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Abstract. It is proved that the countably infinite power of com-
plete Erdős space Ec is not homeomorphic to Ec. The method by
which this result is obtained consists of showing that Ec does not
contain arbitrarily small closed subsets that are one-dimensional
at every point. This observation also produces solutions to sev-
eral problems that were posed by Aarts, Kawamura, Oversteegen,
and Tymchatyn. In addition, we show that the original (ratio-
nal) Erdős space does contain arbitrarily small closed sets that are
one-dimensional at every point.

1. Introduction

In [10] Paul Erdős considered the space E consisting all vectors in
the Hilbert space `2 all of whose coordinates are rational and proved
that this space is totally disconnected but not zero-dimensional. The
space that is the primary subject of this note consists of all vectors
in Hilbert space with only irrational coordinates and is referred to as
complete Erdős space Ec.

The spaces E and Ec are important examples of almost zero-
dimensional spaces, a concept that was introduced by Oversteegen and
Tymchatyn [13] who proved that such a space is always at most one-
dimensional. We will call a space X almost zero-dimensional if every
point x ∈ X has arbitrarily small neighbourhoods U that can be writ-
ten as an intersection of clopen subsets of the space. Note that it is
immediate that almost zero-dimensionality is hereditary and produc-
tive. The definition given here is easier to work with than the definition
in [13] where there is the additional requirement that U have a dense
interior. We verify in §6 that both definitions are equivalent.
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It is clear that Ec is homeomorphic to its own square (hence En
c ≈ Ec

for every n ∈ N). The aim of this note is to prove that Ec is not home-
omorphic to its countably infinite power ENc , that is, Ec is unstable.
We accomplish this by showing in §3 that Ec does not contain arbi-
trarily small closed sets that are one-dimensional at every point. This
result enables us also to prove that several questions in the literature
can be answered negatively. For example, Ec is not the only homo-
geneous, almost zero-dimensional, one-dimensional, topologically com-
plete, and pulverized space. In addition, Ec is not homeomorphic to
the homeomorphism group of the hairy arc, and not homeomorphic to
the homeomorphism groups of the universal Menger continua, see §4.
These observations solve problems that were posed by Aarts, Kawa-
mura, Oversteegen, and Tymchatyn, see [2, 11, 12]. Interestingly, we
prove in §5 that the rational Erdős space E does contain arbitrarily
small closed sets that are one-dimensional at every point.

2. Preliminaries

Every topological space in this note is assumed to be separable and
metrizable. We let Q denote the subspace of rational numbers of the
real line R. Let P = R \ Q, the space of irrational numbers, and let I
stand for the interval [0, 1].

It is easy to see that Ec is almost zero-dimensional. We will now
present the argument in a form that we will use in the proof of The-
orem 3.1. Consider the topological vector space RN with the product
topology and define the Hilbert norm from RN to [0,∞] by

‖x‖ =

√∑∞
i=1

x2
i

for any x = (x1, x2, . . . ) ∈ RN. It is well-known that ‖ · ‖ is a lower
semicontinuos (LSC) function on RN, that is, {x ∈ RN : ‖x‖ ≤ M}
is closed for every M ∈ [0,∞]. Hilbert space `2 is defined as the
vector space {x ∈ RN : ‖x‖ < ∞} equipped with the topology that is
generated by the norm ‖ · ‖.

Let α : `2 → RN be the continuous injection defined by α(x) = x.
Put

Ec = {x ∈ `2 : α(x) ∈ PN}
and note that this space is a Gδ-subset of `2 and hence topologically
complete. Since the norm is LSC on RN the closed neighbourhood

Bε(x) = {y ∈ Ec : ‖y − x‖ ≤ ε}
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has the property that α(Bε(x)) is closed in PN for each x ∈ Ec and
ε > 0. Since PN is a zero-dimensional space this shows that Ec is
almost zero-dimensional.

