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ABSTRACT

Let P be a property (or, equivalently, a class) of topological spaces. A

space X is called P-bounded if every subspace of X with (or in) P has

compact closure. Thus, countable-bounded has been known as ω-bounded

and (σ-compact)-bounded as strongly ω-bounded.

In this paper we present a systematic study of the interrelations of

these two known “boundedness” concepts with P-boundedness where P

is one of the further countability properties weakly Lindelöf, Lindelöf,

hereditarily Lindelöf, and ccc.
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746 I. JUHÁSZ, J. VAN MILL AND W. WEISS Isr. J. Math.

1. Introduction

All spaces under discussion are Tychonoff.

Let P be any topological property. It is natural to call a space X P-

bounded if every subset of X with property P has compact closure in X .

In particular, if P ≡ “countable” then we obtain the well-known class of ω-

bounded spaces, and if P ≡ “σ-compact” then we obtain the class that is called

strongly ω-bounded in Nyikos [23].

Following this pattern, we may now consider P-bounded spaces for each

“countability property” P, by which we mean any property that all countable

spaces possess. (Warning: first and second countability are not such properties!)

By definition, P-bounded spaces of this sort are always ω-bounded, hence in

what follows we shall call (σ-compact)-bounded spaces σC-bounded rather than

strongly ω-bounded.

We now list five further countability properties (and their abbreviations) that

will also be studied in this paper:

Lindelöf-bounded — abbreviated as L-bounded;

(hereditarily Lindelöf)-bounded — abbreviated as HL-bounded;

(weakly Lindelöf)-bounded — abbreviated as wL-bounded;

ccc-bounded;

(countable spread)-bounded — abbreviated as CS-bounded.

2. Equivalence of certain boundedness notions

It is obvious that if P ⇒ Q then Q-bounded ⇒ P-bounded. The aim of

this section is to present some additional implications between boundedness

properties that are less obvious. These results then yield equivalences between

certain boundedness properties, sometimes under extra topological and/or set-

theoretical assumptions.

The first such equivalence is absolutely trivial:

separable-bounded ≡ ω-bounded.

This explains why separable-bounded was not included in the above list.

The next result is less obvious.

Theorem 2.1: Any HL-bounded space is CS-bounded. Consequently,

HL-bounded ≡ CS-bounded.
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Proof. What we have to show is that if a space X is HL-bounded then it is also

CS-bounded. For this we may assume that X has countable spread and our

task is to prove that it is compact.

If X is separable, then it is compact by our assumptions. Otherwise it is

not separable and therefore contains a dense left separated subspace of type κ,

where κ > ω. That is, a subspace S that can be written as {sα : α < κ} such

that sα �∈ {sβ : β < α} for every α < κ. We claim that every right-separated

subset of S is countable, hence S is hereditarily Lindelöf (see Juhász [14, 2.6]).

Indeed, otherwise we had an uncountable subset T ⊂ S that is both left and

right separated, implying that T contains a discrete subspace of size ω1 (see

Juhász [14, the proof of 2.7]). However, this contradicts that X has countable

spread. So we are done because X is HL-bounded, moreover S is hereditarily

Lindelöf and dense in X .

Hence, in what follows, we shall only deal with HL-boundedness and forget

about CS-boundedness.

Our next (easy) equivalence is valid only for locally compact spaces.

Theorem 2.2: IfX is locally compact and σC-bounded thenX is wL-bounded.

Consequently, in the class of locally compact spaces we have

σC-bounded ≡ L-bounded ≡ wL-bounded.

Proof. We need to prove that any weakly Lindelöf subspace S of the σC-

bounded locally compact space X has compact closure. For this, simply take a

cover U of S by open sets having compact closure in X and choose a countable

subfamily V of U such that
⋃

V is dense in S. Then

S ⊂
⋃

V ⊂
⋃

{V : V ∈ V } = T ,

and T is compact by our assumption, hence so is S as well.

Let us recall, before giving our next equivalence result, that an L-space is a

hereditarily Lindelöf space that is not hereditarily separable.

Theorem 2.3: Let X be an ω-bounded space that contains no L-subspace.

Then X is HL-bounded. Consequently, MAℵ1 implies

ω-bounded ≡ HL-bounded

in the class of first countable spaces.
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Proof. Assume that S is a hereditarily Lindelöf subspace of X . Then S is

(hereditarily) separable because it cannot be an L-space, hence S is compact,

as X is ω-bounded. The rest now follows because MAℵ1 implies that there are

no first countable L-spaces, as was shown in Szentmiklóssy [26].

We can strengthen the second part of Theorem 2.3, provided that we add

local compactness to first countability.

Theorem 2.4: MAℵ1 implies

ω-bounded ≡ ccc-bounded

in the class of first countable and locally compact spaces.

Proof. As it is well-known, MAℵ1 implies that every locally compact, first-

countable, and ccc space is separable. (More generally, any first-countable and

ccc space in which every closed subspace is Martin-ω1-complete is separable;

see Fremlin [10, 43M and 43N] and Juhász [15].) But this trivially implies our

claim.

The following result yields another equivalent of the HL-boundedness prop-

erty for first countable spaces, but this time under the continuum hypothesis

(CH) that, of course, contradicts MAℵ1 . So, the reader should be aware that

Theorems 2.3 and 2.5 cannot be applied simultaneously.

