

Available online at www.sciencedirect.com

Topology and its Applications

Topology and its Applications 154 (2007) 283-286

www.elsevier.com/locate/topol

Covering compacta by discrete subspaces [☆]

István Juhász^{a,*}, Jan van Mill^b

^a Alfréd Rényi Institute of Mathematics, Hungary ^b Free University, Amsterdam, The Netherlands

Received 13 September 2005; accepted 26 April 2006

Abstract

For any space X, denote by dis(X) the smallest (infinite) cardinal κ such that κ many discrete subspaces are needed to cover X. It is easy to see that if X is any crowded (i.e. dense-in-itself) compactum then dis(X) $\geq m$, where m denotes the additivity of the meager ideal on the reals. It is a natural, and apparently quite difficult, question whether in this inequality m could be replaced by c. Here we show that this can be done if X is also hereditarily normal.

Moreover, we prove the following mapping theorem that involves the cardinal function dis(X). If $f: X \to Y$ is a continuous surjection of a countably compact T_2 space X onto a perfect T_3 space Y then $|\{y \in Y: f^{-1}y \text{ is countable}\}| \leq dis(X)$. © 2006 Elsevier B.V. All rights reserved.

MSC: 54A25

Keywords: Compact space; Discrete subspace; Right separated subspace; Left separated subspace

In this note we use standard topological terminology and notation, as e.g. in [1] or [3]. Our aim is to study the following new cardinal functions.

Definition 1. For any space X we let dis(X) (ls(X), respectively rs(X)) denote the smallest infinite cardinal κ such that X can be covered by κ many discrete (left separated, respectively right separated) subspaces.

Since discrete spaces are both left and right separated, we clearly have $ls(X) \leq dis(X)$ and $rs(X) \leq dis(X)$. Any crowded (i.e. dense-in-itself) compactum X has a crowded closed subspace Y that maps irreducibly onto the interval [0, 1]. Then Y is separable, moreover, as any right separated subspace of Y is nowhere dense in Y, we have

 $\operatorname{dis}(X) \ge \operatorname{rs}(X) \ge \operatorname{rs}(Y) \ge \operatorname{N}(Y) = \operatorname{N}([0, 1]) = \mathfrak{m}.$

Here N(X) is the Novák-number of a space X, i.e. the smallest number of nowhere-dense sets needed to cover X; hence m is also known as the additivity of the meager ideal on the reals.

Corresponding author.

^{*} Research on this paper was done during the first author's visit at the Vrije Universiteit in Amsterdam and was partially supported by OTKA Grant No. 37758.

E-mail addresses: juhasz@renyi.hu (I. Juhász), vanmill@vu.nl (J. van Mill).

^{0166-8641/}\$ – see front matter © 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.topol.2006.04.012

It is less obvious to see but, as it has been shown in [2], the inequality $ls(X) \ge m$ is also valid for any crowded compactum X.

Now, it is a natural question to raise if these inequalities are sharp, in particular the following attractive problem can be formulated and will be examined below. (Of course, here c denotes the cardinality of the continuum.)

Problem 2. Is there a crowded compactum *X* with dis(X) < c?

As we have seen above, such a space X has a separable closed subspace $Y \subset X$. Since the weight of a separable compactum is at most \mathfrak{c} , any discrete subspace of Y has size $\leq \mathfrak{c}$. Consequently, we must have $|Y| = \mathfrak{c}$ and so by the Čech–Pospišil theorem some point of Y must have character $< \mathfrak{c}$. Our next result yields a much stronger statement in this vein.

Theorem 3. Every compactum X with rs(X) > 1 contains a point p such that

$$\chi(p, X) < \operatorname{rs}(X).$$

Proof. As we have seen above, if rs(X) < m then X is scattered, hence X contains (a dense set of) isolated points, i.e. points of character 1. So assume now that $\kappa = rs(X) \ge m > \omega$. Assume also, indirectly, that $\chi(x, X) \ge \kappa$ holds for all $x \in X$.

