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Abstract. Let M be either a topological manifold, a Hilbert cube manifold,
or a Menger manifold and let D be an arbitrary countable dense subset of M .
Consider the topological group H(M,D) which consists of all autohomeomor-
phisms of M that map D onto itself equipped with the compact-open topol-
ogy. We present a complete solution to the topological classification problem
for H(M,D) as follows. If M is a one-dimensional topological manifold, then
H(M,D) is homeomorphic to Q∞, the countable power of the space of rational
numbers. In all other cases we found that H(M,D) is homeomorphic to the
famed Erdős space E, which consists of the vectors in Hilbert space `2 with
rational coordinates. We obtain the second result by developing topological
characterizations of Erdős space.

1. Introduction

All spaces under discussion are separable and metrizable. If X is compact, then
the standard topology on the group of homeomorphisms H(X) of X is the so-called
compact-open topology (which coincides with the topology of uniform convergence).
This topology makes H(X) a Polish topological group. For locally compact spaces,
the compact-open topology is Polish but not necessarily a group topology. We
therefore think of X as a subspace of its Alexandroff one-point compactification
αX = X∪{∞}, and we topologize H(X) by identifying it with the closed subgroup
{h ∈ H(αX) : h(∞) = ∞} of H(αX). If every point in X has a neighbourhood
that is a continuum, then the just described topology on H(X) coincides with the
compact-open topology; see Dijkstra [11] and Arens [3]. If A is a subset of a space
X , then H(X,A) stands for the subgroup {h ∈ H(X) : h(A) = A} of H(X).

Brouwer [7] showed that R is countable dense homogeneous, that is, for all
countable dense subsets A and B of R there is an h ∈ H(R) with h(A) = B. It is
not difficult to prove that every Rn has this property. In view of Brouwer’s result
it is a natural idea to investigate the group H(Rn,Qn). It was shown in Dijkstra
and van Mill [12] that the group H(R,Q) is homeomorphic to the zero-dimensional
space Q∞, the countable infinite product of copies of the rational numbers Q. In
contrast, we showed in [12] (see also [10]) that H(Rn,Qn) for n ≥ 2 contains a
closed copy of the famed Erdős space E which is known to be one-dimensional; see
[17]. This result led us to consider the question whether H(Rn,Qn) (for n ≥ 2) is
in fact homeomorphic to Erdős space. We announce here that it is. We prove that
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if D is a countable dense subset of a locally compact space X , then H(X,D) is an
Erdős space factor, which means that H(X,D)× E is homeomorphic to E. Under
rather mild extra conditions, the group H(X,D) is found to be homeomorphic to
Erdős space. This is the case if X contains a nonempty open subset homeomorphic
to Rn for n ≥ 2, an open subset of the Hilbert cube Q, or an open subset of some
universal Menger continuum. As an application it follows that if M is an at least
2-dimensional manifold (with or without boundary) and D is a countable dense
subset of M , then H(M,D) is homeomorphic to Erdős space.

Homeomorphism groups of manifolds are very well studied. Let I denote the
interval [0, 1] and let H∂(In) stand for the subgroup of H(In) consisting of homeo-
morphisms that fix the boundary of the n-cube In. Anderson [2] proved that H∂(I)
is homeomorphic to the separable Hilbert space `2 (see [4, Proposition VI.8.1] or
[20]). It was shown by Luke and Mason [23] that H∂(I2) is an absolute retract, which
implies that H∂(I2) ≈ `2 (apply for instance Dobrowolski and Toruńczyk [15]). For
n ≥ 3 it is open whether H∂(In) is an absolute retract. This is one of the most inter-
esting open problems in infinite-dimensional topology. For the Hilbert cube Q, that
is, for n =∞, the analogous problem was solved by Ferry [18] and Toruńczyk [28].
They proved that H(Q) is homeomorphic to `2 (observe that Q has no boundary).
For 3 ≤ n <∞ it is unknown what the topological classification of H∂(In) or H(In)
is. By our results, the subgroups H∂(In, (Q ∩ I)n) and H(In, (Q ∩ I)n) are known;
they are homeomorphic to Erdős space.