Theorem 2.5 (CH): If X is HL-bounded and χ(X) ≤ ω1 , then X is ccc-

bounded. In other words,

HL-bounded ≡ ccc-bounded

for spaces of character at most ω1.

Proof. Since the closure of a ccc subspace is again ccc, it suffices to show that if

A ⊂ X is closed and ccc then A is compact. But we also have πχ(A) ≤ χ(A) ≤
ω1, hence by Šapirovskii’s celebrated theorem (see, e.g., Juhász [16, 2.37]) and

by CH we get

w(A) ≤ 	(A) ≤ πχ(A)c(A) ≤ ωω
1 = ω1 .

Now, observe that A is a Baire space, being ω-bounded. Consequently, we may

apply van Douwen, Tall and Weiss [5, Theorem 1] to conclude that A contains a

dense Luzin, and hence hereditarily Lindelöf, subspace. But then A is compact

because X is HL-bounded.
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3. Some results from βX

The aim of this section is to present some results that will turn out to play a

crucial role in the construction of our examples separating various boundedness

properties. The first group of these results culminates in Theorem 3.4 below

which was inspired by Franklin and Rajagopalan [9] and Walter Rudin [24].

The long segment L is obtained from ω1+1 by adding arcs that join successive

countable ordinals. More precisely, we define, for each countable ordinal α and

each real number r ∈ (0, 1), an element α+r, such that α < α+r < α+s < α+1

whenever 0 < r < s < 1. The long segment L is the union of the set of all such

elements α+ r and ω1+1, and is endowed with the natural order topology that

is clearly compact.

Theorem 3.1: Let K be a compact space without isolated points and P ⊂ K

be a closed P -set of character ω1 in K. Then there is a continuous surjection

f : K → L such that f−1({ω1}) = P .

Proof. First, using that P is a closed P -set of character ω1, we may easily

construct an increasing ω1-sequence {Vα : α < ω1} of nonempty open subsets

of K such that

(1) V β ⊂ Vα for all β < α (here ‘⊂’ means proper inclusion),

(2) V α \ Vα �= ∅ for every α,

(3)
⋃

α<ω1
Vα = K \ P .

We will use this ω1-sequence to define, step-by-step, our continuous surjection

f : K → L as follows. The set V 0 is mapped to 0 by f , and V 1\V1 is mapped to

1. Let U be a nonempty open subset of V1 whose closure misses V 0 ∪ (V 1 \V1).

Then U is a compact space without isolated points, hence can be mapped

onto I by f . Now we use the Tietze Extension Theorem to extend f from

V 0 ∪ U ∪ (V 1 \ V1) to a map f : V1 → [0, 1]. Clearly, this map is a continuous

surjection. In this way we continue up to stage ω. At this stage we may further

continuously extend f to
⋃

n<ω Vn by sending
⋃

n<ω Vn \⋃n<ω Vn to the point

ω. Then the set V ω \Vω is mapped to the point ω+1, and we may again use the

above procedure to extend our partially defined map to a continuous surjection

of V ω onto [0, ω + 1]. In this manner the construction can be carried out all

the way up to ω1 to define the continuous surjection f : K \ P → L \ {ω1}. We

finish by sending P to the point ω1. The map f obtained in this way is clearly

the required continuous surjection f : K → L.
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It should be clear that if K and P are as above but K is also zero-dimensional,

then a similar (but simpler) construction yields a continuous surjection

f : K → ω1 + 1 such that f−1({ω1}) = P .

Our next result will be used to produce situations in which the previous

theorem can be applied.

Lemma 3.2: Let X be a noncompact, locally compact, and σ-compact space

and A be a family of at most ω1 nowhere dense subsets of X . Then there

is a nonempty closed P-set P of character ω1 in the Čech–Stone remainder

X∗ = βX \X satisfying P ∩ A = ∅ for each A ∈ A (where closure is taken in

βX).

Proof. Observe that for every A ∈ A we have that A ∩ X∗ is nowhere dense

in X∗. Also, X∗ has the property that every nonempty Gδ-subset has infinite

interior, in particular, X∗ has no isolated points. This can be found in Gillman

and Jerison [12] (see also [21, Theorem 1.2.5]). Enumerate A as {Aα : α < ω1}.
Now we use the technique in Walter Rudin’s proof in [24] of the existence

of P -points in ω∗ to obtain a strictly decreasing sequence {Uα : α < ω1} of

nonempty closed Gδ-subsets of X∗ such that U0 = X∗, moreover Uα+1 ⊂ Uα

and Uα ∩ Aα = ∅ for every α < ω1. Put P =
⋂

α<ω1
Uα and observe that, as

X∗ is compact, P is a nonempty P -set of character ω1 in X∗.

The following result, which is an immediate consequence of Lemma 3.2, is

well-known and is implicit for example in the proof of Theorem 2.3 in Fine and

Gillman [7]. For completeness’ sake, we will present its proof.

Corollary 3.3: Let A be a family of ω1 nowhere dense subsets of a nonpseu-

docompact space X . Then βX �= ⋃
A∈A A (where closure is taken in βX).

Proof. Since X is not pseudocompact, there is a nonempty closed Gδ-subset S

of βX that misses X , [12, Problem 6I.1]. Put Y = βX \ S. Then Y is locally

compact, noncompact, and σ-compact, moreover βY = βX , [12, Theorem 6.7].

