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AN EXAMPLE CONCERNING

THE MENGER-URYSOHN FORMULA

JAN VAN MILL AND ROMAN POL

(Communicated by Alexander N. Dranishnikov)

Abstract. We construct subsets A, B of the Euclidean space R
4 such that

dim(A∪B) > dim(A×B)+1. This provides a counterexample to a conjecture

by E. Ščepin for subspaces of R4.

1. Introduction

In 1991, E. Ščepin conjectured ([D], the end of section 6, and [D-D], the beginning
of section 5, [L-L], page 74) that the classical Menger-Urysohn formula dim(A∪B) ≤
dimA+dimB +1 can be improved by the formula dim(A∪B) ≤ dim(A×B) + 1.
Since dim(A×B) ≤ dimA+dimB, a positive answer to Ščepin’s conjecture would
indeed be an improvement. The question was repeated recently by V. Chatyrko [C],
Question 17. After this paper was completed, we were informed by M. Levin that
from the results in [D] one can derive an example of a 5-dimensional compactum
Z = A ∪B with dim(A×B) ≤ 3.

Ščepin’s conjecture is true in R
6 if the union of A and B is σ-compact. Indeed,

if X = A ∪ B is a σ-compact set in R
6 and dimX ≥ 5 this follows from a deep

theorem of A. Dranishnikov [D], Theorem B in section 6, as dim(X×X) = 2 dimX;
cf. [F], Ch. 5, §2 and §4. Also, as was pointed out by M. Levin, if dimX ≤ 4, then
the inequality dimX ≤ dim(A ∪ B) + 1 can be derived from [D], Proposition 6.3
(even if the σ-compact set X does not embed in R

6).
The aim of this paper is to show that Ščepin’s conjecture is not always true if

the union of A and B is a Gδ-subset of R
4.

Example 1.1. There is a 3-dimensional Gδ-set X in R
4 which can be split into

two sets, X = A ∪ B, such that each finite product of the free union A ⊕ B is
1-dimensional. In particular,

dim(A ∪B) > dim[(A×B)m] + 1

for all m. Moreover, A is a Gδ-set in X (and hence, B is an Fσ-subset of X).

To get the example, we put together some ideas and results from our earlier
papers [vM-P1] and [vM-P2] concerning weakly n-dimensional sets; cf. section 2.
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2. Preliminaries

We shall deal exclusively with subspaces of the Euclidean spaces R
n. Our ter-

minology follows [K]. Given a space X, we denote by X(n) the set of points in
X that have arbitrarily small neighbourhoods with at most (n − 1)-dimensional
boundaries; cf. [K], [vM]. We say that X is weakly n-dimensional if dimX = n
and dim(X \X(n−1)) ≤ n− 1, n ≥ 1.

We shall use the following result; cf. [vM], Corollary 3.11.12 and Exercise 2 for
§3.11.

Theorem 2.1. The product of a countable family of weakly 1-dimensional spaces
is 1-dimensional.

Let π : Rn → R be the projection onto the first coordinate and let C ⊂ R be the
Cantor set. We shall need the following fact; cf. Lelek [L], Example, p. 80; Rubin,
Schori and Walsh [R-S-W], Example 4.5; or [vM], proof of Theorem 3.9.3.

Proposition 2.2. For each n there is a compact set Kn ⊂ R
n+1 such that π(Kn) =

C and each set M ⊂ Kn with π(M) = C is n-dimensional.

We end this section with a handy observation, used in [vM-P2] and [vM], proof
of Theorem 3.11.8.

Lemma 2.3. Let f : E → T be a perfect map from an m-dimensional space onto
a zero-dimensional space. Then there exists a Gδ-set F in E such that f(F ) = T
and dim(F \ F(0)) ≤ m− 1.

Let us sketch a justification of this fact. We set T0 = {t ∈ T : dim f−1(t) = 0}
and choose a zero-dimensional Fσ-set M in E such that dim(E \M) ≤ m − 1; cf.
[vM], Lemma 3.11.6. Then F = f−1(T0) ∪ (E \M) has the required properties.

3. Construction of Example 1.1

We adopt the notation introduced in section 2. Let us denote by K the compact
set K3 described in Proposition 2.2, and let p = π | K : K → C be the restriction
of the projection, mapping K onto the Cantor set C.

