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Abstract

Eric van Douwen [5] produced a maximal crowded extremally disconnected regular
space and showed that its Čech–Stone compactification is an at most two-to-one image of
βN. We construct for any n = 3 an example of a compact crowded space Xn that is an
image of βN under a map all of whose fibers have either size n or n− 1. We also show
that under CH this is best possible.

1. Introduction

All spaces considered here are Tychonoff. A function f : X → Y is (5)n-
to-one if for each y ∈ Y , there are (5)n points of X that map to y. Levy [15]

asked whether there is a separable 2-to-one image of N
∗, the Stone–Čech

remainder of the discrete space of natural numbers N. It was shown recently
by Dow and Techanie [11] that a 2-to-one continuous image of N

∗ must be
N
∗ under CH. Dow proved in [7] that under PFA, all 2-to-one images of N

∗

are trivial.
Levy’s question was partially answered by a striking result of van Douwen

[5]: there exists a crowded 5 2-to-one continuous image of βN. The restric-
tion of the van Douwen map to N

∗ is a 5 2-to-one map from N
∗ onto a
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separable crowded space. This result is highly counter-intuitive since N
∗ is

big and a 5 2-to-one map should not make a big space small. The restric-
tion of the van Douwen map to N is a 1-to-one map onto a crowded space
X whose topology is maximal among all crowded topologies on X. Such
a space is a countable van Douwen space. That this is striking, is obvi-
ous once one realizes that X is regular. Additional results on van Douwen
spaces were obtained recently by Dow [6]. He proved among other things

that it is consistent that there exist two van Douwen spaces whose Čech–
Stone compactifications are not homeomorphic (in fact one of them, in ZFC,
is the absolute of the Cantor cube 2c and the other one, consistently, is
ω-bounded).

In this paper we will present many van Douwen spaces that are dense
subsets of the absolute E(2c) of the Cantor cube 2c. In fact, we will char-
acterize the countable dense subspaces of 2c that can be ‘lifted’ to a van
Douwen space. In the following result, let p2c denote the ‘unique’ irreducible
map E(2c) � 2c.

Theorem 1. Let X be a countable dense subset of 2c. Then the following
statements are equivalent:

(1) There is a van Douwen space X ′ in E(2c) such that p2c(X ′) = X,

(2) X is open-hereditarily irresolvable.

We will use this result to present for every n = 3, an example of a 5 n-
to-one map from βN onto a crowded space. If fact, the fibers of the map
have either size n or n− 1. We also show that under CH, this is best possible
by proving that if f : βN → X is a 5 n-to-one continuous surjection onto a

crowded space X, then there is a point x ∈ X such that
∣

∣f−1(x)
∣

∣ 5 n − 1.

2. Notation

All maps considered here are continuous. Let f : X → Y be a surjective
map between compacta. As usual, we call f irreducible if for every proper
closed subset A of X we have that f(A) is a proper subset of Y . This is
easily seen to be equivalent to the following statement: if U is any nonempty
open subset of X, then there is an open subset V of Y such that f−1(V ) is
a dense subset of U . If f : X → Y is irreducible, then D j X is nowhere
dense in X if and only if f(D) is nowhere dense in Y . Let f : X → Y be a
surjective map between compacta. An easy Zorn’s Lemma argument shows
that a surjective map between compacta can always be restricted to a closed
subset of its domain on which it is irreducible.

If X is a compact space, then there is an extremally disconnected com-
pact space E(X) which admits an irreducible map pX : E(X) → X. The
space E(X) is called the absolute of X, and its is known to be the topolog-
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ically unique extremally disconnected compactum admitting an irreducible
map on X. For details, see e.g., Porter and Woods [17].

A nonempty space is crowded if it has no isolated points. And a space
is nodec if all of its nowhere dense subsets are closed (and hence discrete).
A space X is irresolvable if it is crowded and no dense subset has dense
complement. A space is open-hereditarily irresolvable if it is crowded and
every nonempty open subset is irresolvable. Finally, a space is hereditarily
irresolvable if it is crowded and every crowded subspace of it is irresolvable.

A crowded space X is called van Douwen if its topology is maxi-
mal among all crowded topologies (no separation axioms required on these
topologies) on X. (The tricky thing about van Douwen spaces is of course
that their topologies are regular.) The following result characterizes the van
Douwen spaces. It nicely splits the maximality of the topology in three ‘in-
dependent’ pieces. (We remind the reader that all spaces considered here
are Tychonoff.)