Erdős’ proof [10] of the one-dimensionality of the original Erdős space
applies also to Ec and shows that the empty set is the only bounded
clopen subset of Ec, see also Dijkstra [8, Lemma 1]. This means that if
we add a point ∞ to Ec whose neighbourhoods are the complements of
bounded sets then the resulting space Ec∪{∞} is connected. We call a
space connectible if it can be imbedded into a connected space in such a
way that the remainder is a singleton. In [11] a totally disconnected but
connectible space is called pulverized . A space is called somewhere zero-
dimensional if it contains a point with a neighbourhood basis consisting
of clopen sets. The following facts are easily verified: a connectible
space cannot be somewhere zero-dimensional, an open subspace of a
connectible space is connectible, and the product of any space with a
connectible space is connectible.

3. Ec and ENc

In this section we will show that Ec and ENc are not homeomorphic.

Theorem 3.1. Every bounded, closed, and nonempty subset of Ec is
somewhere zero-dimensional.

Proof. Let ρ be a complete metric on Ec such that diamρ Ec ≤ 1. Let
X be closed subset of Ec that is bounded and nonempty. Choose an
M > 0 such that

X ⊂ B = {x ∈ Ec : ‖x‖ ≤ M}
and note that α(B) is a topologically complete space, being a closed
subset of PN. We construct by induction a sequence of nonempty clopen
subsets C0 ⊃ C1 ⊃ · · · of X such that for each n, diamρ Cn ≤ 2−n.

Put C0 = X. Assume now that Cn has been found. The open set
Ec\Cn can be written as a union of a countable collection of closed balls
{Fi : i ∈ N} so that each α(Fi) is closed in α(Ec), see §2. Consequently,
α(Cn) is a Gδ-subset of α(B) and hence α(Cn) is topologically complete.
Choose for every x ∈ Cn an ε(x) > 0 such that U(x) = Cn∩Bε(x)(x) has
the property diamρ U(x) ≤ 2−n−1. Select a countable set {xi : i ∈ N}
in Cn such that Cn =

⋃∞
i=1 U(xi). Observe that each α(U(xi)) is closed

in α(Cn) because each α(Bε(x)) is closed in PN. By the Baire Category
Theorem we have that some α(U(xi)) has a nonempty interior in α(Cn).
Since α(Cn) is zero-dimensional this means that α(U(xi)) contains a
nonempty clopen subset K of α(Cn). Note that Cn+1 = α−1(K) is a
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nonempty clopen subset of Cn and hence of X. Since Cn+1 ⊂ U(xi) we
have diamρ Cn+1 ≤ 2−n−1 and the induction is complete.

Since ρ is complete and X is closed we have that
⋂∞

n=0 Cn = {x} for
some x ∈ X and obviously the Cn’s form a neighbourhood basis for x
in X.

The topological property that we will use to distinguish Ec from a
number of other pulverized topologically complete spaces is that every
point in Ec has a neighbourhood U such that every nonempty closed
subset of U is somewhere zero-dimensional, in particular, U fails to
contain a closed copy of Ec.

It is known that Ec is a homogeneous space (cf. Proposition 4.3) and
Kawamura, Oversteegen, and Tymchatyn pose the following question
in [11, Problem 1]: is every almost zero-dimensional, one-dimensional,
topologically complete, pulverized, homogeneous space homeomorphic
to Ec? The following result shows that the answer is no.

Corollary 3.2. ENc is not homeomorphic to Ec.

Proof. We have that every subset of ENc with a nonempty interior
contains closed copies of the space itself namely sets of the form
{(x1, x2, . . . , xn)} × ENc .