AsX is dense in Y , A∩Y is nowhere dense in Y for every memberA ∈ A . Hence

we are done by applying Lemma 3.2 to Y and the family {A∩Y : A ∈ A }.

In the proof of the following result we will make use of Magill’s Theorem

from [20]. This theorem states that if αX is any compactification of a locally
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compact space X and f : αX \X → Y is a continuous surjection, then

{{x} : x ∈ X
} ∪ {f−1(y) : y ∈ Y }

forms an upper semicontinuous decomposition of αX . Consequently, the corre-

sponding quotient space of αX is a compactification γX of X whose remainder

is (homeomorphic to) Y , so (if we assume that X and Y are disjoint) idX ∪ f

is a continuous map from αX onto γX which restricts to f on αX \X .

Theorem 3.4: Let A be a family of ω1 nowhere dense subsets of a noncom-

pact, locally compact, and σ-compact spaceX . Then there is a compactification

γX of X having the following properties:

(1) γX \X is the long segment L,

(2) ω1 �∈ ⋃
A∈A A (here closure is taken in γX).

Proof. By Lemma 3.2 there is a closed P -set P in X∗ = βX \X of character

ω1 such that

P ∩
⋃

{AβX
: A ∈ A } = ∅.

Let f : X∗ → L be the continuous surjection we get from applying Theorem 3.1

to K = X∗ and this P -set P . Then, by Magill’s Theorem which we just quoted,

there is a compactification γX of X whose remainder is L, moreover g = idX∪f
is a continuous map from βX onto γX . But then (1) holds trivially, moreover

(2) holds because g−1({ω1}) = P and g−1(A ) = A
βX

for any A ⊂ X .

In view of our remark made after the proof of Theorem 3.1, if X (and hence

βX) is zero-dimensional, then we can replace L with ω1 + 1 in Theorem 3.4.

We call a space X a kω-space if it can be written as X =
⋃

n<ω Xn, where

each Xn is compact, Xn ⊂ Xn+1 for n < ω, and a set A ⊂ X is closed if

and only if A ∩ Xn is closed for every n. That is, a kω-space has the weak

topology determined by a(n increasing) sequence of compact subspaces that

cover it. Alternatively, it is easy to see that kω-spaces are exactly the quotients

of countable topological sums of compact spaces.

The following proposition is due to van Douwen and was explained by him to

the second author of the present paper around 1980. As far as we know, it was

neither published by van Douwen nor discovered independently by somebody

else. So we present its proof here. See Dow, Gubbi and Szymański [6] for related

results.
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Proposition 3.5 (van Douwen): If X is any kω-space then its Čech–Stone

remainder X∗ is σC-bounded.

Proof. Write X as
⋃

n<ω Xn, where the sequence of Xn’s witnesses that X is a

kω-space. Let {Sn : n < ω} be a sequence of compact subsets of X∗. For every
n there exists an open neighborhood Un of Xn in βX such that Un ∩ Sn = ∅
(all closures are taken in βX).

Now take an arbitrary point p ∈ X and assume, without loss of generality,

that p ∈ X0. Let V0 be an open neighborhood of p in βX such that V 0 ⊂ U0.

Since V 0∩X0 ⊂ X0 ⊂ X1 ⊂ U1, there is in βX an open neighborhood V1 of the

compact set V 0∩X0 such that V 1 ⊂ U0∩U1. Continuing in this way inductively,

we may define a sequence V0, V1, . . . such that Vn is an open neighborhood of

V n−1 ∩Xn−1 in βX satisfying V n ⊂ U0 ∩ U1 ∩ · · · ∩ Un. Now put

W = (V0 ∩X0) ∪
(
V1 ∩ (X1 \X0)

) ∪ · · · ∪ (
Vn ∩ (Xn \Xn−1)

) ∪ · · · .

We may show by an easy induction that for each n < ω we have

Xn \W = (X0 \ V0) ∪ (X1 \ V1) ∪ · · · ∪ (Xn \ Vn),

which is compact and hence closed in Xn. Consequently, W ∩Xn is open in Xn

for every n, hence W is an open neighborhood of p in X . Let Ŵ be an open

subset of βX such that Ŵ ∩X = W . Observe that Ŵ is included in the closure

of W , hence it suffices to prove that W misses
⋃

n<ω Sn. But for every n < ω

we have by construction that

W \Xn ⊂ Un ⊂ Un ⊂ βX \ Sn,

hence W ∩ Sn = ∅ as Xn is compact, and this completes the proof.

There are countable kω-spaces that have no isolated points and hence

are nowhere locally compact, for example the well-known space Sω from

Arhangel′skĭı and Franklin [1]. A simple description of Sω is as follows: The

points are the finite sequences of natural numbers (i.e. the underlying set is

ω<ω) and a set G is open in Sω iff s ∈ G implies s�n ∈ G for all but finitely

many n ∈ ω. To see that Sω is a kω-space, take any ω-type enumeration

{si : i < ω} of ω<ω and put Xn =
⋃

i≤n{si} ∪ {s�i n : n < ω}.
The Čech–Stone remainder S∗

ω = βSω \Sω is σC-bounded by Proposition 3.5.