Theorem 2 (van Douwen [5, Theorem 2.2]). For a crowded space X
the following are equivalent:

(1) X is van Douwen,

(2) X is extremally disconnected, open-hereditarily irresolvable, and nodec.

By using an interesting and nontrivial Zorn’s Lemma argument, van
Douwen [5, Example 3.3] proved that there are countable van Douwen spaces.
In §3 of the present paper, we will prove by a different technique that there
are ‘many’ van Douwen spaces which are dense in the absolute of the Can-
tor cube 2c. It is interesting to note that no dense subspace of the Cantor
cube itself can be extremally disconnected.

If Y is a space with subspace X then

N(X) =
⋃

{D : D is a countable discrete subset of X}.

Observe that X j N(X). We call a point of N(X) a near-point of X. Put
F (X) = Y \ N(X). Then F (X) consists of all the far-points of X.

If Y is a space with subspace X, then a point y ∈ Y \ X is said to be

remote from X provided that x /∈ E for any nowhere dense subset E of X.
Observe that if X is countable and nodec, then remote and far are equivalent
notions. Also observe that if x is remote from X, then x is remote from any
subspace of X.

The following triviality is the key to our construction.

Lemma 3. Let X be a space. Suppose that every x ∈ X is remote from
X \ {x}. Then X is nodec.

In the context of Čech–Stone compactifications, near-points and remote
points are very well studied in the literature. Van Douwen [4] and, indepen-
dently, Chae and Smith [2] proved that if X is a nonpseudocompact space
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with countable π-weight, then X∗ = βX \X contains a point that is remote
from X. This result was generalized to products of such spaces by Dow [8].
There are also many spaces without remote points, but it is not the place
here to go into that.

3. Proof of Theorem 1

We will now present the proof of Theorem 1. It will be convenient to
break it up into several pieces. We first prove the easiest part of the theo-
rem, i.e., the necessity of X being open-hereditarily irresolvable if X ′ is van
Douwen.

Lemma 4. Let X ′ j E(2c) be such that X = p2c(X ′) is dense in 2c. Then
X ′ is open-hereditarily irresolvable if and only if X is.

Proof. Since p2c is irreducible, X ′ is dense in E(2c), and hence crowded.
Assume now first that X ′ is open-hereditarily irresolvable. Let U be a non-
empty open subset of X. If A is a dense subset of U , then p−1

2c (A) ∩ X ′ is a

dense subset of p−1
2c (U) ∩ X ′ by irreducibility of p2c , hence (p−1

2c (U) ∩ X ′) \

p−1
2c (A) is not dense in X ′, which means that U \ A is not dense in U , again

by irreducibility. This proof obviously works both ways. �

Corollary 5. Let X ′ j E(2c) be countable and nodec such that X =
p2c(X ′) is dense in 2c. If X is open-hereditarily irresolvable then X ′ is van
Douwen.

Proof. Clearly, X ′ is dense, since X is and p2c is irreducible. Therefore
X ′ is extremally disconnected since it is a dense subspace of an extremally
disconnected space. So we are done by Theorem 2 and Lemma 4. �

We now prove the other part of our theorem. In fact, we prove a slightly
more general result than strictly needed. However, this will be precisely
what we need in §4. To begin with, we first prove a result that in our opinion
is of independent interest.

Lemma 6. Let S be a closed nowhere dense Gδ-set in 2c. Then for every
x ∈ S there is an element x′ ∈ p−1

2c (x) such that x′ is remote from p−1
2c (2c \S).

Proof. We will first prove the weaker statement that there are y ∈ S
and y′ ∈ p−1

2c (y) such that y′ is remote from p−1
2c (X), where X = 2c \ S. In-

deed, there are a countable set A j c and a closed subset T j 2A such that

S = π−1
A (T ). Here πA : 2c → 2A denotes the projection. Observe that T is

nowhere dense in 2A, and that

(2A \ T ) × 2c\A = X.
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Hence, by Dow [8, Theorem 2.5], there is a point z ∈ βX that is remote
from X. Let f : βX → 2c be the natural map. Observe that f is irreducible,
hence E(βX) = E(2c). In fact, since the composition of two irreducible maps
is irreducible, it is clear that

p2c = f ◦ pβX .

