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Summary. We prove that trtKω > ω + 1, where trt stands for the transfinite extension
of Steinke’s separation dimension. This answers a question of Chatyrko and Hattori.

1. Introduction. All spaces under discussion are separable and metriz-
able. In [5], Steinke introduced a (topologically invariant) dimension func-
tion t called the separation dimension. If X is a topological space, then
tX = −1 iff X = ∅; tX = 0 if |X| = 1; whenever |X| > 1, n ≥ 0, and
for each subset M of X with |M | > 1 there exist different points x, y ∈ M
and a partition LM in the subspace M of X between x and y such that
tLM ≤ n−1, then we say that tX ≤ n.

The separation dimension of a space is determined by the separation
dimension of its components in the sense that if C is the collection of com-
ponents of a nonempty space X, then tX = sup{tC : C ∈ C}. Moreover,
a nonempty space X is hereditarily disconnected if and only if tX = 0.
Finally, tX ≤ dimX for every space X, and dimX ≤ tX if X is locally
compact. Hence for every locally compact space X we have tX = dimX.
These facts are all due to Steinke [5].

In [1], Arenas, Chatyrko and Puertas considered the natural transfinite
extension trt of t, and showed that every compact space with trtX 6= ∞
must be a C-space. They also showed that for the well-known space Kω, the
subspace of the Hilbert cube Q =

∏∞
n=1[0, 1]n consisting of all points all but

finitely many coordinates of which are 0, we have trtKω > ω, and asked
whether trtKω =∞. In Chatyrko and Hattori [3, Problem 4.2] it was asked
whether there is a countable-dimensional space X with trtX > ω + 1. The
aim of the present note is to show that Kω has this property.
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2. Preliminaries. Let A and B be disjoint closed subsets of a space X.
We say that a closed subset E of X is a partition between A and B if we
can write X \ E as U ∪ V , where U and V are disjoint open subsets of X
such that A ⊆ U and B ⊆ V . The partition E is said to be irreducible if no
proper closed subset of E is a partition between A and B.

It is well-known that in a locally path-connected space every partition E
between the disjoint closed sets A and B contains an irreducible partition.
A proof of this can be found in Lemma 3.10.2 and Exercise 3.10.2 in [4] (it
was proved there for locally connected Polish spaces, but an inspection of the
proof shows that it is true with an identical proof for locally path-connected
spaces).

The space Kω is a well-known object in infinite-dimensional topology.
In Bessaga and Pełczyński [2, Chapter V, §5] it was shown that Kω is a
so-called skeletoid for the finite-dimensional Z-sets in Q. This implies the
following nontrivial fact:

(K) If X is a compact finite-dimensional space, and A ⊆ X is closed,
then any continuous map f : X → Kω that restricts to an embed-
ding on A can be approximated arbitrarily closely by an embedding
g : X → Kω such that f�A = g�A.

For proofs of these facts we refer to Bessaga and Pełczyński [2]. Observe that
Kω is an absolute retract, being a convex subset of Q.

3. The construction. Striving for a contradiction, assume that trtKω

= ω + 1. There consequently exist distinct points x1 and y1 in Kω and a
partition L1 between x1 and y1 in Kω such that trtL1 ≤ ω. By the remarks
in §2 we may assume that L1 is an irreducible partition between x1 and y1.
Write Kω \ L1 as U1 ∪ V1, where both U1 and V1 are open in Kω, x1 ∈ U1

and y1 ∈ V1. It is clear that L1 is not a singleton. Hence there exist distinct
points x2 and y2 in L1 and a partition L2 between x2 and y2 in L1 such
that n = trtL2 < ω. Write L2 as

⋃
i<ωXi, where each Xi is compact. Then

trtXi = tXi ≤ n for all i, hence dimXi ≤ n by the result of Steinke that
we quoted in the introduction. Hence we conclude that dimL2 ≤ n by the
Countable Closed Sum Theorem [4, 3.2.8].

Write L1 \L2 as U2 ∪ V2, where both U2 and V2 are open in L1, x2 ∈ U2

and y2 ∈ V2. By irreducibility of L1 we deduce that V2∪L2 is not a partition
inKω between x1 and y1. Hence some component C ofKω\(V2∪L2) contains
both x1 and y1. Since C is connected and locally path-connected, C is path-
connected. Hence, we may pick a continuous function α1 : I→ Kω \(V2∪L2)
such that α1(0) = x1 and α1(1) = y1. Observe that α1(I) ∩ L1 ⊆ U2. There
similarly exists a continuous function α2 : I → Kω \ (U2 ∪ L2) such that
α2(0) = x1 and α2(1) = y1 and α2(I) ∩ L1 ⊆ V2.
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Consider the square I2 and its opposite faces
A1 = {0} × I, B1 = {1} × I, A2 = I× {0}, B2 = I× {1}.

Let ∂I2 be the geometric boundary of I2. By using the functions α1 and α2,
it is immediate that there exists a continuous function β : ∂I2 → Kω such
that

β(A1) = {x1}, β(B2) = α1(I), β(B1) = {y1}, β(A2) = α2(I).
Since Kω is an absolute retract, we may extend β to a continuous function
β̄ : I2 → Kω. Consider the projection π : In+1×I2 → I2, and the composition

β̄ ◦ π : In+1 × I2 → Kω.

By (K) in §2, there exists an embedding γ : In+1 × I2 → Kω such that
γ(π−1(A1)) ⊆ U1, γ(π−1(B1)) ⊆ V1,
γ(π−1(B2)) ∩ L1 ⊆ U2, γ(π−1(A2)) ∩ L1 ⊆ V2.

By abuse of notation, we identify K = In+1 × I2 and γ(In+1 × I2), hence
we pretend that γ is the identity function. Observe that S1 = L1 ∩K is a
partition in K between its opposite faces π−1(A1) and π−1(B1). Moreover,
L2 ∩K is a partition in L1 ∩K between the ‘reduced’ opposite faces

π−1(A2) ∩ L1 and π−1(B2) ∩ L1.

Hence there is by [4, 3.1.5] a partition S2 in K between the opposite faces
π−1(A2) and π−1(B2) such that S2 ∩S1 ⊆ L2 ∩K. Hence dim(S1 ∩S2) ≤ n.
But in an (n+3)-dimensional cube, the intersection of any two partitions
between pairs of distinct opposite faces has to be at least (n+1)-dimensional
by [4, Theorem 3.1.9]. This is a contradiction.

Problem 3.1. Is there a (separable metrizable) space X such that ω+ 1
< trtX <∞?
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