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Polish Topology*

1. Introduction¹

K C   to write something about Polish Topol-
ogy for the special issue of the journal Wiadomości Matematyczne that

will be published on the occasion of the Kraków European Congress of
Mathematics in July . I am extremely pleased to do so.

inking about what Polish Topology is, mathematical giants such as
Kuratowski, Mazurkiewicz, Hurewicz, Sierpiński, Knaster, and Borsuk come
to mind. I met Professor Kuratowski at the first conference I ever aended,
the th International Conference on General Topology and its Relations to
Modern Analysis and Algebra in Prague, . I was still a PhD student
then, and meeting the mathematicians whose papers I was studying and
struggling with was fascinating. Moreover, I met Roman Pol there with
whom I developed a lifelong cooperation. I lectured in Knaster’s seminar in
Wrocław and he asked me to deliver my lecture in French, but unfortunately
I was not prepared for that. I regret to never have met Borsuk; when I visited
Warsaw, he was ill.

Polish Topology is by definition the topology that the aforementioned
mathematical giants have created. eir topological and geometric conjec-
tures and themes stimulated research for more than a century. But not only
their legacy determines the role of Polish Topology in the world. eir work
was continued by very strong researchers that were influenced by their

* I am indebted to Klaas Pieter Hart for some helpful comments.
¹ roughout, unless stated otherwise, all topological spaces under discussion are separa-

ble and metrizable.
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papers in journals such as Fundamenta Mathematicae and the numerous
strong books on topology that were wrien by Polish mathematicians, e.g.,
[10, 12, 13, 22–24, 33–35].

In this note I will concentrate on a few such themes that are of particular
interest to me. So this is a highly personal account of my involvement with
Polish Topology, and is therefore very far from complete. I will for example
not say anything about shape theory, set theoretic topology, continuum the-
ory, not much about function spaces, descriptive set theory and topological
dynamics, and almost nothing about A(N)R-theory.

2. Infinite-dimensional topology

Let s and ℓ2 denote the countable infinite product of real lines and
separable Hilbert space, respectively. ese spaces are not topologically
isomorphic as linear spaces, because one of them is normed and the other one
is not. Fréchet [25] in  and Banach [7] in , asked whether all infinite-
dimensional Fréchet spaces are topologically homeomorphic. Banach [7]
wrote that Stanisław Mazur had solved the problem, but this claim turned
out to be incorrect.

By several ad hoc methods, homeomorphy of many linear spaces were
established. In a series of papers, Kadec developed an interesting “renorming
technique” for separable Banach spaces and finally proved in  that
all infinite-dimensional separable Banach spaces are homeomorphic (see
Kadec [28]). His proof used several results of Bessaga and Pełczyński [8, 9]
and showed that the homeomorphy of s and ℓ2 would imply a positive
answer to the problem of Fréchet and Banach, i.e., the homeomorphy of all
separable infinite-dimensional Fréchet spaces. Results and techniques from
functional analysis, and especially the geometry of Banach spaces, with
various ingenious constructions from general topology were essential in the
arguments leading to this conclusion.

In [5], Anderson proved that for any space X one can delete any σ-
compact subspace from the space X × s, in that the remaining subspace is
homeomorphic to X × s. A new field in topology was born: it was called
infinite-dimensional topology.

Anderson was motivated by purely intrinsic topological questions. It
turned out, quite unexpectedly, that his methods could be used to solve the
above mentioned classical open problem. He solved it in the affirmative in [6]
by using the results from his previous paper [5] by showing that s and ℓ2
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are indeed homeomorphic. A good/complete exposition of the problem of
Fréchet and Banach can be found in Bessaga and Pełczyński [10].

In the early seventies, Chapman began the study of spaces modeled
on the Hilbert cube Q, the so called Hilbert cube manifolds or Q-manifolds.
Certain delicate finite-dimensional obstructions turned out not to appear in
Q-manifold theory. In some vague sense, Q-manifold theory is a “stable” PL
n-manifold theory. It was known frompreviouswork that ifP is a polyhedron
then P×Q is a Q-manifold. Chapman [16] proved the converse, namely that
all Q-manifolds can be triangulated, i.e., are of this form. is result turned
out later to be of fundamental importance. Some truly spectacular results
were the result of Chapman’s efforts. In  he proved the invariance of
Whitehead torsion. is is the statement that any homeomorphism between
compact polyhedra is a simple homotopy equivalence.