Pick an arbitrary point y′ ∈ p−1
βX(z) (in fact, since z is remote from X, it is

easily seen that p−1
βX(z) is a single point). Observe that y′ is remote from

p−1
βX(X) = p−1

2c (X) since pβX is irreducible. So we conclude that if y = f(z),

then y ∈ S, y′ ∈ p−1
2c (y) and is remote from p−1

2c (X).
To end the proof, we first claim that we may assume without loss of

generality that T ≈ 2ω. This can be achieved quite easily by, if necessary,
enlarging A with countably infinitely many elements and by using the trivial
fact that the product of any compact zero-dimensional metrizable space with
2ω is homeomorphic to 2ω.

Next, we claim that for every s ∈ S there is a homeomorphism ξ : 2c → 2c

such that ξ(S) = S and ξ(s) = y. Indeed, let sA = πA(s) and yA = πA(y),
respectively. Since T ≈ 2ω, there is a homeomorphism η : T → T such that
η(sA) = yA. Since T is nowhere dense in 2A, by a well-known homeomor-
phism extension theorem by Knaster and Reichbach [13], we may extend η

to a homeomorphism η̄ : 2A → 2A. Now let B = c \ A, and πB : 2c → 2B

be the projection. If sB = πB(s) and yB = πB(y), then there clearly is a

homeomorphism θ : 2B → 2B such that θ(sB) = yB. Then ξ = η̄ × θ is as
required.

Now pick an arbitrary s ∈ S, and let the homeomorphism ξ be as above.
Simply observe that there is a homeomorphism E(ξ) of E(2c) such that the
diagram

E(2c)
E(ξ)

−−−−→ E(2c)

p2c





y





y

p2c

2c −−−−→
ξ

2c

commutes. Then s′ = E(ξ)−1(x) ∈ p−1
2c (s) and is clearly remote from p−1

2c (X)
since E(ξ) is a homeomorphism. �

This leads us to the result we are after.

Corollary 7. Let X be a countable dense subset of 2c. Then there
is a dense nodec subspace X ′ j E(2c) such that p2c(X ′) = X and p2c�X ′ is
1-to-one.
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Proof. Let {Sx : x ∈ X} be a pairwise disjoint collection of closed Gδ-
subsets of 2c such that x ∈ Sx for every x ∈ X. Observe that every Sx is
evidently nowhere dense. Now for every x ∈ X, pick, by Lemma 6, a point
x′ ∈ p−1

2c (x) such that x′ is remote from p−1
2c (2c \ Sx). We claim that X ′ =

{x′ : x ∈ X} is as required. To this end, pick an arbitrary x ∈ X. Then

K =
{

y′ : y ∈ X \ {x}
}

is a subset of p−1
2c (2c \ Sx), so x′ is remote from K.

Hence X ′ is nodec by Lemma 3. That X ′ is dense is obvious from the fact
that p2c is irreducible. �

To see that the proof of Theorem 1 is indeed complete, let X be a
countable open-hereditarily irresolvable subspace of 2c, and let X ′ be as in
Corollary 7 for X. Then X ′ is nodec and open-hereditarily irresolvable by
Lemma 4. So X ′ is a van Douwen space by Corollary 5. On the other hand,
if X ′ is van Douwen, then it is open hereditarily-resolvable by Theorem 2,
hence X is, again by Lemma 4.

Theorem 1 would be useless if there were no open-hereditarily irresolv-
able dense subsets of 2c. Fortunately, there are many such subspaces. In-
deed, Zorn’s Lemma implies that an independent family of infinite subsets
of N can be extended to a maximal independent family. It is well-known
that an independent family of cardinality c corresponds directly to a count-
able dense subset of 2c, which, if the family is maximal, will be irresolvable.
Also, Alas, Sanchis, Tkac̆enko, Tkachuk, and Wilson [1] present in Theo-
rem 2.3 of their paper an example of a countable dense irresolvable subspace
X of 2c. By van Douwen [5, Fact 3.1], X contains a nonempty open hered-
itarily irresolvable subspace, say U . Let U ′ be an open subspace of 2c such
that U ′ ∩X = U , and let C be a nonempty clopen subset of 2c contained in
U ′. Since C ≈ 2c, we are done since U ∩ C is a countable dense hereditarily
irresolvable subspace of C.