By definition, there is a sequence $\langle S_{\alpha}: \alpha \in \kappa \rangle$ such that each S_{α} is a right separated subspace of X and $X = \bigcup \{S_{\alpha}: \alpha \in \kappa\}$. By transfinite recursion on $\alpha \in \kappa$ we shall then define a *decreasing* sequence of non-empty closed sets $H_{\alpha} \subset X$ such that

$$\psi(H_{\alpha}, X) = \chi(H_{\alpha}, X) \leq |\alpha| + \omega,$$

moreover $H_{\alpha} \cap S_{\alpha} = \emptyset$ holds for each $\alpha \in \kappa$. Since, by the compactness of *X*, we have $\bigcap \{H_{\alpha} : \alpha \in \kappa\} \neq \emptyset$, this clearly leads to a contradiction.

So let $\alpha \in \kappa$ and assume that H_{β} has been suitably defined for each $\beta \in \alpha$. Let us set then

$$\widetilde{H}_{\alpha} = \bigcap \{ H_{\beta} \colon \beta \in \alpha \}.$$

Clearly we have

$$\psi(\widetilde{H}_{\alpha}, X) = \chi(\widetilde{H}_{\alpha}, X) \leq |\alpha| + \omega,$$

hence if $\widetilde{H}_{\alpha} \cap S_{\alpha} = \emptyset$ holds then we may set $H_{\alpha} = \widetilde{H}_{\alpha}$. So assume now that $\widetilde{H}_{\alpha} \cap S_{\alpha} \neq \emptyset$ and therefore it has an isolated point, say x_{α} . But x_{α} cannot be an isolated point of \widetilde{H}_{α} since otherwise we would have $\chi(x_{\alpha}, X) \leq |\alpha| + \omega < \kappa$. Thus if U is any open neighbourhood of x_{α} such that $U \cap (\widetilde{H}_{\alpha} \cap S_{\alpha}) = \{x_{\alpha}\}$, then $U \cap (\widetilde{H}_{\alpha} \setminus \{x_{\alpha}\}) \neq \emptyset$ and $\psi(U \cap (\widetilde{H}_{\alpha} \setminus \{x_{\alpha}\}), X) \leq |\alpha| + \omega$. We may then finish by defining H_{α} as any non-empty closed subset of $U \cap (\widetilde{H}_{\alpha} \setminus \{x_{\alpha}\})$ that also satisfies $\psi(H_{\alpha}, X) \leq |\alpha| + \omega$. The existence of such a closed subset is obvious from the regularity of the space X. \Box

It immediately follows from Theorem 3 that if X is a compactum satisfying $dis(X) = \omega_1$ then the points of first countability are dense (even G_{δ} -dense) in X. This leads us to the following weaker version of our main Problem 2:

Problem 4. Is it provable that dis(X) = c for each *first countable* crowded compactum X?

(Note that, by Archangelskii's theorem, we have $dis(X) \le |X| = \mathfrak{c}$ in this case.) We are sorry to admit that we could not answer this problem, however we do have a partial positive solution to Problem 2 for *hereditarily normal* spaces.

Theorem 5. If X is a hereditarily normal crowded compactum then either $ls(X) \ge c$ or $rs(X) \ge c$ holds, hence surely $dis(X) \ge c$.

Proof. Assume, indirectly, that we have both $ls(X) < \mathfrak{c}$ and $rs(X) < \mathfrak{c}$. As we have noted above, we may also assume that X is separable and consequently $\varrho(X)$, the number of regular open subsets of X, is equal to \mathfrak{c} . Of course, in this case we also have $|X| = \mathfrak{c}$.

Let us assume now that c is a regular cardinal. Then first using ls(X) < c and then rs(X) < c it is easy to find a subset of X of size c that is both left and right separated. But then, see e.g. [3, 2.12], there is also a discrete subset $D \subset X$ with |D| = c. If, on the other hand, c is singular then a similar argument yields us for each $\kappa < c$ a discrete subset of X of size κ , in particular a discrete $D \subset X$ with |D| = cf(c). Thus we have established that X contains a discrete subspace of size cf(c) whether or not c is regular.

But then the hereditary normality of X implies $\rho(X) \ge 2^{cf(\mathfrak{c})} = 2^{\omega \cdot cf(\mathfrak{c})} = \mathfrak{c}^{cf(\mathfrak{c})} > \mathfrak{c}$, a contradiction. (The finishing argument is widely known as Jones' lemma, see e.g. [1, 2.1.10].)

