Available online at www.sciencedirect.com

. . Topology
ScienceDirect and itsg

Applications

Topology and its Applications 154 (2007) 283-286

www.elsevier.com/locate/topol

Covering compacta by discrete subspaces *

Istvdn Juhdsz ®*, Jan van Mill ®

4 Alfréd Rényi Institute of Mathematics, Hungary
b Free University, Amsterdam, The Netherlands

Received 13 September 2005; accepted 26 April 2006

Abstract

For any space X, denote by dis(X) the smallest (infinite) cardinal « such that « many discrete subspaces are needed to cover X.
It is easy to see that if X is any crowded (i.e. dense-in-itself) compactum then dis(X) > m, where m denotes the additivity of the
meager ideal on the reals. It is a natural, and apparently quite difficult, question whether in this inequality m could be replaced by c.
Here we show that this can be done if X is also hereditarily normal.

Moreover, we prove the following mapping theorem that involves the cardinal function dis(X). If f: X — Y is a continuous
surjection of a countably compact 75 space X onto a perfect 73 space Y then [{y € Y: f ~1ly is countable}| < dis(X).
© 2006 Elsevier B.V. All rights reserved.
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In this note we use standard topological terminology and notation, as e.g. in [1] or [3]. Our aim is to study the
following new cardinal functions.

Definition 1. For any space X we let dis(X) (I1s(X), respectively rs(X)) denote the smallest infinite cardinal « such
that X can be covered by k many discrete (left separated, respectively right separated) subspaces.

Since discrete spaces are both left and right separated, we clearly have Is(X) < dis(X) and rs(X) < dis(X). Any
crowded (i.e. dense-in-itself) compactum X has a crowded closed subspace Y that maps irreducibly onto the inter-
val [0, 1]. Then Y is separable, moreover, as any right separated subspace of Y is nowhere dense in Y, we have

dis(X) > rs(X) >rs(Y) = N(¥) =N([0, 1]) = m.

Here N(X) is the Novdk-number of a space X, i.e. the smallest number of nowhere-dense sets needed to cover X;
hence m is also known as the additivity of the meager ideal on the reals.
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It is less obvious to see but, as it has been shown in [2], the inequality Is(X) > m is also valid for any crowded
compactum X.

Now, it is a natural question to raise if these inequalities are sharp, in particular the following attractive problem
can be formulated and will be examined below. (Of course, here ¢ denotes the cardinality of the continuum.)

Problem 2. Is there a crowded compactum X with dis(X) < ¢?

As we have seen above, such a space X has a separable closed subspace ¥ C X. Since the weight of a separable
compactum is at most ¢, any discrete subspace of Y has size < ¢. Consequently, we must have |Y| = ¢ and so by the
Cech—Pospisil theorem some point of ¥ must have character < ¢. Our next result yields a much stronger statement in
this vein.

Theorem 3. Every compactum X with 1s(X) > 1 contains a point p such that

x(p, X) <1s(X).

Proof. As we have seen above, if rs(X) < m then X is scattered, hence X contains (a dense set of) isolated points,
i.e. points of character 1. So assume now that x = rs(X) > m > w. Assume also, indirectly, that x (x, X) > « holds
forall x € X.

By definition, there is a sequence (Sy: « € ) such that each Sy is a right separated subspace of X and X =
(U{Sa: @ € k}. By transfinite recursion on « € k we shall then define a decreasing sequence of non-empty closed sets
H, C X such that

V(Hy, X) = x(Hy, X) < |a| + o,

moreover Hy NSy = @ holds for each « € k. Since, by the compactness of X, we have [ \{Hy: o € k} # @, this clearly
leads to a contradiction.
So let a € k and assume that Hg has been suitably defined for each 8 € «. Let us set then