The proof of Corollary 7 would be simpler, if we could pick for every
x ∈ 2c a point x′ ∈ p−1

2c (x) that is remote from p−1
2c

(

2c \ {x}
)

. But this is

unfortunately not possible, as the next argument shows (alternatively, use
the main result in Terada [19]). Fix x ∈ 2c, and let σ be a maximal cellular
family of clopen subsets of 2c \ {x}. Put S = 2c \

⋃

σ. We claim that

p−1
2c (x) j p−1

2c

(

S \ {x}
)

,

which is as required since p−1
2c

(

S \ {x}
)

is a nowhere dense subset of p−1
2c

(

2c \

{x}
)

. To prove this, assume that U is a clopen subset of E(2c) that inter-

sects p−1
2c (x) but misses p−1

2c

(

S \ {x}
)

. Then p2c(U) is a regular closed sub-

set of 2c that contains x but misses S \ {x}. Since σ is countable, S is a
Gδ-subset of 2c. And so is p2c(U) being a regular closed set in 2c. Since
S ∩ p2c(U) = {x}, this violates x having uncountable character.

Not every countable space can be ‘lifted’ to a nodec space in the ab-
solute of its own Čech–Stone compactification, as the following trivial ex-
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ample shows. Let X be a countable van Douwen space, let Y = ω × X, and
fix a point x ∈ X. In the space βY , pick any point q ∈ Y ∗ that is a limit
point of ω × {x}. Then Y ′ = Y ∪ {q} cannot be ‘lifted’ to a nodec space in
E(βY ′). This becomes clear once one realizes that Y ′ is extremally discon-
nected, hence the absolute of βY ′ = βY is βY .

4. The examples

Van Douwen [5] constructed his example by a Zorn’s Lemma argument.
We were unable to get our examples in a similar way. Instead, we use The-
orem 1.

Our aim is to construct for every n a space having a family of n dense van
Douwen subspaces A that are ‘far’ from one another, i.e, N(A)∩N(A′) = ∅
for all distinct A, A′ ∈ A.

Let X be any countable dense open-hereditarily irresolvable subspace of
2c, see §3. Let x0 = 0, the point in 2c having all coordinates equal to 0.
Assume that x0, . . . , xi have been defined. Let xi+1 be any point in 2c \
⋃

j5i(xi + X). Then

X = {xi + X : i < ω}

is a pairwise disjoint collection dense homeomorphic copies of X in 2c (in
fact, one can continue in this way to get 2c dense homeomorphic copies of X
in 2c). Now fix n, and for every i 5 n − 1, let Xi = xi + X. By Corollary 7,
there is a countable nodec subspace Y of E(2c) such that π2c(Y ) =

⋃

i<n Xi.
Pick Yi in Y such that p2c(Yi) = Xi. Then Yi is nodec, being a subspace
of a nodec space. Hence Yi is van Douwen by Corollary 5. To see that
N(Yi) ∩ N(Yj) = ∅ if i 6= j, simply observe that disjoint countable discrete
subsets of Y will have disjoint closures in βY = E(2c) since Y is normal and
nodec.

Now let fi : N → Yi be a bijection, and let φi : βN → βY be its Stone ex-
tension. Since βYi = βY , and Yi is van Douwen, it follows by van Douwen [5,
Theorem 4.9] that

(I) if x ∈ N(Yi), then
∣

∣φ−1
i (x)

∣

∣ = 2,

(II) if x ∈ F (Yi), then
∣

∣φ−1
i (x)

∣

∣ = 1.

The topological sum of n + 1 copies of βN is βN, and consequently maps
onto βY by a map gn having the following properties:

(III) if x ∈
⋃

i5n N(Yi), then
∣

∣g−1
n (x)

∣

∣ = n + 2,

(IV) if x ∈ F (Y ), then
∣

∣g−1
n (x)

∣

∣ = n + 1.

This completes the construction of the examples.
Note that the construction ensures that F (Y ) is not empty. Therefore,

we have actually proven something stronger.
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Theorem 8. For each n = 2, there is a map from βN onto E(2c) such
that every fiber has size either n or n − 1 and each are realized.

5. The nonexistence of n-to-one images

We now prove that, under CH, the examples constructed in the previous
section are optimal.

Theorem 9 (CH). Let f : βN → K be (5)n-to-one, where K is crowded.

Then there is a point x ∈ K such that
∣

∣f−1(x)
∣

∣ 5 n − 1.

Proof. Put X = f(N). It is clear that f(N∗) = K, hence there is a
closed subset E of N

∗ on which f is irreducible. Put φ = f�E, and Q =
φ−1(X). Since φ is irreducible, Q is dense in E. Also observe that E is
crowded, hence so is Q.