Borsuk [12] asked whether every compact ANR has the homotopy type
of a compact polyhedron. is problem stayed a mystery for a long time.
It was laid to rest by West [53] who showed that for every compact ANR
X there are a compact Q-manifold M and a cell-like map from M onto X
(a cell-like map between compact ANR’s is a homotopy equivalence). As we
have seen above, the Q-manifold M is homeomorphic to P × Q for some
compact polyhedron P and so X has the same homotopy type as P.

In , Edwards [16] improved West’s result by showing that X ×Q is
a Q-manifold if and only if X is a locally compact ANR. In his proof, a crucial
role was played by shrinkable maps.

In , Toruńczyk [51] was able to characterize topologically the Q-
manifolds among the locally compact ANR’s. From Edwards’s eorem it
was already known that if X is a locally compact ANR then X × Q is
a Q-manifold. Toruńczyk studied the question when the projection π : X ×
Q → X is shrinkable, and came to an astounding conclusion. is map is
shrinkable if and only if X has the following property: given n ∈ N and
two maps f , g : In → X and ε > 0 there exist maps ξ, η : In → X such that
ξ(In) ∩ η(In) = ∅ while moreover

d( f , ξ) < ε and d(η, g) < ε.

For obvious reasons this property is called the disjoint cells-property. So one
arrives at the following conclusion, which is called Toruńczyk’seorem:

eorem 2.1. A space is a manifold modeled on Q if and only if it is a locally
compact ANR with the disjoint-cells property.
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In [52], Toruńczyk characterized the topology of Hilbert space manifolds
in much the same way as he characterized the topology of the Hilbert cube.
In this characterization the disjoint-cells property is replaced by the discrete
approximation property; this property states that for every open coverU of
the space X and every map f from the topological sum

⊕∞
n=1 I

n to X there
is another map g from

⊕∞
n=1 I

n to X that is U close to f and is such that
the family {g(In) : n ∈N} is discrete. e characterization reads:

eorem 2.2. A space is a manifold modeled on ℓ2 if and only if it is a com-
pletely metrizable ANR with the discrete approximation property.

is result implies that if X is a complete ANR as well as a topological
group, then X is Lie group or an ℓ2-manifold, [18].

Ingenious counterexamples, such as the ones by Taylor [50] and Draniš-
nikov [20] (see also [21]), nicely complement these results and indicate the
boundaries of what is possible. For example, Dranišnikov’s result was the
main ingredient in Cauty’s construction in [14] of a linear space that is not an
ANR. By this example we know that even among the complete linear spaces,
the discrete approximation property does not detect the ℓ2-manifolds.

In recent years, it became clear that there are finite-dimensional spaces
that behave very much like the infinite-dimensional spaces Q and ℓ2. Bestv-
ina [11] characterized the k-dimensional universal Menger compacta. More-
over, Ageev [1–3], Levin [37] and Nagórko [43] characterized the Nöbeling
manifolds. ese characterizations of finite-dimensional spaces are all in the
same spirit as the ones that we discussed above.

Interesting applications of infinite-dimensional topology were obtained
in the field of function spaces. For a space X, let Cp(X) denote the set of
all continuous real valued functions on X endowed with the topology of
pointwise convergence. If X is discrete, then Cp(X) is the productRX. What
about nondiscrete X? It is not difficult to show that Cp(X) is metrizable if
and only if it is separable and metrizable if and only if X is countable. If X
is a countable metrizable space, then Cp(X) is an Fσδ-subset of RX ≡ s. e
converse of this result is not true. Let σ denote {x ∈ R∞ : xi = 0 for all but
finitelymany i}. In [19], Dobrowolski, Marciszewski andMogilski proved:

eorem 2.3. Let X be a countable nondiscrete completely regular space such
that Cp(X) is an absolute Fσδ. en Cp(X) is homeomorphic to σ∞.

By [17], Cp(X) is not an absolute Gδσ if X is not discrete. us, e-
orem 2.3 gives a complete topological classification of the spaces Cp(X)
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which are absolute Borel sets of the class not higher than . Interestingly,
the obvious conjecture that for a countable space X, the Borel class of Cp(X)

determines its topological type, turned out to be incorrect, as was shown by
Cauty [15].