Recall that the Erdős space E is the ‘rational Hilbert space’, that is the set of
vectors in `2 the coordinates of which are all rational. This space was introduced
by Hurewicz who asked to compute its dimension. Erdős [17] proved that E is one-
dimensional by establishing that every nonempty clopen subset of E is unbounded.
This result, in combination with the obvious fact that E is homeomorphic to E×E,
lends the space its importance in dimension theory. Complete Erdős space Ec is
the ‘irrational Hilbert space’, that is, the set of vectors in `2 all coordinates of
which are irrational. In contrast to E, the complete Erdős space is topologically
complete, being a Gδ-subset of `2. The space Ec surfaced in topological dynamics
as the ‘endpoint’ set of several interesting objects. See Kawamura, Oversteegen,
and Tymchatyn [19] for more information.

In order to prove our results we first present several increasingly powerful topo-
logical characterizations of Erdős space. What sets Erdős space apart from familiar
spaces is that in addition to the one-dimensional topology that it inherits from
`2, an important role is played by the zero-dimensional topology that E inher-
its from the product space Q∞. This bitopological aspect prompted us to define
and develop several new concepts in topology that link the two topologies in the
characterization theorems. We demonstrate the power of our characterizations by
deriving from them the above results with relative ease. Along the way, we get
several other interesting results. For example, Erdős space is homeomorphic to its
countable infinite power. Here we have a striking contrast with Ec, which is not
homeomorphic to E∞c , as was proved by Dijkstra, van Mill, and Steprāns [14]. In
addition, Erdős space is homeomorphic to Ec × Q∞, and every nonempty open
subset of E is homeomorphic to E.

We conclude with the observation that Erdős space started its career as a curious
example in dimension theory. It turns out however that it is a fundamental object
that surfaces in many places. In addition, it allows for a useful and easily applied
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topological characterization just as several other fundamental objects in topology:
the Cantor set (Brouwer [6]), the Hilbert cube (Toruńczyk [29]), Hilbert space
(Toruńczyk [30]), the universal Menger continua (Bestvina [5]), and the Nöbeling
spaces (Ageev [1]).

Detailed proofs supporting the theorems we announce here will appear in [12]
for §2, [13] for §§3–5, and [10] for §5.

2. The zero-dimensional case

In this section we consider H(M,D), where M is a one-dimensional topological
manifold. We recall the following characterization of the space Q∞, which follows
from a theorem of Steel [27]; see also van Engelen [16, Theorem A.2.5].

Theorem 2.1. A space X is homeomorphic to Q∞ if and only if X is a zero-
dimensional, first category Fσδ-space with the property that no nonempty clopen
subset is a Gδσ-space.

In particular, we have:

Corollary 2.2. If X is a homogeneous, zero-dimensional, first category Fσδ-space
that contains a closed copy of Q∞, then X is homeomorphic to Q∞.

The following theorem is proved by constructing a closed imbedding of Q∞ in
H(R,Q).

Theorem 2.3. H(R,Q) is homeomorphic to Q∞.

Corollary 2.4. Let D be a countable dense subset of a locally compact space X. If
X contains an open set that is homeomorphic to R, then H(X,D) is homeomorphic
to Q∞ if and only if H(X,D) is zero-dimensional.

We also showed that if D is a countable dense subset of a Cantor set C, then
H(C,D) ≈ Q∞.

3. Almost zero-dimensional spaces

Let p ∈ (0,∞) and consider the (quasi-)Banach space `p. This space consists of
all sequences z = (z0, z1, z2, . . . ) ∈ R∞ such that

∑∞
i=0 |zi|p <∞. The topology on

`p is generated by the norm ‖z‖ = (
∑∞
i=0 |zi|p)1/p. It is well known that the norm

topology on `p is generated by the product topology (that is inherited from R∞)
together with the sets {z ∈ `2 : ‖z‖ < t} for t > 0. We extend the p-norm over R∞
by putting ‖z‖ =∞ when z ∈ R∞ \ `p. Note also that the norm as a function from
R∞ to [0,∞] is not continuous because the norm topology is much stronger than
the product topology, but that this function is lower semi-continuous (LSC). We
define the Erdős space by

E = {z ∈ `2 : zi ∈ Q for each i}.
Let T stand for the zero-dimensional topology that E inherits from Q∞. Observe
that T is weaker than the norm topology, and hence that E is totally disconnected.
We have by the remark above that the graph of the norm function, when seen
as a function from (E,T) to R+ = [0,∞), is homeomorphic to E. So, informally,
we can think of E as a ‘zero-dimensional space with some LSC function declared
continuous’. We find it convenient to work with USC rather than LSC functions,
and we therefore define η : Q∞ → R+ by η(z) = 1/(1 + ‖z‖), where 1/∞ = 0.
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There is an interesting connection between the two topologies on E that we would
like to draw attention to. Because the norm is LSC on R∞, every closed ε-ball in
E is also closed in the zero-dimensional space Q∞. Thus we have that every point
in E has arbitrarily small neighbourhoods which are intersections of clopen sets.