S∗
ω is also ccc, in fact its topology is even σ-centered as Sω is countable and
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nowhere locally compact, hence S∗
ω is dense in βSω. Consequently, S∗

ω is not

ccc-bounded, and our next result will imply that it is not L-bounded, either.

Theorem 3.6: Assume that the space X admits a continuous surjection

f : X → Y onto a separable metrizable space Y such that f−1(K) is nowhere

dense in X for every compact subset K of Y . Then the Čech–Stone remainder

X∗ of X has a dense Lindelöf subspace.

Proof. Let γY be any metrizable compactification of Y , and consider the Stone

extension βf : βX → γY . Clearly, βf is also surjective. Let us put S =

(βf)−1(Y ) and T = βX \ S. Note that T ⊂ X∗.

Claim 1: T is dense in βX and hence in X∗.

Assume otherwise. Then there is a nonempty open subset U of βX whose

compact closure U is contained in S, hence K = βf(U) is a compact subset

of Y . However, this would imply ∅ �= U ∩ X ⊂ f−1(K), contradicting our

assumption.

Claim 2: T is Lindelöf.

This is clear since T = (βf)−1(γY \ Y ) and the perfect preimage of a Lindelöf

space is Lindelöf.

Corollary 3.7: Assume that f : X → Y is a continuous surjection where Y

is separable metric, every compact subspace of Y is scattered, and the fibers

f−1(y) are nowhere dense in X for all y ∈ Y . Then X∗ has a dense Lindelöf

subspace. In particular, this holds if X is a countable space with no isolated

points.

Proof. To see that the conditions of Theorem 3.6 are satisfied, let K ⊂ Y be

compact and assume that f−1(K) contains a nonempty open subset of X , say

U . Then the closure of f(U) in Y is compact, hence it has an isolated point,

say y. Let V be open in Y such that V ∩ f(U) = {y}. Then f−1(V ) ∩ U is a

nonempty open subset of f−1(y), which contradicts our assumption on f .

If X is a countable space with no isolated points, then there is a continuous

bijection f : X → Q. Indeed, let B be a countable point separating a collection

of clopen subsets of X ; then B generates a second countable topology on X

which is evidently weaker than the original topology. With this new topology,

X is homeomorphic to the space Q of rational numbers.
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In particular, we may conclude from this that S∗
ω has a dense Lindelöf sub-

space.

Our next result, also based on Theorem 3.6, says that the Čech–Stone re-

mainders of certain kω-spaces have dense Lindelöf subspaces. However, it is not

clear if it can be applied to S∗
ω.

Theorem 3.8: Let X =
⋃

n<ω Xn, and assume that

(1) each Xn is a compact nowhere dense Gδ-subset of Xn+1,

(2) X has the weak topology determined by the sequence {Xn : n < ω}.
Then X∗ has a dense Lindelöf subspace.

Proof. For every n < ω, let λn : Xn+1 → I be a continuous map such that

λ−1
n (0) = Xn. We define by recursion for every n < ω a compact metrizable

space Yn and a continuous surjection αn : Xn → Yn, as follows. For n = 0

we put Y0 = {0} and α0 : X0 → Y0 the constant function with value 0. At

stage n+1, we think of Yn as a subspace of the Hilbert cube Q. The map

αn : Xn → Yn ↪→ Q can be extended to a continuous function ᾱn : Xn+1 → Q.

Define αn+1 : Xn+1 → Q× I by

αn+1(x) = 〈ᾱn(x), λn(x)〉.

Put Yn+1 = αn+1(Xn+1). Observe that if x ∈ Xn, then

αn+1(x) = 〈ᾱn(x), λn+1(x)〉 = 〈αn(x), 0〉 ∈ Xn × {0}.

Moreover, if x ∈ Xn+1 \Xn, then λn+1(x) > 0, and hence

αn+1(x) = 〈ᾱn(x), λn+1(x)〉 �∈ Xn × {0}.

Hence we may think of Yn as being a subspace of Yn+1, so that αn+1 has the

following properties:

(1) αn+1�Xn = αn,

(2) αn+1(Xn+1 \Xn) = Yn+1 \ Yn.

Put Y =
⋃

n<ω Yn, and α =
⋃

n<ω αn : X → Y . We endow Y with the weak

topology determined by the sequence {Yn : n < ω}. Then α is continuous and

for every n < ω we have

(3) α−1(Yn) = Xn.
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For every n < ω, fix an embedding in : Yn → Q. Since Y is σ-compact, and

hence normal, this embedding can be extended to a continuous map ı̄n : Y → Q.

Let ξ : Y → Qω be the diagonal mapping obtained from the sequence {ı̄n :n<ω}.
Then ξ : Y → ξ(Y ) = Z is a continuous bijection with a separable metric range.

We aim to apply Theorem 3.6 to the map η = ξ ◦ α : X → Z. To this end,

take an arbitrary compact subset K in Z and, striving for a contradiction,

assume that η−1(K) contains a nonempty open subset of X , say U . Let L

be the closure of η(U). Then L is compact and η(U) is dense in L. Since

L =
⋃

n<ω η(Xn)∩L, by the Baire Category Theorem there exists N < ω such

that η(XN )∩L has nonempty interior in L. Let V be a nonempty open subset

of L such that V ⊂ η(XN ) ∩ L. Then V ∩ η(U) is a nonempty open subset

of η(U), hence W = (η�U)−1(V ∩ η(U)) is a nonempty open subset of U and

hence of X . However, by (3) we have

W ⊂ η−1(V ) ⊂ η−1(η(XN )) = XN ,

contradicting that XN has empty interior already in XN+1.