The surjection p has the following property:

(1) if M ⊂ K and p(M) = C, then dimM = 3.

We let

(2) S = {t ∈ C : dim p−1(t) = 0}, T = {t ∈ C : 1 ≤ dim p−1(t) ≤ 2}.
Then (cf. [vM], Lemma 3.11.7),

(3) p−1(S) ⊂ K(0).

Let P ⊂ R be the irrationals, and let

(4) A = p−1(S) ∪
(
(C × P

3) ∩K
)
.

Then, by (3) and [K], §45, IV,

(5) dim(A \A(0)) ≤ 0; hence dimA ≤ 1, and A is a Gδ-set in R
4.

Let us check that (cf. (2))

(6) p(A) ⊃ C \ T .
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Indeed, if t ∈ C \ (S ∪ T ), then by (2), p−1(t) is a 3-dimensional set in {t}×R
3.

Hence it has nonempty interior in this section (cf. [vM], Theorem 3.7.1) and so
there is u ∈ P

3 such that (t, u) ∈ p−1(t) ∩K, i.e., t ∈ p(A); cf. (4).
Let us now consider the set Y = p−1(T ). Then, by (2), dimY ≤ 2 (cf. [vM],

Lemma 3.6.10), and let us choose a zero-dimensional Gδ-set G in Y such that
dim(Y \G) ≤ 1. By (2), each fiber p−1(t) with t ∈ T has positive dimension; hence
p−1(t) \G �= ∅. It follows that f(Y \G) = T . Now, one can find countably many
subsets of Y \G that are closed in Y and whose images under p are pairwise disjoint
and cover T ; cf. [vM-P3], Lemma 2.1 (or [vM-P1], section 4). In effect, we have
sets Ei ⊂ Y such that

(7) Ei is closed in p−1(T ), dimEi ≤ 1,

(8) p(Ei) ∩ p(Ej) = ∅ for i �= j,
⋃

i p(Ei) = T .

We use Lemma 2.3 to get sets Fi such that

(9) Fi is a Gδ-set in Ei, p(Fi) = p(Ei),

(10) dim(Fi \ (Fi)(0)) ≤ 0.

Finally, we set (cf. (4))

(11) B =
⋃

i Fi and X = A ∪B.

Since the sets p(Ei) are closed in T (cf. (7)), from (8), (9) and the countable
sum theorem, we infer that

(12) Fi is closed in B, dimB ≤ 1, and B is a Gδ-set in p−1(T ).

By [K], §45, IV, p−1(S ∪ T ) is a Gδ-set in R
4; hence (4), (5) and (12) yield that

(13) X is a Gδ-set in R
4.

By (8), (9) and (11), we also have p(B) = T , and hence p(X) = C; (cf. (6)).
Therefore, by (1),

(14) dimX = 3.

In particular, since by (5) and (12) the sets A and B are at most 1-dimensional, the
Menger-Urysohn formula shows that they both have positive dimension. By (5),

(15) A is weakly 1-dimensional.

By (12) and the countable sum theorem, one of the sets Fi, say F1, is 1-dimensional,
and considering the sets F1 ∪ Fi we conclude from (10) that

(16) B is covered by countably many closed weakly 1-dimensional sets.

It follows from (15) and (16) that any product (A ⊕ B)m of the free union of
A and B is covered by countably many closed sets, each of which is a product of
weakly 1-dimensional spaces. By Theorem 2.1 and the countable sum theorem,
dim ((A⊕B)m) = 1.

4. A comment

We can repeat the construction described in section 3 for any n ≥ 3, starting
from the compact set Kn ⊂ R

n+1 described in Proposition 2.2. Then we get as a
result an n-dimensional Gδ-setX ⊂ R

n+1 and a decompositionX = A∪B such that
A is a weakly 1-dimensional Gδ-set in R

n+1 and B is a countable union of closed
weakly (n− 2)-dimensional sets. Using a theorem of Tomaszewski [T], [vM-P2], it
follows that dim(A×B) ≤ 1+ (n− 2)− 1 = n− 2. In effect, for the n-dimensional
space X we have dimX > dim(A×B) + 1 = n− 1.
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