Of course, Theorem 5 would be much more esthetic if one could prove that say $ls(X) \ge c$ is always valid for a crowded T_5 space X (or the same with ls(X) replaced with rs(X)).

Now we turn to our last theorem that establishes a rather surprising connection between certain continuous maps and the cardinal function dis(X). This result also sheds some light on potential counterexamples to Problem 4. A space is *perfect* if all closed sets are G_{δ} .

Theorem 6. Let $f: X \to Y$ be a continuous surjection from a countably compact T_2 space X onto a perfect T_3 space Y. Then we have

$$\left|\left\{y \in Y: f^{-1}(y) \text{ is countable}\right\}\right| \leq \operatorname{dis}(X).$$

Moreover, if $dis(X) = \omega$ *then we even have* $|Y| \leq \omega$.

Proof. Let us start by noting that Y is also countably compact, being the continuous image of X. This implies that Y is first countable because any G_{δ} point in a countably compact T_3 space has countable character. This in turn implies that f is a closed map. Indeed, if $F \subset X$ is closed then f[F] is a countably compact subset of Y and as such it is closed in Y because Y is first countable and T_2 .

Next we show that for any set $A \subset X$ we have

$$|A \setminus f^{-1}(f[A'])| \leq \omega$$

where, as usual, A' denotes the derived set of all limit points of the set A. To see this, we first note that by our above remark f[A'] is closed and hence a G_{δ} set in Y. Thus we may write

$$f[A'] = \bigcap \{G_n \colon n < \omega\},\$$

where each set G_n is open in Y. Consequently, we have

$$f^{-1}(f[A']) = \bigcap \big\{ f^{-1}(G_n): n < \omega \big\}.$$

Now, for each $n < \omega$ we have $A' \subset f^{-1}(G_n)$, hence the countable compactness of X implies that $A \setminus f^{-1}(G_n)$ is finite, consequently

$$A \setminus f^{-1}(f[A']) = \bigcup \{A \setminus f^{-1}(G_n): n < \omega\}$$

is indeed countable.

Let us assume now that Y is uncountable. We claim that in this case for every discrete subspace D of X there is a closed set $F \subset X \setminus D$ such that f[F] is uncountable as well.

To see this, we distinguish two cases. First, if $f[\overline{D}]$ is countable then $Y \setminus f[\overline{D}]$ is an uncountable F_{σ} -set, hence clearly there is an uncountable closed set Z in Y that is disjoint from $f[\overline{D}]$. Obviously, then $F = f^{-1}(Z)$ is as required. (In this case we have not used that D is discrete.)

If, on the other hand, $f[\overline{D}]$ is uncountable then by the previous observation we have $|D \setminus f^{-1}(f[D'])| \le \omega$, hence $|f[\overline{D}]| = |f[D']| > \omega$. But 'D is discrete' just means that $D \cap D' = \emptyset$, hence in this case we may simply set F = D'. Now assume that we have $\operatorname{dis}(X) = \omega$, hence

 $X = \bigcup \{ D_n : n < \omega \}$

where each D_n is a discrete subspace of X. Our aim is to show that in this case Y is countable. Indeed, if this were false then, using the above claim, we could define by a straightforward recursion a decreasing sequence

 $\langle F_n: n < \omega \rangle$ of closed subsets of X such that $F_n \cap D_n = \emptyset$ and $f[F_n]$ is uncountable for each $n < \omega$. But then we have $\bigcap \{F_n: n < \omega\} \neq \emptyset$ as X is countably compact, contradicting that X is covered by the D_n 's. We have thus established the second part of the theorem, namely that $\operatorname{dis}(X) = \omega$ implies $|Y| \leq \omega$.