Hence the desired result indeed follows from Theorem 3.6.

Remark 3.9: The assumption in Theorem 3.8 that every Xn is a Gδ-subset of

Xn+1 is essential for getting a dense Lindelöf subspace of X∗. In fact, if each

Xn happens to be a nowhere dense P -set in Xn+1, then the argument used in

the proof of Theorem 3.5 shows that every Xn is a P -set in X and hence in βX .

But then X∗ is even wL-bounded. Indeed, if A ⊂ X∗ is weakly Lindelöf, then

for each n < ω there is a σ-compact subset Fn of βX\Xn such that A = A ∩ Fn.

But we have Fn ∩Xn = ∅ , for Xn is a P -set in βX , hence A ∩Xn = ∅ .

4. Examples for separating various boundedness properties

Nyikos [23, Problem 2] asked whether there is a first countable, ω-bounded

space that is not σC-bounded. He also observed that without first countability

the problem has an affirmative answer: If p is a weak P -point in ω∗ = βω \ ω
that is not a P -point, then ω∗ \ {p} is locally compact, ω-bounded but not

σC-bounded. That such points exist in ω∗ is highly nontrivial and was shown

by Kunen [18].

Spaces of the form ω∗\{p} are never Fréchet. We point out that there are easy

examples of Fréchet spaces that are ω-bounded but not σC-bounded. In fact,

it is well-known that the subspace Σ = {x ∈ 2ω1 : |{α < ω1 : xα = 1}| ≤ ω}
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of the Cantor cube 2ω1 is both ω-bounded and Fréchet. Since Σ contains the

dense σ-compact subset σ = {x ∈ 2ω1 : |{α < ω1 : xα = 1}| < ω}, it is not

σC-bounded. As Σ is ccc, it is also not ccc-bounded. However, unlike Nyikos’

example, it is not locally compact.

Nyikos’ Problem 2 from [23] was solved by Aurichi [2]. His example is also

locally compact. Our first example is an easier construction of such a space,

which is even ccc-bounded. Aurichi’s space is ccc-bounded if one applies a

special Aronszajn tree in his construction, but will not be ccc-bounded for a

Suslin tree.

Our example will be just a particular instance of a general construction of

ω-bounded but not σC-bounded spaces that is based on Theorem 3.4. First,

however, we introduce some new terminology.

A space X will be called ω1-short if it can be written in the form

X =
⋃

α<ω1

Aα,

where {Aα : α < ω1} is an increasing sequence of nowhere dense closed subsets

of X . Now, if X is both ω1-short and noncompact, locally compact, and σ-

compact, then we may apply Theorem 3.4 to obtain a compactification γX of

X with remainder L (or ω1 + 1 if X is zero-dimensional) such that the point

ω1 /∈ Aα for all α < ω1. Since every countable subset of X is included in some

Aα, moreover ω1 is a P -point in L, it immediately follows that the open subspace

M(X) = γX\{ω1} of γX is ω-bounded. Moreover, M(X) is not σC-bounded

because X is σ-compact and dense in it. The following result summarizes this

and says some more.

Theorem 4.1: Let X be an ω1-short, noncompact, locally compact, and σ-

compact space. Then M(X) is normal, locally compact, ω-bounded but not

σC-bounded. Moreover, if X is first countable then so is M(X).

Proof. First, to see that M(X) is normal, note that our assumptions on X

imply that we may write X as X =
⋃

n<ω Un where Un is open with compact

closure in X and Un ⊂ Un+1 for each n < ω. Now, let H and K be two disjoint

closed sets in M(X). Then we may assume that K ∩ L is bounded in L and

hence compact. So, there exist disjoint open sets V0 and W0 in M(X) such that

H ⊂ V0 and K ∩ L ⊂ W0.
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We claim that K1 = K \ W0 ⊂ Un for some n < ω. Indeed, otherwise we

could choose a countably infinite subset A ⊂ K1 such that A ∩ Un is finite for

each n < ω, and then every limit point x of A in M(X) has to belong to L

and hence to K ∩ L. Note that there is such a limit point because M(X) is

ω-bounded. This, however, is impossible because A ⊂ K1 implies x ∈ K1, as

K1 is closed.

But then K1 is compact because each Un is, consequently there exist disjoint

open sets V1 and W1 in M(X) such that H ⊂ V1 and K1 ⊂ W1. Now, it is

obvious that V0 ∩ V1 and W0 ∪W1 are disjoint open sets containing H and K,

respectively.

The second part follows because, as X is σ-compact, L is a Gδ in γX , and

hence so is every point of L \ {ω1}. Consequently, every point of L \ {ω1} =

M(X) \X has countable character already in γX .

If X is also zero-dimensional and L is replaced with ω1 + 1 in the above, we

shall write M0(X) instead of M(X). Clearly, everything we proved for M(X)

is also valid for M0(X).

The following simple result gives a useful sufficient condition for a space to

be ω1-short.

Theorem 4.2: Every countably tight and nowhere separable spaceX of density

ω1 is ω1-short.