It can be derived from results in [11] and [13] that Ec is a uni-
versal space for the class of almost zero-dimensional spaces, cf. [9].
Let X be an arbitrary nonempty almost zero-dimensional complete
space. We then can identify X with a subspace of Ec and we can write
X =

⋂∞
i=1 Oi where every Oi is open in Ec. X can now be imbedded

as a closed subset (namely the diagonal) of
∏∞

i=1 Oi. This product is
homeomorphic to ENc because it was proved in [11, Theorem 4] that ev-
ery nonempty open subset of Ec is homeomorphic to Ec. In conclusion,
every subset of ENc with a nonempty interior contains a closed copy of
every almost zero-dimensional complete space, where as Ec obviously
does not contain a closed copy of ENc . This means that ENc is “more
universal” than Ec and a better candidate for being the “maximal”
element of the class of almost zero-dimensional complete spaces.

It is obvious that Ec×Ec is homeomorphic to Ec. The Hilbert product
`2(Ec) of Ec is defined as the set {x ∈ ENc :

∑∞
i=1 ‖xi‖2 < ∞} equipped

with the topology that is generated by the metric
√∑∞

i=1 ‖xi − yi‖2.
Note that `2(Ec) is homeomorphic to Ec.

The following result answers a question that was also posed in [11,
p. 98]: is every pulverized and dense Gδ-subset of Ec homeomorphic to
Ec?
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Corollary 3.3. There exists a connectible and dense Gδ-subset of Ec

that is not homogeneous.

Proof. Let a be some fixed element of Ec. Consider the dense Gδ-subset
G × Ec of Ec × Ec, where G = {x ∈ Ec : 1/‖x − a‖ /∈ N}. Since Ec is
connectible we have that G × Ec is connectible as well. Note that for
each n ∈ N, the set Vn = {x ∈ Ec : 1/(n+1) < ‖x−a‖ < 1/n} is clopen
in G and open in Ec, so Vn is connectible. Thus every neighbourhood of
a point (a, x) in G×Ec contains a connectible and closed Vn×{x} (and
hence G×Ec is not homeomorphic to Ec). Since (G\{a})×Ec is open
in Ec × Ec every point of that set has a neighbourhood that contains
only closed nonempty sets that are somewhere zero-dimensional. So
G× Ec is not homogeneous.

4. Homeomorphism groups

We will now consider some interesting homeomorphism groups that
are almost zero-dimensional but not zero-dimensional. If X is a com-
pact metric space then H(X) is the group of autohomeomorphisms of
X with the topology of uniform convergence. Let 1X denote the iden-
tity. If O is an open subset of X then HO(X) = {h ∈ H(X) : h|X \O =
1X\O} is the closed subgroup of H(X) consisting of homeomorphisms
that are supported on O.

In [1] Aarts and Oversteegen introduce a continuum H called the
hairy arc. The hairy arc is topologically unique and can be represented
as follows. Let l : I→ I be a function such that

(a) l is upper semicontinuous, that is, {x ∈ I : l(x) < t} is open for
each t ∈ I,

(b) l(0) = l(1) = 0 and the set {x ∈ I : l(x) = 0} and its comple-
ment are both dense in I, and

(c) for each x ∈ I with l(x) > 0 there exist sequences (an)n and
(bn)n in I such that an ↗ x and bn ↘ x and lim l(an) =
lim l(bn) = l(x).

Then Hl = {(x, y) ∈ I2 : y ≤ l(x)} and a hairy arc H is any space
that is homeomorphic to an Hl. According to [1, Theorem 3.2] all
hairy arcs are homeomorphic to each other. The set of endpoints of
hairs El = {(x, l(x)) : l(x) > 0} of Hl is dense in Hl and Kawamura,
Oversteegen, and Tymchatyn [11, §5] prove that El is homeomorphic
to Ec as an application of their Characterization Theorem.

Aarts and Oversteegen prove that H(H) is almost zero-dimensional
but not zero-dimensional and they ask in [2, Problem 2.9] whether the
homeomorphism group of the hairy arc is homeomorphic to the set of
endpoints of the hairy arc. We show that the answer is no.
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Corollary 4.1. The homeomorphism group of the hairy arc is not
homeomorphic to Ec.

