group G there exists a unique (up to topological isomorphism) Rajkov complete topological group ρG containing (a topologically isomorphic copy of) G as a dense subgroup. For this and more information about Rajkov completeness, see Arhangel'skii and Tkachenko [6, Sections 3.6 and 4.3].

Observe that every Rajkov complete subgroup G of a topological group H is closed in H. Let us call a topological group G (a space X) *TOG-closed*, if for every topological group H and every subgroup A of H which is homeomorphic to G (homeomorphic to X) we have that A is closed in H. This property can easily be characterized, as follows:

Proposition 5.1. A topological group G is TOG-closed if and only if every topological group H which is homeomorphic to G is Rajkov complete.

Proof. Simply observe that if G is homeomorphic to H and H is not Rajkov complete, then it is not closed in ρH . \Box

Hence there are many such groups. For example, every Čech complete topological group is TOG-closed.

It is not true that a topological group is Rajkov complete if and only if it is TOG-closed: there are many examples of homeomorphic topological groups *G* and *H* such that *G* is Rajkov complete, but *H* is not. We will prove in Proposition 5.2 below that every topological group *G* has the property that its free topological group F(G) is homeomorphic to the product of *G* and a nontrivial group *N* (similarly for A(G)). Hence the topological group $A(\mathbb{Q})$ is homeomorphic to $\mathbb{Q} \times N$, for some topological group *N*. Here \mathbb{Q} denotes the space of rational numbers. But $A(\mathbb{Q})$ is Rajkov complete (Arhangel'skii and Tkachenko [6, 7.9.7]), and the topological group $\mathbb{Q} \times N$ is not since \mathbb{Q} is not Čech complete.

Proposition 5.2. Let G be a topological group. Then its free topological group F(G) is homeomorphic to $G \times N$, where N is a nontrivial topological group (similarly for A(G)).

Proof. There is clearly a retraction $r: F(G) \to G$ which is also a homomorphism. Let N denotes its kernel. The function $f: F(G) \to G \times N$ defined by

 $f(p) = (r(p), p \cdot r(p)^{-1})$

is a homeomorphism. \Box

This suggests the following interesting problem.

Problem 5.3. Characterize the topological spaces X for which A(X) and $X \times A(X)$ are homeomorphic. Similarly for F(X).

It is not true that for all spaces X the product $X \times F(X)$ is homogeneous. For example, let $X = \beta \omega$. Indeed, the projection mapping from $X \times F(X)$ to X is open and continuous. Since the cardinality of X is greater than 2^{ω} , it follows from Theorem 4.1(a) of van Douwen's paper [20] that no power of the space $X \times F(X)$ is homogeneous. Similarly for $X \times A(X)$. Of particular interest in Problem 5.3 is the case when X is (compact) metrizable.

A topological group G will be called *Rajkov countably complete*, if every countable subset of G is contained in a Rajkov complete subgroup of G.

Theorem 5.4. Suppose that G is a topological group with an ω -bounded remainder. Then G is Rajkov countably complete.

Proof. Fix a countable subset *A* of *G* and consider the Rajkov completion ρG of *G*. Let $\langle\!\langle A \rangle\!\rangle$ be the countable subgroup of *G* algebraically generated by *A* in *G*. Fix any compactification *B* of the space ρG . Then *B* is also a compactification of *G*, since *G* is a dense subspace of ρG . So we put bG = B and $Y = bG \setminus G$. Let *H* denote the closure of $\langle\!\langle A \rangle\!\rangle$ in ρG . Suppose that there exists an element $p \in H \setminus G$. Then $p\langle\!\langle A \rangle\!\rangle$ is a countable dense subset of *H* which is entirely contained in *Y*. But this disproves the fact that *Y* is ω -bounded. As a consequence, the Rajkov complete subgroup *H* of ρG is contained in *G* and hence we are done. \Box

Since a separable topological group is Rajkov countably complete if and only if it is Rajkov complete, the following corollary is obvious.

Corollary 5.5. Suppose that G is a separable topological group with an ω -bounded remainder. Then G is TOG-closed. If moreover G is countable, then every closed subgroup (subspace) of G is TOG-closed. Thus, we have a dichotomy:

Theorem 5.6. If G is a separable topological group with a first-countable remainder, then either G is metrizable, or G is TOG-closed.

Proof. If G is not metrizable, then G has an ω -bounded remainder by Arhangel'skii [2].

Not every countable Rajkov complete topological group has a first-countable remainder, as the following result shows.

Example 5.7. The topological group $A(\mathbb{Q})$ does not have a first-countable remainder.

Proof. Note that \mathbb{Q} is closed in *G*. Assume, striving for a contradiction, that *G* has a firstcountable remainder *Y* in some compactification *bG* of *G*. Let $b\mathbb{Q}$ be the closure of \mathbb{Q} in *bG*. Put $Z = b\mathbb{Q} \setminus \mathbb{Q}$. Clearly, *Z* is a closed subspace of *Y*, since \mathbb{Q} is closed in *G*. Since \mathbb{Q} is not locally compact, \mathbb{Q} is not open in $b\mathbb{Q}$. Since \mathbb{Q} is first-countable, we conclude that the closure of some countable subset of *Z* intersects \mathbb{Q} . Hence, neither *Z*, nor *Y* is ω -bounded. However, *Y* is ω -bounded, since *G* is not metrizable and *Y* is dense in *bG* and first-countable [2]. This is a contradiction. \Box

This is also true for the free topological group $F(\mathbb{Q})$ over \mathbb{Q} since $F(\mathbb{Q})$ is Rajkov complete as well [19].

