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Abstract

For any space X, denote by dis(X) the smallest (infinite) cardinal κ such that κ many discrete subspaces are needed to cover X.
It is easy to see that if X is any crowded (i.e. dense-in-itself) compactum then dis(X) � m, where m denotes the additivity of the
meager ideal on the reals. It is a natural, and apparently quite difficult, question whether in this inequality m could be replaced by c.
Here we show that this can be done if X is also hereditarily normal.

Moreover, we prove the following mapping theorem that involves the cardinal function dis(X). If f :X → Y is a continuous
surjection of a countably compact T2 space X onto a perfect T3 space Y then |{y ∈ Y : f −1y is countable}| � dis(X).
© 2006 Elsevier B.V. All rights reserved.
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In this note we use standard topological terminology and notation, as e.g. in [1] or [3]. Our aim is to study the
following new cardinal functions.

Definition 1. For any space X we let dis(X) (ls(X), respectively rs(X)) denote the smallest infinite cardinal κ such
that X can be covered by κ many discrete (left separated, respectively right separated) subspaces.

Since discrete spaces are both left and right separated, we clearly have ls(X) � dis(X) and rs(X) � dis(X). Any
crowded (i.e. dense-in-itself) compactum X has a crowded closed subspace Y that maps irreducibly onto the inter-
val [0,1]. Then Y is separable, moreover, as any right separated subspace of Y is nowhere dense in Y , we have

dis(X) � rs(X) � rs(Y ) � N(Y ) = N
([0,1]) = m.

Here N(X) is the Novák-number of a space X, i.e. the smallest number of nowhere-dense sets needed to cover X;
hence m is also known as the additivity of the meager ideal on the reals.
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It is less obvious to see but, as it has been shown in [2], the inequality ls(X) � m is also valid for any crowded
compactum X.

Now, it is a natural question to raise if these inequalities are sharp, in particular the following attractive problem
can be formulated and will be examined below. (Of course, here c denotes the cardinality of the continuum.)

Problem 2. Is there a crowded compactum X with dis(X) < c?

As we have seen above, such a space X has a separable closed subspace Y ⊂ X. Since the weight of a separable
compactum is at most c, any discrete subspace of Y has size � c. Consequently, we must have |Y | = c and so by the
Čech–Pospišil theorem some point of Y must have character < c. Our next result yields a much stronger statement in
this vein.

Theorem 3. Every compactum X with rs(X) > 1 contains a point p such that

χ(p,X) < rs(X).

Proof. As we have seen above, if rs(X) < m then X is scattered, hence X contains (a dense set of) isolated points,
i.e. points of character 1. So assume now that κ = rs(X) � m > ω. Assume also, indirectly, that χ(x,X) � κ holds
for all x ∈ X.

By definition, there is a sequence 〈Sα: α ∈ κ〉 such that each Sα is a right separated subspace of X and X =⋃{Sα: α ∈ κ}. By transfinite recursion on α ∈ κ we shall then define a decreasing sequence of non-empty closed sets
Hα ⊂ X such that

ψ(Hα,X) = χ(Hα,X) � |α| + ω,

moreover Hα ∩Sα = ∅ holds for each α ∈ κ . Since, by the compactness of X, we have
⋂{Hα: α ∈ κ} 
= ∅, this clearly

leads to a contradiction.
So let α ∈ κ and assume that Hβ has been suitably defined for each β ∈ α. Let us set then

H̃α =
⋂

{Hβ : β ∈ α}.
Clearly we have

ψ(H̃α,X) = χ(H̃α,X) � |α| + ω,

hence if H̃α ∩Sα = ∅ holds then we may set Hα = H̃α . So assume now that H̃α ∩Sα 
= ∅ and therefore it has an isolated
point, say xα . But xα cannot be an isolated point of H̃α since otherwise we would have χ(xα,X) � |α| +ω < κ . Thus
if U is any open neighbourhood of xα such that U ∩ (H̃α ∩ Sα) = {xα}, then U ∩ (H̃α \ {xα}) 
= ∅ and ψ(U ∩ (H̃α \
{xα}),X) � |α| + ω. We may then finish by defining Hα as any non-empty closed subset of U ∩ (H̃α \ {xα}) that also
satisfies ψ(Hα,X) � |α|+ω. The existence of such a closed subset is obvious from the regularity of the space X. �

It immediately follows from Theorem 3 that if X is a compactum satisfying dis(X) = ω1 then the points of first
countability are dense (even Gδ-dense) in X. This leads us to the following weaker version of our main Problem 2:

Problem 4. Is it provable that dis(X) = c for each first countable crowded compactum X?