Proof. Consider Hl and its base arc B = I × {0}. Let H+ stand for
the subgroup of H(Hl) consisting of homeomorphisms that fix the end-
points of B. Since every element ofH(Hl) maps B onto B (see [2, Corol-
lary 1.5]) H+ is a clopen subgroup of H(Hl) and hence one-dimensional
at each element. We will show that every neighbourhood of the identity
contains closed copies of H+ which means that neither H+ nor H(Hl)
can be homeomorphic to Ec.

Let ε > 0 and select an a ∈ (0, ε) such that l(a) = 0 and l(x) < ε
for all x ∈ [0, a]. Then O = Hl ∩ ([0, a) × [0, ε)) is an open subset of
Hl such that its closure O ∪ {(a, 0)} is a hairy arc (stretch the interval
[0, a] to I). We obviously have that H+, HO(O), and HO(Hl) are all
homeomorphic. Using the max metric on I2 we have that diam O < ε
so every element of the closed group HO(Hl) is ε-close to the identity
and the proof is complete.

The Lelek fan is a space that can be obtained by identifying the base
arc of the hairy arc to a point. A similar argument as we used for the
hairy arc shows that the homeomorphism group of the Lelek fan is not
homeomorphic to Ec (use [7] or [5] instead of [1]).

Let µn, n ∈ N, denote the universal Menger continuum of dimen-
sion n and let Mn+1

n denote the n-dimensional Sierpiński carpet, see
[3] respectively [6]. Oversteegen and Tymchatyn [13, Theorem 5] show
that H(µn) and H(Mn+1

n ) are almost zero-dimensional and they con-
jecture that H(µ1) is homeomorphic to Ec, see [12, Conjecture 7.8]. We
disprove this conjecture:

Corollary 4.2. If X = µn for n ∈ N or X = Mn+1
n for n ∈ N \ {3}

then the homeomorphism group of X is not homeomorphic to Ec.

Proof. Let ε > 0 and choose a nonempty open subset O of X such
that diam O < ε with respect to some metric on X. In [8, Remarks 5
and 9] it is shown that HO(X) is one-dimensional. (This result can be
derived by combining [4, Theorem 2.1] with [3, 6]. However, there is a
problem with the proof of [4, Theorem 2.1]; specifically, it is proved in
[8, §3] that [4, Lemma 2.2] is false.) Since diam O < ε every element
of HO(X) is ε-close to the identity 1X . So every neighbourhood of 1X

in H(X) contains a nonempty closed set that is one-dimensional and
homogeneous and hence not somewhere zero-dimensional. We may
conclude that H(X) is not homeomorphic to Ec.
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We conclude this section by showing that the failure of H(H) and
H(µn) to be homeomorphic to Ec is not connected to the existence of a
group structure. A group is boolean if every element equals its inverse.

Proposition 4.3. Ec admits the structure of a (boolean) topological
group.

Proof. Let C be the “middle third” Cantor set in I. Every a ∈ C has
a unique representation as a =

∑∞
i=1 2[a]i3

−i, where [a]i ∈ {0, 1} for
all i ∈ N. Let M denote the standard boolean group operation on C:
[a M b]i = [a]i + [b]i mod 2. Consider now the topological group CN

with (x1, x2, . . . ) M (y1, y2, . . . ) = (x1 M y1, x2 M y2, . . . ). We define
E′c = {x ∈ `2 : α(x) ∈ CN} and note that this space satisfies the Char-
acterization Theorem [11, Theorem 3] and hence it is homeomorphic
to Ec, see [8, Proposition 3].

Note that if a, b, c, d ∈ C are such that |a − b|, |c − d| < 3−n then
[a]i = [b]i and [c]i = [d]i for all i ≤ n thus

|a M c− b M d| =
∣∣∣∣∣

∞∑
i=n+1

2([a M c]i − [b M d]i)3
−i

∣∣∣∣∣ ≤
∞∑

i=n+1

2 · 3−i = 3−n.