So now we turn to the first (main) part. Let us start by noting that every countable closed subset of X is in fact compact. However, it is well known that any countable compact T_2 space is homeomorphic to a (countable successor) ordinal (taken, of course, with its natural order topology). With this in mind, we introduce here the following piece of notation: If Z is any topological space that is homeomorphic to some ordinal then $\alpha(Z)$ will denote the smallest such ordinal. We are going to make use of the following easy to prove fact: If $\alpha(Z)$ is a successor ordinal then there is a point $z \in Z$ such that

$$\alpha(Z\setminus\{z\})<\alpha(Z).$$

Let us now denote by $I(\xi)$ the following statement: For every continuous surjection f from a countably compact T_2 space X onto a perfect T_3 space Y we have

$$\left|\left\{y \in Y: \alpha\left(f^{-1}(y)\right) \leq \xi\right\}\right| \leq \operatorname{dis}(X).$$

Since in this part of the proof we may assume that $dis(X) > \omega$, it will clearly suffice to prove that $I(\xi)$ holds for all countable ordinals ξ . Indeed, this is so because if $f^{-1}(y)$ is countable then $\alpha(f^{-1}y)$ exists and is a countable ordinal.

Of course, the proof will proceed by transfinite induction. Since $\alpha(f^{-1}(y))$ is always a successor, the limit steps of the induction are trivial. So assume now that $\xi = \eta + 1$ and $I(\eta)$ is valid. We want to show that then so is $I(\xi)$. Assume, indirectly, that this is not the case, hence

$$\left|\left\{y \in Y \colon \alpha\left(f^{-1}(y)\right) = \xi\right\}\right| > \operatorname{dis}(X).$$

Let Z be the set that appears on the left-hand side of this inequality. For each $y \in Z$ we have $\alpha(f^{-1}(y)) = \xi = \eta + 1$ and hence we may pick by the above remark a point $x_y \in f^{-1}(y)$ such that

$$\alpha(f^{-1}(y)\setminus\{x_y\})\leqslant\eta.$$

Since $|Z| > \operatorname{dis}(X)$ we may clearly find a subset $Z_0 \subset Z$ with $|Z_0| > \operatorname{dis}(X)$ such that $D = \{x_y: y \in Z_0\}$ is a discrete subspace of X. Recall that we have $|D \setminus f^{-1}(f[D'])| \leq \omega$, hence if we set $Z_1 = f[D] \cap f[D']$ then $Z_1 \subset Z_0$ and $|Z_0 \setminus Z_1| \leq \omega$, consequently we have $|Z_1| = |Z_0| > \operatorname{dis}(X)$.

Let us now consider the restriction g of the map f to the closed subspace D' of X. Then g is a continuous surjection from D' onto f[D'], hence the inductive hypothesis $I(\eta)$ may be applied to it to conclude that

$$\left|\left\{y \in f[D']: \alpha\left(g^{-1}(y)\right) \leq \eta\right\}\right| \leq \operatorname{dis}(D') \leq \operatorname{dis}(X).$$

On the other hand, we have $f[D'] \supset Z_1$ and for each $y \in Z_1$,

$$g^{-1}(y) \subset f^{-1}(y) \setminus \{x_y\}$$

holds because $D \cap D' = \emptyset$. But then, by the choice of x_y , for all $y \in Z_1$ we have $\alpha(g^{-1}(y)) \leq \eta$. This is a contradiction since $|Z_1| > \text{dis}(X)$.

This contradiction completes the proof of the transfinite induction and with it the proof of our theorem. \Box

Assume now that X is a crowded first countable compactum with dis(X) < c, i.e. a counterexample to Problem 4. Then any uncountable closed subspace of X is of cardinality c and non-scattered. Hence it is an immediate corollary of Theorem 6 that if e.g. f is any continuous surjection of X onto the interval [0, 1] (and such maps always exist) then for almost all (more precisely: for all but dis(X) many) points $r \in [0, 1]$ we have $|f^{-1}(r)| = c$. In some, admittedly non-precise, sense this means that a counterexample to Problem 4 must be "complicated".

References

- [1] R. Engelking, General Topology, Sigma Series in Pure Mathematics, vol. 6, Heldermann, Berlin, 1988.
- [2] J. Gerlits, I. Juhász, Z. Szentmiklóssy, Two improvements on Tkačenko's addition theorem, CMUC 46 (2005) 705-710.
- [3] I. Juhász, Cardinal Functions Ten Years Later, Math. Center Tract, vol. 123, Math. Center, Amsterdam, 1980.