(Note that, by Archangelskiı̆’s theorem, we have dis(X) � |X| = c in this case.) We are sorry to admit that we could
not answer this problem, however we do have a partial positive solution to Problem 2 for hereditarily normal spaces.

Theorem 5. If X is a hereditarily normal crowded compactum then either ls(X) � c or rs(X) � c holds, hence surely
dis(X) � c.

Proof. Assume, indirectly, that we have both ls(X) < c and rs(X) < c. As we have noted above, we may also assume
that X is separable and consequently 	(X), the number of regular open subsets of X, is equal to c. Of course, in this
case we also have |X| = c.
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Let us assume now that c is a regular cardinal. Then first using ls(X) < c and then rs(X) < c it is easy to find a
subset of X of size c that is both left and right separated. But then, see e.g. [3, 2.12], there is also a discrete subset
D ⊂ X with |D| = c. If, on the other hand, c is singular then a similar argument yields us for each κ < c a discrete
subset of X of size κ , in particular a discrete D ⊂ X with |D| = cf(c). Thus we have established that X contains a
discrete subspace of size cf(c) whether or not c is regular.

But then the hereditary normality of X implies 	(X) � 2cf(c) = 2ω·cf(c) = ccf(c) > c, a contradiction. (The finishing
argument is widely known as Jones’ lemma, see e.g. [1, 2.1.10].) �

Of course, Theorem 5 would be much more esthetic if one could prove that say ls(X) � c is always valid for a
crowded T5 space X (or the same with ls(X) replaced with rs(X)).

Now we turn to our last theorem that establishes a rather surprising connection between certain continuous maps
and the cardinal function dis(X). This result also sheds some light on potential counterexamples to Problem 4. A space
is perfect if all closed sets are Gδ .

Theorem 6. Let f :X → Y be a continuous surjection from a countably compact T2 space X onto a perfect T3
space Y . Then we have∣∣{y ∈ Y : f −1(y) is countable

}∣∣ � dis(X).

Moreover, if dis(X) = ω then we even have |Y | � ω.

Proof. Let us start by noting that Y is also countably compact, being the continuous image of X. This implies that Y

is first countable because any Gδ point in a countably compact T3 space has countable character. This in turn implies
that f is a closed map. Indeed, if F ⊂ X is closed then f [F ] is a countably compact subset of Y and as such it is
closed in Y because Y is first countable and T2.

Next we show that for any set A ⊂ X we have∣∣A \ f −1(f [A′])∣∣ � ω,

where, as usual, A′ denotes the derived set of all limit points of the set A. To see this, we first note that by our above
remark f [A′] is closed and hence a Gδ set in Y . Thus we may write

f [A′] =
⋂

{Gn: n < ω},
where each set Gn is open in Y . Consequently, we have

f −1(f [A′]) =
⋂{

f −1(Gn): n < ω
}
.

Now, for each n < ω we have A′ ⊂ f −1(Gn), hence the countable compactness of X implies that A \ f −1(Gn) is
finite, consequently

A \ f −1(f [A′]) =
⋃{

A \ f −1(Gn): n < ω
}

is indeed countable.
Let us assume now that Y is uncountable. We claim that in this case for every discrete subspace D of X there is a

closed set F ⊂ X \ D such that f [F ] is uncountable as well.
To see this, we distinguish two cases. First, if f [D] is countable then Y \ f [D] is an uncountable Fσ -set, hence

clearly there is an uncountable closed set Z in Y that is disjoint from f [D]. Obviously, then F = f −1(Z) is as
required. (In this case we have not used that D is discrete.)

If, on the other hand, f [D] is uncountable then by the previous observation we have |D \ f −1(f [D′])| � ω, hence
|f [D]| = |f [D′]| > ω. But ‘D is discrete’ just means that D ∩ D′ = ∅, hence in this case we may simply set F = D′.