Proof. Let {xα : α < ω1} be dense in X . It is obvious that the sequence

{Aα : α < ω1}, where Aα is the closure of the set {xβ : β < α} in X , witnesses

that X is ω1-short.

We can now present our above promised example.

Theorem 4.3: There is a zero-dimensional, normal, first countable, and locally

compact space that is ccc-bounded but not σC-bounded.

Proof. Let A(C) be the Alexandroff duplicate of the Cantor set C. Remove all

but ω1 isolated points from A(C). The subspace Y of A(C) that we get in this

way is a first countable zero-dimensional compact space which is not ccc and

has density ω1. Hence Z = Y ω is a zero-dimensional first countable compact

space which is nowhere ccc and has density ω1. Finally, let us put X = ω × Z.

Then X is a zero-dimensional, noncompact, locally compact, and σ-compact

space which is also ω1-short by Theorem 4.2.
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Now, it is easy to check that Y , and hence Z, and hence X , have the property

that every ccc subspace in them is actually separable. Clearly, every ordinal

space has this property as well. Consequently, M0(X) which we know is ω-

bounded, is also ccc-bounded, and so has all the properties required in our

theorem.

Next we shall consider results that will help us produce examples that are

not ccc-bounded.

Theorem 4.4: Fix a cardinal number κ. Then there is a locally compact,

noncompact, ccc space in which all Lindelöf subspaces of size at most κ have

compact closure.

Proof. It is known (see Fremlin [11, 523La]) that there is a cardinal λ such that

all subsets of the Cantor cube 2λ of size at most 22
κ

have μ-measure 0, where μ

is the standard product measure on 2λ. We let U be the collection of all clopen

subsets U of the space X = ω × 2λ for which

∑

n<ω

μ
(
U ∩ ({n} × 2λ)

)
< ∞.

(Here we actually use the natural transfer of the measure μ to ω × 2λ, that we

also denote by μ.)

The family V of all complements of the elements of U clearly has the finite

intersection property, hence P =
⋂{V : V ∈ V } is nonempty, where closures

are taken in βX . It is clear that
⋂

V = ∅ , hence P ⊂ X∗, and we claim that

P is a P -set in X∗.
To see this, consider any compact set S ⊂ X∗ \P and a positive real number

ε. There clearly exists U ∈ U for which S ⊂ U . Since

∑

i<ω

μ
(
U ∩ ({i} × 2λ)

)
< ∞,

there exists N < ω such that

∑

i≥N

μ
(
U ∩ ({i} × 2λ)

)
< ε .

Now, let H =
⋃

n<ω Sn ⊂ X∗, with each Sn compact, be any σ-compact

set in X∗. According to the above, for each n < ω we may then choose a set
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Un ∈ U with Sn ⊂ Un and a natural number Nn ≥ n such that

∑

i≥Nn

μ
(
Un ∩ ({i} × 2λ)

)
< 2−n .

Now, if we set Wn = Un \ ⋃
i<Nn

({i} × 2λ), then Sn ⊂ Wn, moreover W =
⋃

n<ω Wn is clopen in X and μ(W ) < 1. Hence we conclude that W is a clopen

set in βX that contains H and misses P .

Now put Y = βX \ P . Then Y is locally compact and not ccc-bounded

since it contains the dense ccc subset X . To prove the rest, let L ⊂ Y be a

Lindelöf subspace of size at most κ and M be the closure of L∩X in X . Then

|M | ≤ 22
κ

, so μ(M) = 0. Therefore, M is contained in a clopen subset of X

of finite measure, since μ is a Radon measure. We then conclude that P misses

L ∩X. But P also misses the closure of L ∩ X∗ in βX , since L ∩ X∗ ⊂ Y is

Lindelöf and P is a P -set in X∗.

Remark 4.5: The idea to use measures to get filters avoiding null sets is quite

old and goes back to Eberlein; see Fine and Gillman [8].

Corollary 4.6: There is a locally compact space that is HL-bounded but not

ccc-bounded.

Proof. By de Groot’s Theorem, every hereditarily Lindelöf space has size at

most c; see Juhász [14, 2.5]. Hence we are done by applying the previous

theorem for κ = c.

After separating HL-bounded from ccc-bounded, the next result separates it

from ω-bounded.

Theorem 4.7:

(1) There is an ω-bounded space which is not HL-bounded.

(2) There is a noncompact ω-bounded space with a dense first countable

and ccc subspace.

Proof. For (1), we make use of the celebrated result of Moore [22] that there

is an L-space X . We may assume that X is left-separated in type ω1 and

nowhere separable. By removing if necessary the left-most point of X and

hence a nowhere dense Gδ-subset of X , we may additionally assume that X is

not pseudocompact.
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Thus we may apply Corollary 3.3 to X and the family A of all countable

initial segments of the ω1-type left-separating well-order of X to conclude that

Z =
⋃

{A : A ∈ [X ]≤ω} �= βX

(closures are taken in βX). Since the noncompact space Z is clearly ω-bounded

and the hereditarily Lindelöf subspace X is dense in it, we are done.