A subset A of a space X is called a C-set in X if A can be written as an
intersection of clopen subsets of X . A space is called almost zero-dimensional if
every point of the space has a neighbourhood basis consisting of C-sets of the space.
This concept is due to Oversteegen and Tymchatyn [24]. The definition we use here
is different from the original one but its equivalence is established in Dijkstra, van
Mill, and Steprāns [14]. Note that almost zero-dimensionality is hereditary. It is
proved in [24] that every almost zero-dimensional space is at most one-dimensional;
see also Levin and Pol [22].

Thus E is almost zero-dimensional. In fact, it is a universal object for the class of
almost zero-dimensional spaces (in contrast, the class of totally disconnected spaces
has no universal element; see Pol [25]):

Theorem 3.1. The following statements about a space X are equivalent:
(1) X is almost zero-dimensional,
(2) X is homeomorphic to the graph of some USC or LSC function with a

domain of dimension at most zero,
(3) X is imbeddable in complete Erdős space Ec, and
(4) X is imbeddable in Erdős space E.

This theorem can be extracted from results in the papers [24] and [19]. Partic-
ularly important is the characterization theorem in [24] that states that a space is
almost zero-dimensional if and only if it is homeomorphic to the set of endpoints
of some R-tree. As a corollary to Theorem 3.1 we have that the nonempty C-sets
in an almost zero-dimensional space are precisely the retracts of the space.

If Z is a set that contains X , then we say that a (separable metric) topology
T on Z witnesses the almost zero-dimensionality of X if dim(Z,T) ≤ 0, O ∩X is
open in X for each O ∈ T, and every point of X has a neighbourhood basis in X
consisting of sets that are closed in (Z,T). We will also say that the space (Z,T) is
a witness to the almost zero-dimensionality of X . The archetype is Q∞ as a witness
to the almost zero-dimensionality of Erdős space.

4. Characterizing Erdős space topology

Let ϕ, ψ : X → R+ be such that ψ(x) ≤ ϕ(x) for all x ∈ X . We define

Gϕψ = {(x, ϕ(x)) : x ∈ X and ϕ(x) > ψ(x)}
and

Lϕψ = {(x, t) : x ∈ X and ψ(x) ≤ t ≤ ϕ(x)},
both equipped with the topology inherited from X × R+. Observe that Gη0 is
homeomorphic to E.

We say that ϕ is a Lelek function with bias ψ if X is zero-dimensional, ϕ and ψ
are USC, X ′ = {x ∈ X : ψ(x) < ϕ(x)} is dense in X , and Gϕψ is dense in Lϕ�X

′

ψ�X′.
If ϕ is a Lelek function with bias 0, then ϕ is simply called a Lelek function. This
terminology finds its origin in the following fact. If ϕ is a Lelek function with
compact domain C, then we obtain a Lelek fan [21] by identifying the base C×{0}
in Lϕ0 to a point. Observe that η is a Lelek function.
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If A is a nonempty set, then A<ω denotes the set of all finite strings of elements
of A, including the null string λ. Let Aω denote the set of all infinite strings of
elements of A. If s ∈ A<ω and σ ∈ A<ω ∪Aω , then we put s ≺ σ if s is an initial
substring of σ. If σ ∈ A<ω ∪Aω and k ∈ ω, then σ�k ∈ A<ω is the string of length
k with σ�k ≺ σ. A tree T over a set A is a subset of A<ω that is closed under
initial segments, that is, if s ∈ T and t ≺ s, then t ∈ T . An infinite branch of T is
an element σ of Aω such that σ�k ∈ T for every k ∈ ω. The body of T , written as
[T ], is the set of all infinite branches of T . If s ∈ T , then succ(s) denotes the set of
immediate successors of s in T .