Now assume that we have dis(X) = ω, hence

X =
⋃

{Dn: n < ω}
where each Dn is a discrete subspace of X. Our aim is to show that in this case Y is countable. Indeed, if this
were false then, using the above claim, we could define by a straightforward recursion a decreasing sequence
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〈Fn: n < ω〉 of closed subsets of X such that Fn ∩ Dn = ∅ and f [Fn] is uncountable for each n < ω. But then
we have

⋂{Fn: n < ω} 
= ∅ as X is countably compact, contradicting that X is covered by the Dn’s. We have thus
established the second part of the theorem, namely that dis(X) = ω implies |Y | � ω.

So now we turn to the first (main) part. Let us start by noting that every countable closed subset of X is in fact
compact. However, it is well known that any countable compact T2 space is homeomorphic to a (countable successor)
ordinal (taken, of course, with its natural order topology). With this in mind, we introduce here the following piece of
notation: If Z is any topological space that is homeomorphic to some ordinal then α(Z) will denote the smallest such
ordinal. We are going to make use of the following easy to prove fact: If α(Z) is a successor ordinal then there is a
point z ∈ Z such that

α
(
Z \ {z}) < α(Z).

Let us now denote by I (ξ) the following statement: For every continuous surjection f from a countably compact
T2 space X onto a perfect T3 space Y we have∣∣{y ∈ Y : α

(
f −1(y)

)
� ξ

}∣∣ � dis(X).

Since in this part of the proof we may assume that dis(X) > ω, it will clearly suffice to prove that I (ξ) holds for all
countable ordinals ξ . Indeed, this is so because if f −1(y) is countable then α(f −1y) exists and is a countable ordinal.

Of course, the proof will proceed by transfinite induction. Since α(f −1(y)) is always a successor, the limit steps
of the induction are trivial. So assume now that ξ = η + 1 and I (η) is valid. We want to show that then so is I (ξ).
Assume, indirectly, that this is not the case, hence∣∣{y ∈ Y : α

(
f −1(y)

) = ξ
}∣∣ > dis(X).

Let Z be the set that appears on the left-hand side of this inequality. For each y ∈ Z we have α(f −1(y)) = ξ = η + 1
and hence we may pick by the above remark a point xy ∈ f −1(y) such that

α
(
f −1(y) \ {xy}

)
� η.

Since |Z| > dis(X) we may clearly find a subset Z0 ⊂ Z with |Z0| > dis(X) such that D = {xy : y ∈ Z0} is a discrete
subspace of X. Recall that we have |D \ f −1(f [D′])| � ω, hence if we set Z1 = f [D] ∩ f [D′] then Z1 ⊂ Z0 and
|Z0 \ Z1| � ω, consequently we have |Z1| = |Z0| > dis(X).

Let us now consider the restriction g of the map f to the closed subspace D′ of X. Then g is a continuous surjection
from D′ onto f [D′], hence the inductive hypothesis I (η) may be applied to it to conclude that∣∣{y ∈ f [D′]: α

(
g−1(y)

)
� η

}∣∣ � dis(D′) � dis(X).

On the other hand, we have f [D′] ⊃ Z1 and for each y ∈ Z1,

g−1(y) ⊂ f −1(y) \ {xy}
holds because D∩D′ = ∅. But then, by the choice of xy , for all y ∈ Z1 we have α(g−1(y)) � η. This is a contradiction
since |Z1| > dis(X).

This contradiction completes the proof of the transfinite induction and with it the proof of our theorem. �
Assume now that X is a crowded first countable compactum with dis(X) < c, i.e. a counterexample to Problem 4.

Then any uncountable closed subspace of X is of cardinality c and non-scattered. Hence it is an immediate corollary
of Theorem 6 that if e.g. f is any continuous surjection of X onto the interval [0,1] (and such maps always exist) then
for almost all (more precisely: for all but dis(X) many) points r ∈ [0,1] we have |f −1(r)| = c. In some, admittedly
non-precise, sense this means that a counterexample to Problem 4 must be “complicated”.
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