For (2), we consider the Pixley–Roy hyperspace F [X ] of an ω1-dense subspace

of R of size ω1. It is well-known that F [X ] is first countable, ccc, nowhere

separable, and has density ω1. By Theorem 4.2, F [X ] is ω1-short, witnessed

by the closures of some countable sets {Aα : α < ω1}. Also, F [X ] is not

pseudocompact. Indeed, let {Un : n < ω} be any disjoint collection of nonempty

open subsets of X . For each n, let Fn be a subset of Un of size n. Then

{ [Fn, Un] : n < ω} is an infinite discrete collection of clopen subsets of F [X ].

Corollary 3.3 may thus be applied to conclude that the space

Z =
⋃

{Aα : α < ω1} �= βF [X ]

is as required. Note, however, that Z — unlike its dense subspace F [X ] — is

not first countable.

The following theorem summarizes what we know of the boundedness prop-

erties of the space S∗
ω that was considered in the previous section.

Theorem 4.8: The space S∗
ω has the following properties:

(1) S∗
ω is σC-bounded but not compact,

(2) the topology of S∗
ω is σ-centered, hence S∗

ω is not ccc-bounded,

(3) S∗
ω has a dense Lindelöf subspace, hence it is not L-bounded,

(4) if CH holds then S∗
ω has a dense hereditarily Lindelöf subspace,

hence it is not even HL-bounded.

Proof. In view of our remarks made after Proposition 3.5 and of Corollary

3.8, we only have to show (4). To this end, observe first that S∗
ω is a Baire

space. Indeed, this follows both because S∗
ω is Čech-complete and because it is

countably compact. We also have w(S∗
ω) ≤ w(βSω) = c. Thus, if CH holds

then we may apply van Douwen, Tall and Weiss [5, Theorem 1] to conclude

that S∗
ω contains a dense Luzin subspace. But all Luzin spaces are hereditarily

Lindelöf, so we are done.

By Kunen [17], there are no uncountable Luzin spaces under MAℵ1 , hence the
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method we used to prove Theorem 4.8(4) cannot work to get a ZFC example

of a σC-bounded but not HL-bounded space. However, our next result implies

that under CH we have an even locally compact and first countable space which

is ω-bounded but not HL-bounded.

Theorem 4.9: If there is a compact L-space, then there exists a normal, locally

compact, and first countable space which is ω-bounded but not HL-bounded.

Proof. LetK be any compact L-space; we may assume without loss of generality

that K is nowhere separable. Moreover, K is automatically first countable and

has density ω1, see [16, 3.13]. Thus, by Theorem 4.2, K is ω1-short, and hence

so is the hereditarily Lindelöf space X = ω ×K. But then Theorem 4.1 can be

applied to conclude that M(X) is as required.

Of course, a Suslin segment is a compact L-space, moreover Kunen con-

structed a compact L-space from CH in [19]. Consequently, both of these set-

theoretic assumptions imply the conclusion of Theorem 4.9.

In addition to the non-compact space M(X) constructed in Theorem 4.9,

the “restored” compactum γX = M(X) ∪ {ω1} is also noteworthy. Indeed,

it is easy to check that γX is pseudoradial, moreover the point ω1 ∈ X is

not in the closure of any discrete subset of X because those are all countable.

Consequently we have the following result.

Corollary 4.10: If there is a compact L-space, then there exists a pseudora-

dial compactum that is not discretely determined.

In particular, both the existence of a Suslin line and CH imply the existence

of such a compactum. The Suslin line case was proved in [2, 7.5] and the CH

case in [4, Theorem 7]. The question if such a compactum exists in ZFC remains

open.

Compact L-spaces are ccc, first countable, and non-separable, hence the fol-

lowing result is a partial strengthening of Theorem 4.9.

Theorem 4.11: If there is a ccc, first countable, and nonseparable compactum,

then there is a normal, locally compact, first countable space which is ω-bounded

but not ccc-bounded.

Proof. Let X be any first countable compact ccc nonseparable space. We first

apply Juhász [14, 2.25 and 2.26] to conclude that there is a closed ccc subset
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Y of X which has density ω1. We may assume without any loss of generality

that Y is also nowhere separable and hence ω1-short. So Theorem 4.1 can be

applied to conclude that M(ω × Y ) is as required.

Of course, if the compactum X above is zero-dimensional, then we could end

up with the zero-dimensional space M0(ω×Y ) instead of M(ω×Y ). This leads

us to the following natural question that we could not answer.

Question 4.12: If there is a ccc, first countable, and nonseparable compactum,

is there one which is also zero-dimensional?

The following corollary uses a set-theoretic assumption under which Theorem

4.11 applies but we do not know if a compact L-space exists, hence Theorem

4.9 may not apply. This makes use of Martin’s Axiom for countable posets,

abbreviated as MAC. It is well-known that MAC is equivalent with the equality

m = c, where m denotes the additivity of the meager ideal.

Corollary 4.13: AssumeMAC and cf(c) = ω1. Then there is a normal, locally

compact, first countable space which is ω-bounded but not ccc-bounded.

Proof. Bell [3] used MAC to construct a compact ccc nonseparable space every

point of which has character less than cf(c). So if the cofinality of the continuum

is ω1 then his space is also first countable, hence Theorem 4.11 may be applied

to it.

Comparing Theorems 2.4 and 4.11 we see that the question whether a locally

compact, first countable, and ω-bounded spaces is ccc-bounded, is undecidable

in ZFC. We could not answer, however, the following related question.