This implies that always

|a M c− b M d| ≤ 3 max{|a− b|, |c− d|} ≤ 3(|a− b|+ |c− d|).

Let x, y, z, w ∈ E′c, so x = (x1, x2, . . . ) and so on. We have

‖x M y − z M w‖ =

√∑∞
i=1

(xi M yi − zi M wi)2

≤
√∑∞

i=1
9(|xi − zi|+ |yi − wi|)2

≤ 3(‖x− z‖+ ‖y − w‖).

This result means that E′c is closed under M and that the operation
is continuous with respect to the norm topology. Since the group is
boolean this suffices to show that E′c is a topological group.

If we do not require the group to be boolean then we can represent
Ec by a closed subgroup of (`2, +):

G = {x ∈ `2 : nxn ∈ Z for every n ∈ N}.

Proposition 3 in [8] shows that also G is homeomorphic to Ec.
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5. The space E

It is clear that the method used to prove Theorem 3.1 relies heavily
on completeness and does not work for the original Erdős space E. In
fact, we show that Theorem 3.1 is false for E:

Theorem 5.1. Every nonempty open subset of E contains a nonempty
subset that is closed in E and that is one-dimensional at every point.

Proof. Since E is a vector space over Q it suffices to prove that there
exists a bounded, closed, and nonempty subset Y of E that is one-
dimensional at every point.

Our construction takes place in the product space QN. If x ∈ QN
and ε > 0 then we define the closed set

Fε(x) = {y ∈ QN : ‖x− y‖ ≤ ε}.
Recall that E =

⋃∞
n=1 Fn(0) equipped with the norm topology, where 0

stands for the zero vector. For A ⊂ QN we define diam A = sup{‖x −
y‖ : x, y ∈ A}. For n ∈ N we will identify Qn with {x ∈ QN : xi = 0
for i > n} and we define the projection ξn : QN → Qn by ξn(x) =
(x1, . . . , xn, 0, 0, . . . ). Put D =

⋃∞
n=1Qn and note that D is a countable

dense subset (but not a subspace) of E. Let {(ti, ni) : i ∈ N} enumerate
the set D × N in such way that t1 = 0 and for each i ∈ N we have
ni ≤ i and ξi(ti) = ti.

We construct by induction two sequences of sets Yi and Ui such that
for every i ∈ N,

(1) Yi is a closed subset of QN,
(2) ‖x‖ < 1 for each x ∈ Yi,
(3) ξk(Yi) is closed in Qk for each k ∈ N,
(4) ξk(Yi) ⊂ Yi for each k ≥ i,

(5) ξ1(Yi) is finite and disjoint from
⋃i−1

j=1 ξ1(Yj),

(6) Ui is a closed subset of Qni ,

(7)
⋃i

j=1 Yj ∩
⋃i

j=1 ξ−1
nj

(Uj) = ∅,
(8) if ξni

(ti) /∈ ⋃i
j=1 ξni

(Yj) then Ui is a neighbourhood of ξni
(ti) in

Qni , and
(9) if ti ∈

⋃i−1
j=1 Yj then there is an ri ∈ F1/i(ti)∩Yi such that every

clopen neighbourhood C of ri in Yi with the norm topology has
diam C ≥ (1− ‖ti‖)/2.

For i = 1 we put Y1 = {t1} and U1 = ∅ and note that all hypotheses
are trivially satisfied. Let us now assume that Yi and Ui have been
constructed.
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Case I: ξni+1
(ti+1) /∈ ⋃i

j=1 ξni+1
(Yj). Since by hypothesis (3) the set

A =
⋃i

j=1 ξni+1
(Yj) is closed we can find a closed neighbourhood Ui+1

of ξni+1
(ti+1) in Qni+1 that is disjoint from A. Putting Yi+1 = ∅ we note

that all hypotheses are trivially satisfied for i + 1.
Case II: ti+1 ∈

⋃i
j=1 Yj. Note that this case is incompatible with

Case I and hypothesis (8) is satisfied for i + 1 no matter what choice
we make for Yi+1. We put Ui+1 = ∅. By hypothesis (2) we have
δ = 1 − ‖ti+1‖ > 0. Let ε = min{δ/4, 1/(i + 1)} and select an ri+1 ∈
Fε(ti+1) that differs from ti+1 only in the first coordinate which has been