Let S be a nonempty closed Gδ-subset of E which is contained in E \Q.
In addition, let A be a clopen partition of βN into nonempty sets such that
|A| = n. Put

N(A) = f−1

(

⋂

A∈A

f(A)

)

.

Claim 1. S 6j N(A).

Pick A ∈ A such that S ∩A 6= ∅. Replacing S by S ∩A, we may assume
that S j A. Since φ is irreducible, there is an open subset V of K such that

φ−1(V ) is a dense open subset of A ∩ E. Observe that A = A ∩ N, hence

(1) V j f(A) = f(A ∩ N) j f(A ∩ N).

Let {Ui : i < ω} be a decreasing sequence of clopen subsets of A ∩ E such
that

⋂

i<ω Ui = S. For every i, the set Ui ∩ φ−1(V ) is nonempty, hence there

is a nonempty open subset U ′
i of V such that φ−1(U ′

i) j Ui. By (1), we may

pick an element ai ∈ A such that f(ai) ∈ U ′
i . Then ∅ 6= φ−1

(

f(ai)
)

j Ui,

hence we may pick a point di ∈ φ−1
(

f(ai)
)

. Put D = {di : i < ω}.
We make a few observations.

(I) f(di) = f(ai) for every i. This is clear.

(II) D \ D j S. This is clear since the sequence of Ui’s is decreasing.
Hence D is a closed and discrete subset of Q. Since Q is crowded, this
implies that D is a nowhere dense subset of E.

(III) φ(D) is nowhere dense in K. This is clear by (II) and the fact that φ
is irreducible.
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Put V = {ai : i < ω}. Then f(V ) = φ(D). We will prove that V ∩ E =

∅. Striving for a contradiction, assume that V ∩E 6= ∅. Since V is clopen in
βN, and φ is irreducible, there is an open subset W of K such that φ−1(W )

is a dense open subset of V ∩ E. But this is impossible since

∅ 6= W j f(V ) j f(V ) = φ(D) j φ(D),

and φ(D) is nowhere dense in K by (III).

Now to finish the proof of the claim, pick an arbitrary point p ∈ D \ D.

Then φ(p) ∈ φ(D) = f(V ). Since V ∩ E = ∅, it consequently follows that

|f−1
(

f(p)
)

∩ A| = 2. But this means that p /∈ N , as required.

Since the weight of βN is c, we may by CH list all nonempty clopen
subsets of βN as {Bα : α < ω1}. We assume without loss of generality that
B0 = βN. In addition, we may list all the clopen partitions of βN into n
nonempty sets as {Aα : α < ω1}. Let S0 be any closed Gδ-subset of E that
misses Q. By transfinite induction on α < ω1, we will construct a nonempty
closed Gδ-subset Sα of E having the following properties:

(1) if β < α then Sα j Sβ ,

(2) either Sα j Bα or Sα ∩ Bα = ∅,

(3) Sα ∩ N(Aα) = ∅.

The construction is a triviality. Assume that Sβ has been defined for all
β < α. Put S =

⋂

β<α Sβ . Then S is a nonempty closed Gδ-subset of E. By

Claim , there is an element p ∈ S \ N(Aα). Since N(Aα) is closed, there is
a clopen neighborhood of p that misses N(Aα) and has the property that it
either misses Bα or is contained in it. Put Sα = C ∩ S. It is clear that Sα

satisfies our inductive hypotheses.
By (1) and (2), there is a unique point x ∈

⋂

α<ω1
Sα. We claim that

|f−1
(

f(x)
)

| 5 n− 1. If not, then there exists α < ω1, such that x ∈ N(Aα).

But this contradicts (3) since x ∈ Sα. �

6. Remarks

Reversing the order. The order in which the van Douwen’s space is created
by Zorn’s Lemma is quite interesting. First a maximal regular space is con-
structed, and then some points are removed to get a maximal space (that is
obviously regular being a subspace of a regular space). By doing things in
opposite order, one can get into serious troubles, as the next example shows.