Hy=(")(Hp: peal.
Clearly we have
¥ (Ha, X) = x(Ha, X) < o] + o,

hence if ﬁ NSy = ¥ holds then we may set H, = ﬁ So assume now that 17 NS, # ¥ and therefore it has an isolated
point, say x,. But x, cannot be an isolated point of H since otherwise we would have x (xo, X) < |o| 4+ < «. Thus
if U is any open neighbourhood of x, such that U N (H N Sy) = {x¢}, then U N (Ha \ {xq}) # @ and ¥ (U N (Ha \
{xa}), X) < |a| + w. We may then finish by defining H, as any non-empty closed subset of U N (Ha \ {xq}) that also
satisfies ¥ (Hy, X) < || + w. The existence of such a closed subset is obvious from the regularity of the space X. O

It immediately follows from Theorem 3 that if X is a compactum satisfying dis(X) = w; then the points of first
countability are dense (even Gs-dense) in X. This leads us to the following weaker version of our main Problem 2:

Problem 4. Is it provable that dis(X) = ¢ for each first countable crowded compactum X ?

(Note that, by Archangelskii’s theorem, we have dis(X) < | X| = c in this case.) We are sorry to admit that we could
not answer this problem, however we do have a partial positive solution to Problem 2 for hereditarily normal spaces.

Theorem 5. If X is a hereditarily normal crowded compactum then either 1s(X) > ¢ or 1s(X) > ¢ holds, hence surely
dis(X) > c.

Proof. Assume, indirectly, that we have both Is(X) < ¢ and rs(X) < ¢. As we have noted above, we may also assume
that X is separable and consequently o(X), the number of regular open subsets of X, is equal to ¢. Of course, in this
case we also have | X| =c.
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Let us assume now that ¢ is a regular cardinal. Then first using 1s(X) < ¢ and then rs(X) < c it is easy to find a
subset of X of size ¢ that is both left and right separated. But then, see e.g. [3, 2.12], there is also a discrete subset
D C X with |D| = c. If, on the other hand, ¢ is singular then a similar argument yields us for each « < ¢ a discrete
subset of X of size «, in particular a discrete D C X with |D| = cf(c). Thus we have established that X contains a
discrete subspace of size cf(c) whether or not ¢ is regular.

But then the hereditary normality of X implies o(X) > 2¢1(¢) = 2¢¢f(€) — (¢f(¢) - ¢ 3 contradiction. (The finishing
argument is widely known as Jones’ lemma, see e.g. [1,2.1.10].) O

Of course, Theorem 5 would be much more esthetic if one could prove that say Is(X) > ¢ is always valid for a
crowded Ts space X (or the same with 1s(X) replaced with rs(X)).

Now we turn to our last theorem that establishes a rather surprising connection between certain continuous maps
and the cardinal function dis(X). This result also sheds some light on potential counterexamples to Problem 4. A space
is perfect if all closed sets are G.

Theorem 6. Let f:X — Y be a continuous surjection from a countably compact T, space X onto a perfect T3
space Y. Then we have

Hy ey: f_l(y) is countable}‘ < dis(X).

Moreover, if dis(X) = w then we even have |Y| < w.

Proof. Let us start by noting that Y is also countably compact, being the continuous image of X. This implies that ¥
is first countable because any G point in a countably compact 73 space has countable character. This in turn implies
that f is a closed map. Indeed, if F C X is closed then f[F] is a countably compact subset of Y and as such it is
closed in Y because Y is first countable and 75.

Next we show that for any set A C X we have

|AN FH(F1A)] < o,

where, as usual, A’ denotes the derived set of all limit points of the set A. To see this, we first note that by our above
remark f[A’]is closed and hence a G set in Y. Thus we may write

FIAT= (G n < ),

where each set G, is open in Y. Consequently, we have
S A =G n < ).

Now, for each n < @ we have A’ C f~!(G,), hence the countable compactness of X implies that A \ f “1(G,) is
finite, consequently

A\ A =AY G n < o)

is indeed countable.

Let us assume now that Y is uncountable. We claim that in this case for every discrete subspace D of X there is a
closed set F C X \ D such that f[F] is uncountable as well.

To see this, we distinguish two cases. First, if f [D] is countable then Y \ f [D] is an uncountable F,-set, hence
clearly there is an uncountable closed set Z in Y that is disjoint from f[D]. Obviously, then F = f~1(Z) is as
required. (In this case we have not used that D is discrete.)