It follows from this and Corollary 4.2 that, under CH, \mathbb{Q} does not embed in the free Abelian group A(S) over a nontrivial convergent sequence S as a closed subset. However, more is true. We claim that \mathbb{Q} cannot be embedded in A(S). Indeed, the 'layers' of A(S) are countable compact spaces of finite Cantor–Bendixson height. Hence every compact subspace of A(S)has finite Cantor–Bendixson height. But \mathbb{Q} contains compact of arbitrarily large (countable) Cantor–Bendixson height.

This last observation implies that every metrizable subspace of A(S) is scattered. Indeed, if it were not scattered then it would contain a topological copy of \mathbb{Q} .

These results suggest the following problems.

Problem 5.8. Is every closed subgroup of a separable topological group with an ω -bounded remainder TOG-closed?

Problem 5.9. Is there in ZFC a countable Rajkov complete topological group with an ω -bounded remainder and no first-countable remainder?

The following problems are also quite interesting.

Problem 5.10. Is there a non-metrizable topological group with a first countable but not strongly ω -bounded remainder?

Problem 5.11. Does there exist, under CH, a countable topological group with an ω -bounded but not a strongly ω -bounded remainder?

References

- A.V. Arhangel'skii, Remainders in compactifications and generalized metrizability properties, Topology Appl. 150 (2005) 79–90.
- [2] A.V. Arhangel'skii, First-countability, tightness, and other cardinal invariants in remainders of topological groups, Topology Appl. 154 (2007) 2950–2961.

- [3] A.V. Arhangel'skii, More on remainders close to metrizable spaces, Topology Appl. 154 (2007) 1084–1088.
- [4] A.V. Arhangel'skii, Two types of remainders of topological groups, Comment. Math. Univ. Carolin. 47 (2008) 119-126
- [5] A.V. Arhangel'skii, S.P. Franklin, Ordinal invariants for topological spaces, Michigan Math. J. 15 (1968) 313–320; A.V. Arhangel'skii, S.P. Franklin, Ordinal invariants for topological spaces, Michigan Math. J. 15 (1968) 506. Addendum.
- [6] A.V. Arhangel'skii, M.G. Tkachenko, Topological Groups and Related Structures, in: Atlantis Studies in Mathematics, vol. 1, Atlantis Press, World Scientific, Paris, 2008.
- [7] A.V. Arhangel'skii, J. van Mill, On topological groups with a first-countable remainder, Topology Proc. 42 (2013) 157–163.[8] A.V. Arhangel'skii, J. van Mill, On topological groups with a first-countable remainder, II, 2012.
- [9] A. Dow, A remote P-point from \diamond . Preprint.
- [10] A. Dow, A.V. Gubbi, A. Szymański, Rigid stone spaces in ZFC, Proc. Amer. Math. Soc. 102 (1988) 745-748.
- [11] R. Engelking, General Topology, second ed., Heldermann-Verlag, Berlin, 1989.
- [12] S.P. Franklin, M. Rajagopalan, Some examples in topology, Trans. Amer. Math. Soc. 155 (1971) 305–314.
- [13] M. Henriksen, J.R. Isbell, Some properties of compactifications, Duke Math. J. 25 (1957) 83–105.
- [14] I. Juhász, J. van Mill, W. Weiss, Variations on ω-boundedness, Israel J. Math. 194 (2013) 745–766.
- [15] A. Louveau, Sur un article de S. Sirota, Bull. Sci. Math. (2) 96 (1972) 3-7.
- [16] P. Nyikos, First countable, countably compact, noncompact spaces, in: E. Pearl (Ed.), Open Problems in Topology II, North-Holland Publishing Co., Amsterdam, 2007, pp. 217-224.
- [17] E.T. Ordman, Free k-groups and free topological groups, Gen. Top. Appl. 5 (1975) 205–219.
- [18] M.E. Rudin, Lectures on Set Theoretic Topology, in: Regional Conference Series in Mathematics, vol. 23, Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society, Providence, RI, 1975
- [19] V.V. Uspenskiy, Free topological groups of metrizable spaces, Izv. Akad. Nauk SSSR Ser. Mat. 54 (6) (1990) 1295-1319.
- [20] E.K. van Douwen, Nonhomogeneity of products of preimages and π -weight, Proc. Amer. Math. Soc. 69 (1978) 183-192
- [21] E.K. van Douwen, F.D. Tall, W.A.R. Weiss, Nonmetrizable hereditarily Lindelöf spaces with point countable bases from CH, Proc. Amer. Math. Soc. 64 (1977) 139-145.
- [22] J. van Mill, An introduction to $\beta\omega$, in: K. Kunen, J.E. Vaughan (Eds.), Handbook of Set-Theoretic Topology, North-Holland Publishing Co., Amsterdam, 1984, pp. 503-567.
- [23] J.E. Vaughan, Two spaces homeomorphic tp Seq(p), Comment. Math. Univ. Carolin. 42 (2001) 209–218.