Question 4.14: Does MAℵ1 imply that every first countable and ω-bounded

space is ccc-bounded? Or equivalently, does MAℵ1 imply that every first count-

able, ccc, and ω-bounded space is separable?

Remark 4.15: It is worth noting however, that we can not weaken ω-bounded to

countably compact in this question. Indeed, Soukup [25, Theorem 2.1] proved

that if b = s = c, then every first countable space of cardinality less than c

can be densely embedded in a first countable and countably compact space.

Let Z be any first countable, ccc, and nonseparable space of cardinality ω1, for

instance we may have Z = F [X ], the Pixley–Roy hyperspace that we considered

in the proof of Theorem 4.7 (2). Note that MA+¬CH implies both MAℵ1 and
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b = s = c, so by Soukup’s Theorem it also implies that Z can be densely

embedded in a first countable and countably compact space Y . Then Y is ccc

since Z is, and it is not separable because it is first countable and Z is not

separable.

5. A graphic survey of what we know

In this section we present four diagrams that aim to give an overview of what

we know about the interrelations of our various boundedness concepts in the

classes of all (Tychonoff) spaces, all locally compact spaces, all first countable

spaces, and all locally compact and first countable spaces, respectively.

On our diagrams, as usual, double arrows represent (mostly trivial) implica-

tions. The blunt tipped, dotted lines indicate negations of implications. The

label attached to such a line tells the reader where the example establishing the

appropriate non-implication can be found in the text. A label marked by a star

indicates a result that needs additional set theoretical assumptions. Finally,

question marks as labels indicate open problems for further research.

ccc-bnd ��

(4.3)

��
��

���
��

��
��

�� HL-bnd

���
���

���
���

��

���
���

���
���

(4.6)
� ���	


wL-bnd

��������������

������������

���
���

���
���

��

���
���

���
���

ω-bnd

(4.9)
∗


�
�

�
���

L-bnd ��

��

?

��

?

��

σC-bnd

(4.8(3))

� 
	����

��������������

������������

(4.8(4))
∗

��
�
�
�
�
�
�
�

Diagram 1: All spaces

By Theorem 2.2, the diagram for the class of locally compact spaces is much

simpler than Diagram 1.

σC-bnd �� ccc-bnd ��

(4.3)
� �����

HL-bnd ��

(4.6)
� �����

ω-bnd

(4.9)
∗

� �����

Diagram 2: All locally compact spaces
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σC-bnd �� ccc-bnd ��

(4.3)
� �����

HL-bnd �� ��

?
		

ω-bnd

(2.4)
∗





(4.9)
∗

� �����

Diagram 3: All locally compact and first countable spaces

By Theorem 2.4, diagram 3 has only two nodes under MAℵ1 but, by Theo-

rem 4.9, at least three nodes if there is a compact L-space.

ccc-bnd ��

(4.3)

��
��

��
��

��
��

��
� HL-bnd

���
���

���
���

��

���
���

���
���

(2.5)
∗

��

wL-bnd

��������������

������������

���
���

���
���

��

���
���

���
���

ω-bnd

(2.3)
∗



L-bnd ��

��

?

��

?

��

σC-bnd

?

��

��������������

������������

?

��

Diagram 4: All first countable spaces

Here we have more questions than answers.

6. Questions: what we do not know

Finally, we list in this section the problems that we tried to settle but could

not. Most of these can be read off our diagrams.

In the light of the fact that our examples are normal and evidently not N -

bounded, where N means being normal, one is tempted to ask whether there

is a first countable N -bounded space which is not compact. But this question

makes no sense and first countability is totally irrelevant since every noncompact

space contains a discrete subspace whose closure is not compact (Tkachuk [27]).

Question 6.1: If a space is both L-bounded and ccc-bounded, is it also wL-

bounded?
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Question 6.2 (Diagram 1): Is every L-bounded space ccc-bounded? Is every

L-bounded space wL-bounded?

Question 6.3 (Diagram 3): Is every locally compact, first countable, and HL-

bounded space ccc-bounded?

Question 6.4 (Diagram 4): Are ω-bounded first countable spaces HL-bou-

nded? Are σC-bounded first countable spaces L-bounded? Are L-bounded

first countable spaces ccc-bounded? Are L-bounded first countable spaces wL-

bounded?

Question 6.5: Is every first countable, ccc, σC-bounded space with a dense

(hereditarily) Lindelöf subspace compact?

Question 6.6: If there is a compact, first countable, and ccc but nonseparable

space, is there one which is also zero-dimensional?

Question 6.7: Are first countable ω-bounded spaces ccc-bounded under

MAℵ1?
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[1] A. V. Arhangel′skĭı and S. P. Franklin, Ordinal invariants for topological spaces, The

Michigan Mathematical Journal 15 (1968), 313–320; addendum, ibid. 15 (1968), 506.

[2] L. F. Aurichi, Examples from trees, related to discrete subsets, pseudo-radiality and

ω-boundedness, Topology and its Applications 156 (2009), 775–782.

[3] M. G. Bell, Compact ccc nonseparable spaces of small weight, Topology Proceedings 5

(1980), 11–25.

[4] A. Bella and P. Simon, Spaces which are generated by discrete sets, Topology and its

Applications 31 (1990), 775–779.

[5] E. K. van Douwen, F. D. Tall, and W. A. R. Weiss, Nonmetrizable hereditarily Lindelöf
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