chosen from the complement of the finite set
⋃i

j=1 ξ1(Yj). Since the set

V =
⋃i

j=1 ξ−1
nj

(Uj) is closed and does not contain ti+1 by hypothesis (7)

we may assume that ri+1 /∈ V . Note that ξi+1(ri+1) = ri+1 because ti+1

has this property. Define

Yi+1 = {x ∈ QN : ξi+1(x) = ri+1 and ‖x− ri+1‖ ≤ δ/2}
and note that this set satisfies hypothesis (1) because the norm is LSC.
The choice of the first coordinate of ri+1 guarantees that hypothesis
(5) is also satisfied. If x ∈ Yi+1 then ‖ti+1 − x‖ ≤ 3

4
δ < 1 − ‖ti+1‖

so hypothesis (2) is satisfied. Note that if k ≤ i + 1 then ξk(Yi+1) =
{ξk(ri+1)} and if k ≥ i + 1 then ξk(Yi+1) = Yi+1 ∩ Qk which means
that hypotheses (3) and (4) are satisfied. Since ξi+1(Yi+1) = {ri+1},
ri+1 /∈ V , and for every j ≤ i, nj < i + 1, we have Yi+1 ∩ V = ∅. Since
moreover Ui+1 = ∅ we may conclude that hypothesis (7) is satisfied for
i + 1.

We will now verify hypothesis (9). Obviously, we have ri+1 ∈
F1/(i+1)(ti+1) ∩ Yi+1. Recall that Erdős [10] proved that every clopen
nonempty subset of E is unbounded. This implies that if C is a clopen
nonempty subset of, say, B = {x ∈ E : ‖x‖ ≤ δ/2} then C contains a
point x with ‖x‖ = δ/2. Let C be a clopen neighbourhood of ri+1 in
Yi+1 with the norm topology. Note that Yi+1 is an isometric copy of
B where ri+1 plays the role of the zero vector so C contains an x with
‖x− ri+1‖ = δ/2 and hence diam C ≥ δ/2.

Case III: neither Case I nor Case II. We can choose both Yi+1 and
Ui+1 to be empty.

The induction being complete we put Y =
⋃∞

i=1 Yi and note that
every element of Y has norm less than 1 and hence Y is a bounded
subset of E. Y is nonempty because it contains the zero vector t1.

Claim 1. Y is a closed subset of QN.

Proof. Let x be an arbitrary element of QN. We consider two cases.
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Case I: there is a k ∈ N such that ξk(x) /∈ ξk(Y ). Let i ∈ N be such
that ξk(x) = ti and k = ni. Thus ξni

(ti) = ti /∈ ξni
(Y ) and hence by

hypothesis (8) Ui is a neighbourhood of ti in Qni . We now have that
ξ−1
ni

(Ui) is a neighbourhood of x that is disjoint from Y by hypothesis
(7).

Case II: ξk(x) ∈ ξk(Y ) for every k ∈ N. Then ξ1(x) ∈ ξ1(Ym) for some
m. By hypothesis (5) we have that this implies that ξk(x) ∈ ξk(Ym) for
every k. Since Ym is closed in QN we have that x ∈ Ym ⊂ Y .