Let Seq = N
<ω be the set of finite sequences of elements of N, and let

p ∈ N
∗. Then a set U j Seq is open if for every t ∈ U the set {n ∈ N :
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tan ∈ U} belongs to p. Let τ denote the topology on Seq. Then τ is regular,
extremally disconnected, and crowded, see for example [9] for more infor-
mation. There are a few statements about τ that are very useful. First, if
t ∈ N

<m, then the neighborhood trace of t on N
m is an ultrafilter. Second,

if Y j Seq and t ∈ Seq then t is in the τ -closure of A if and only if there is
an n such that t is in the τ -closure of N

n ∩ Y .
Now we strengthen τ by also declaring, for each A /∈ p, the set

⋃

n∈A N
n

to be closed. Let ρ denote the resulting topology. Then ρ is crowded, and
evidently satisfies the following:

Lemma 10. If Y j Seq and t ∈ Seq, then t is in ρ-closure Y if and only
if {n : t is in τ -closure of N

n ∩ Y } ∈ p.

Therefore, no t ∈ Seq is in the ρ-closure of two disjoint subsets of Seq,
i.e., ρ is maximal. But ρ cannot be used to construct a maximal topology
that is regular.

Lemma 11. No crowded subset of Seq is regular.

Proof. Let A j Seq be crowded. Then A is open by maximality. Pick
an arbitrary element t ∈ A. We may assume without loss of generality that
t = ∅. Then A′ = A \ N

1 is a neighborhood of ∅. Let B be a neighborhood
of ∅ that is contained in A′. We may assume that B has the form

C \
⋃

n∈D

N
n,

where C is a τ -open neighborhood of ∅ and D /∈ p. There is an element
E ∈ p such that

{∅an : n ∈ E} j C.

Now take any n ∈ E. Then, clearly, n = ∅an belongs to the τ -closure of
C ∩ N

m, for every m > 1. Hence n belongs to the τ -closure of C ∩ N
m for

every m ∈ N \
(

D ∪ {1}
)

∈ p. But this implies by lemma 10 that n belongs
to the ρ-closure of B. �

Idempotents in βN. Van Douwen spaces have surfaced at an unexpected
place. It was shown by Protasov, that there is an ultrafilter p ∈ N

∗ such that,
among other things, p is an idempotent such that the set {p+n : n ∈ N} is a
van Douwen space. This is easily deduced (and known) from the comments
immediately following Theorem 3.9 of Hindman and Strauss [12]. So there
is an example of a homogeneous van Douwen space in ZFC.

Homogeneous van Douwen spaces. We do not know whether we can pick X
in Corollary 7 in such a way that X ′ can be homogeneous. The first naive
and obvious thing one thinks of is the following. Let X be a subgroup of
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2c, pick a point in E(2c) remote in the sense of Lemma 6, and ‘translate
it around in E(2c)’ to ensure homogeneity of X ′. But this does not work
since no infinite Abelian totally bounded topological group is irresolvable
by a result of Comfort, Gladdines and van Mill [3]. This leads us to the
following question: can there be a dense homogeneous van Douwen space in
E(2c)? Observe that there are consistent examples of van Douwen groups
by Malyhin [16]. And that there are homogeneous van Douwen spaces in
ZFC by the result of Protasov just quoted.

The character of van Douwen spaces. The van Douwen spaces constructed
in this paper are dense subspaces of E(2c), and hence have character c. It
would be interesting to have a consistent example of a van Douwen space
with character less than c.

The π-character of van Douwen spaces. The van Douwen spaces constructed
in this paper are dense subspaces of E(2c), and hence have π-character c.
There are consistent examples of van Douwen spaces that have π-character
less than c. This follows from the following observations. As usual, i denotes
the least cardinal of a maximal independent family of infinite subsets of ω.
By the same arguments as in §3, 2i contains a countable dense hereditar-
ily irresolvable space, hence E(2i) contains a countable dense van Douwen
space. Now all one needs to do is to apply the result in Kunen [14, VIII, Ex-
ercise A13] (see also Shelah [18] for a stronger result) that there is a model

where i < c. So consistently, 2c and 2i are non-homeomorphic Čech–Stone
compactifications of van Douwen spaces. For many more such examples, see
Dow [6].

Uncountable van Douwen spaces. For which cardinals κ can there exist a
ccc van Douwen space of density κ? The techniques in this paper can be
modified to produce examples up to density c and other uncountable van
Douwen spaces with greater density [10].

Other point pre-images. It would be interesting to further explore finite to
one maps from βN. Specifically, it would be interesting to determine which
finite sets F j N have the property that there is a map f from βN onto a

crowded space K, such that F = {
∣

∣f−1(y)
∣

∣ : y ∈ K}.
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