3. Dimension theory
A (finite or infinite) collection (A1,B1), (A2,B2), . . . of pairs of disjoint

closed sets of a space X is called essential if there exist closed sets L1, L2, . . .

such that for every partition Li between Ai and Bi we have that
∩

i Li , ∅. If
the collection is not essential, then it is called inessential.

e collection of opposite faces of the cubes In(n ≤ ∞) are essential, as
follows easily from the the Brouwer Fixed-Point eorem. One may define
a space X to be at most n-dimensional if every family consisting of n+1

pairs of disjoint closed sets is inessential.
If every sequence of pairs of disjoint closed sets in a space X is inessential,

then we say that X is weakly infinite-dimensional. A space that is not weakly
infinite-dimensional is called strongly infinite-dimensional.

Hence every finite-dimensional space is weakly infinite-dimensional, and
Q is strongly infinite-dimensional. e topological sum

⊕∞
n=1 I

n of n-cubes
is weakly infinite-dimensional, but not finite-dimensional.

It is well-known that a space X is at most n-dimensional if it can be
wrien as the union of a family consisting of n+1 0-dimensional subspaces.
A space X is countable-dimensional if it can be wrien as the union of
countably many 0-dimensional subspaces. It is not difficult to show that
a strongly infinite-dimensional space is not countable-dimensional, and that
a countable-dimensional space is weakly infinite-dimensional.

In [27], Hurewicz and Wallman published the state of the art of classi-
cal dimension theory in . In their book they mainly deal with finite-
dimensional spaces. By now there is a well-developed theory for infinite-
dimensional spaces with vital contributions by Polish mathematicians. For
example, it was asked by Alexandroff [4] in  whether every compact
weakly infinite-dimensional space is countable-dimensional. is was an-
swered in the negative by R. Pol [45] in .

eorem 3.1. ere is a compact weakly infinite-dimensional space that is not
countable-dimensional.

Interestingly, Pol’s space is a C-space (the C-spaces which were intro-
duced by Haver [26], form a natural and useful class of spaces situated be-
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tween the countable-dimensional spaces and the weakly infinite-dimension-
al spaces).e question whether every weakly-infinite-dimensional compact
space is a C-space is still open as far as I know.

In Pol’s construction, a very fruitful idea is used that turned out to
be the key in obtaining many more results in dimension theory. It goes
back to a construction by Rubin, Schori and Walsh [48] which is related
to a construction by Knaster [29] and its modification by Lelek [36]. Let
C denote the standard Cantor middle-third set in I. It can be shown that
for every n ≤ ∞ there are a compact space Xn, a continuous surjection
fn : Xn → C, such that Xn is n-dimensional if n < ∞ and X∞ is strongly
infinite-dimensional, while moreover every subset S ⊆ Xn with fn(S) = C
has the same dimensional properties as Xn. Hence by taking a point from
each fiber of the map f∞ : X∞ → C, one obtains a strongly infinite-dimen-
sional totally disconnected space. Krasinkiewicz [30] gave an interesting
different construction of such spaces based on Bing partitions of the Hilbert
cube. As I said, this idea is behind many results in dimension theory. For
example, it was used in the construction of easy weakly n-dimensional
spaces in [39] (an n-dimensional space is weakly n-dimensional if the set
of its points at which it is n-dimensional has dimension at most n−1;
the first weakly 1-dimensional space was constructed by Sierpiński [49]
and subsequently Mazurkiewicz [38] provided subtle examples of weakly
n-dimensional spaces for each n > 1), the construction of a complete
C-space whose square is strongly infinite-dimensional in [40] (improving
a result in [44]), in the construction of two subspaces A and B in R4 with
dim(A∪B) > dim(A×B) + 1, [41], in the analysis of the dimensional struc-
ture of hereditarily indecomposable continua, [46], and in the construction
of n-dimensional complete spaces whose countable infinite product remains
n-dimensional, [31].

As is well-known, the three classical dimension functions take the same
values in the class of separable metrizable spaces. Even in the class of all
metrizable spaces, this need not hold, as the famous example of Roy [47]
demonstrates. His space △ is metrizable and 0-dimensional, but its covering
dimension is 1. It is a natural question whether there are 0-dimensional such
spaces with arbitrarily large covering dimension. is question sounds inno-
cent, but has turned out to be a formidable one. e first significant progress
on it was made by Mrówka [42] under the set theoretic hypothesis S(ℵ0).
en, Kulesza [32] proved that under the assumption S(ℵ0), the covering
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dimension of the n-th power of Mrówka’s space νµ0 is always n. is gives
a provisional answer to the above problem. e result is provisional in that
S(ℵ0) is a large cardinal assumption.
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