Claim 2. For every x ∈ Y and every clopen neighbourhood C of x in
Y with the norm topology we have diam C ≥ (1− ‖x‖)/2.
Proof. Let m be such that x ∈ Ym and let ε > 0 be such that Fε(x) ∩
Y ⊂ C. Select a k ∈ N such that k > m, 1/k < ε/2, and ‖x− ξk(x)‖ <
ε/2 and let i be such that ξk(x) = ti and k = ni. Since i ≥ ni = k > m
we have by hypothesis (4) that ti ∈ Ym and by hypothesis (9) that
ri ∈ Yi and ‖ti− ri‖ < 1/i ≤ 1/k < ε/2. Thus ‖x− ri‖ < ε and ri ∈ C.
This means that diam C ≥ diam(C∩Yi) ≥ (1−‖ti‖)/2 ≥ (1−‖x‖)/2.

Since the norm topology is stronger than the product topology Claim
1 implies that Y is closed in E. Claim 2 shows that Y with the norm
topology is not zero-dimensional at any point.

Coming attraction: in [9] Dijkstra and van Mill prove that E is in
fact homeomorphic to EN.

6. Equivalent notions of almost zero-dimensionality

We conclude by showing that the definition of almost zero-
dimensionality that we use in this note is equivalent to the original
definition in [13].

Proposition 6.1. If X is almost zero-dimensional then there exists an
(open) basis O for the topology of X such that O can be written as an
intersection of clopen subsets of X for each O ∈ O.

Proof. Let X be almost zero-dimensional. Since X is separable metric
we can find a countable collection B = {Bi : i ∈ N} that satisfies the
following conditions:

(1) for every x ∈ X and every neighbourhood U of x there is an
i ∈ N such that x ∈ int Bi ⊂ Bi ⊂ U and

(2) every Bi ∈ B is an intersection of clopen subsets of X.

Note that every Bi can be written as
⋂∞

j=1 Dij where every Dij is clopen

in X. Then {Dij, X \ Dij : i, j ∈ N} forms a subbasis for a separable
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metric, zero-dimensional topology on X that is weaker than the orig-
inal topology. Call X with this zero-dimensional topology Z and let
β : X → Z be the identity map. Note that every β(Bi) is closed in Z.

Consider an open set U in X and an x ∈ U . We will construct a set
W ⊂ U that is an intersection of clopen sets and with a dense interior
that contains x. Put F0 = ∅ and let (Fn)∞n=1 be an enumeration of the
elements of {Bi : Bi ∩ U = ∅}. Note that X \ U =

⋃∞
n=1 Fn and that

every β(Fn) is closed. We construct inductively a sequence G0, G1, . . .
of subsets of U and a sequence C0, C1, . . . of clopen subsets of Z such
that every β(Gn) is a closed set in Z and Cn ∩ β(Fn) = ∅. Select a Bk

such that x ∈ int Bk ⊂ Bk ⊂ U and put G0 = Bk and C0 = Z. Assume
that Gn−1 and Cn−1 have been found and consider the open set

Vn = int Bn ∩
n−1⋂
i=0

β−1(Ci).

If Vn ∩ U = ∅ then we put Gn = ∅ and if Vn ∩ U 6= ∅ then we put
Gn = Bm for some m such that Bm ⊂ Vn∩U and int Bm 6= ∅. Note that⋃n

i=0 β(Gi) and β(Fn) are disjoint closed subsets of the zero-dimensional
space Z so there is a clopen Cn ⊂ Z with

⋃n
i=0 β(Gi) ⊂ Cn and Cn ∩

β(Fn) = ∅.
Put W =

⋂∞
n=0 β−1(Cn) so W is an intersection of clopen sets. Note

that W ∩ Fn = ∅ for each n so W ⊂ U . By the construction, Gi ⊂ Cj

for all i, j thus the open set O =
⋃∞

n=0 int Gn is contained in int W and

x ∈ int G0 ⊂ int W . It now suffices to show that W ⊂ O. Let y ∈ W
and let Bn be arbitrary such that y ∈ int Bn. Note that Vn is an open
set that contains y and since y ∈ U we have that Vn ∩ U 6= ∅. So
Bn ∩ U contains the nonempty set int Gn and since Bn can be chosen
arbitrarily small we have that y ∈ O.
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