If, on the other hand, f [D] is uncountable then by the previous observation we have |D \ f —I¢ fID'D| < w, hence
| f[D]| = | f[D']] > w. But ‘D is discrete’ just means that D N D’ = {, hence in this case we may simply set F = D'.

Now assume that we have dis(X) = w, hence

X:U{Dn: n < w}

where each D, is a discrete subspace of X. Our aim is to show that in this case Y is countable. Indeed, if this
were false then, using the above claim, we could define by a straightforward recursion a decreasing sequence
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(Fp: n < w) of closed subsets of X such that F,, N D, =@ and f[F,] is uncountable for each n < w. But then
we have (\{F,: n < w} # ¥ as X is countably compact, contradicting that X is covered by the D,’s. We have thus
established the second part of the theorem, namely that dis(X) = w implies |Y| < w.

So now we turn to the first (main) part. Let us start by noting that every countable closed subset of X is in fact
compact. However, it is well known that any countable compact 7> space is homeomorphic to a (countable successor)
ordinal (taken, of course, with its natural order topology). With this in mind, we introduce here the following piece of
notation: If Z is any topological space that is homeomorphic to some ordinal then «(Z) will denote the smallest such
ordinal. We are going to make use of the following easy to prove fact: If «(Z) is a successor ordinal then there is a
point z € Z such that

a(Z\{z}) <a(2).

Let us now denote by 7 (£) the following statement: For every continuous surjection f from a countably compact
T» space X onto a perfect 73 space Y we have

{yeY: a(f'()) <&} <disX).

Since in this part of the proof we may assume that dis(X) > w, it will clearly suffice to prove that 7 (¢) holds for all
countable ordinals &. Indeed, this is so because if f~!(y) is countable then ar( f ~'y) exists and is a countable ordinal.

Of course, the proof will proceed by transfinite induction. Since a(f~!(y)) is always a successor, the limit steps
of the induction are trivial. So assume now that § =n + 1 and I () is valid. We want to show that then so is 7(§).
Assume, indirectly, that this is not the case, hence

{yeY: a(f' () =¢}| > dis(X).

Let Z be the set that appears on the left-hand side of this inequality. For each y € Z we have a(f ' (y)) =€ =n+ 1
and hence we may pick by the above remark a point xy € f ~1(y) such that

a(f7 o)\ {xy) <.

Since |Z| > dis(X) we may clearly find a subset Zy C Z with |Zg| > dis(X) such that D = {x,: y € Zo} is a discrete
subspace of X. Recall that we have |D \ f_l(f[D’])| < w, hence if we set Z; = f[D]N f[D’] then Z; C Zy and
|Zo\ Z1| < w, consequently we have |Z| = |Zg| > dis(X).

Let us now consider the restriction g of the map f to the closed subspace D’ of X. Then g is a continuous surjection
from D’ onto f[D'], hence the inductive hypothesis I () may be applied to it to conclude that

[{y e FID1: a(g™" () <n}| < dis(D") < dis(X).
On the other hand, we have f[D’] D Z; and foreach y € Z;,

g M TN Iy}

holds because DN D’ = (. But then, by the choice of xy,forall y € Z; we have oz(g_1 ()) < 1. This is a contradiction
since |Z1| > dis(X).
This contradiction completes the proof of the transfinite induction and with it the proof of our theorem. O

Assume now that X is a crowded first countable compactum with dis(X) < ¢, i.e. a counterexample to Problem 4.
Then any uncountable closed subspace of X is of cardinality ¢ and non-scattered. Hence it is an immediate corollary
of Theorem 6 that if e.g. f is any continuous surjection of X onto the interval [0, 1] (and such maps always exist) then
for almost all (more precisely: for all but dis(X) many) points r € [0, 1] we have | f _l(r)| = ¢. In some, admittedly
non-precise, sense this means that a counterexample to Problem 4 must be “complicated”.
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