Sierpiński [26] has shown that X is an (absolute) Fσδ-space if and only if there
exists a nonempty tree T over a countable set and closed subsets Xs of X for each
s ∈ T such that:

i. Xλ = X and Xs =
⋃
{Xt : t ∈ succ(s)} for all s ∈ T and

ii. if σ ∈ [T ], then the sequence Xσ�0, Xσ�1, . . . converges to a point xσ ∈ X .
Let us call such a system (Xs)s∈T a Sierpiński stratification of X . Van Engelen [16,
Theorem A.1.6] has shown that a zero-dimensional space X is homeomorphic to
Q∞ if there exists a Sierpiński stratification (Xs)s∈T of X such that Xt is nowhere
dense in Xs whenever t ∈ succ(s). Our characterizations of E were inspired by
these results.

Definition 4.1. SL is the class of all bounded USC functions ϕ : X → R+ such
that X is a zero-dimensional space for which there exists a Sierpiński stratification
(Xs)s∈T with the following properties:

(a) if s ∈ T and t ∈ succ(s), then Gϕ�Xt0 is nowhere dense in Gϕ�Xs0 and
(b) if s ∈ T , then ϕ�Xs is a Lelek function.

If we define T = Q<ω and Xq1...qk = {q1} × · · · × {qk} × Q × Q × · · · , then it
is a straightforward exercise to show that η : Q∞ → R+ is an element of SL. We
call a pair (h, β) a homeomorphism from a function ϕ : X → R+ to a function
ψ : Y → R+ if h : X → Y is a homeomorphism and β : X → (0,∞) is a continuous
map with ψ ◦ h = β · ϕ.

Theorem 4.2. Any two elements of SL are homeomorphic and hence a space E
is homeomorphic to E if and only if E ≈ Gϕ0 for some ϕ ∈ SL.

We sketch the method by which we proved this theorem. Let ϕ : X → R+ and
ψ : Y → R+ be elements of SL and let (Xt)t∈T and (Ys)s∈S be the associated
Sierpiński stratifications. We construct a boolean algebra of clopen subsets of X
such that the associated Stone space C is a compactification of X that admits
an extension ϕ̃ : C → R+ of ϕ with the property that ϕ̃�Xt is a Lelek function
for each t ∈ T . The function ψ is similarly extended to ψ̃ : D → R+. Van
Engelen’s proof [16, pp. 115–120] of the characterization ofQ∞ in terms of Sierpiński
stratifications shows that there exists a homeomorphism h : C → D with h(X) = Y .
This homeomorphism in general will not correspond to a homeomorphism between
the functions ϕ̃ and ψ̃. In order to get a continuous β : C → (0,∞) such that
ψ̃ ◦ h = β · ϕ̃ and h(X) = Y we need to add an additional ingredient to van
Engelen’s construction as follows. The uniqueness of the Lelek fan as proved by
Bula and Oversteegen [8] and Charatonik [9] allows us to develop an ‘unknotting’
theory for Lelek functions which does the trick:
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Theorem 4.3 (Homeomorphism Extension). Let ϕ : C → R+ and ψ : D → R+

be Lelek functions with compact domain. Let A ⊂ C and B ⊂ D be closed sets
such that Gϕ�A0 and Gψ�B0 are nowhere dense in Gϕ0 , respectively Gψ0 . Then every
homeomorphism from ϕ�A to ψ�B can be extended to a homeomorphism from ϕ to
ψ (with control).

Although it is a rather elegant characterization, Theorem 4.2 is not powerful
enough because it is an ‘external’ or ‘positional’ characterization in two ways. First,
in order to apply the theorem to an Erdős space candidate E the space has to come
equipped with a particular Lelek function ϕ such that E ≈ Gϕ0 , that is, E has to
come positioned in the space Q∞ × R+. In addition, any function ϕ ∈ SL assumes
the value 0 (look for instance at η), which means that E will always correspond
to a proper subset of the graph of ϕ. Our next characterization will be ‘internal’.
In order to formulate the internal properties of a space that will guarantee the
existence of Lelek functions such as ϕ we need to introduce some new concepts.

As was mentioned in §1, Erdős [17] proved that every nonempty clopen subset
of E is unbounded. This means that every vector in E has a neighbourhood that
does not contain any nonempty clopen subsets of E. This property of E turns out
to be crucial, and we formalize it as follows.

Definition 4.4. Let X be a space and let A be a collection of subsets of X . The
space X is called A-cohesive if every point of the space has a neighbourhood that
does not contain nonempty clopen subsets of any element of A. If a space X is
{X}-cohesive, then we simply call X cohesive.

A cohesive space is obviously at least one-dimensional at every point, but it
is easily seen that the converse is not valid. However, the situation is simple for
topological groups because a topological group is cohesive if and only if it is not
zero-dimensional.

Definition 4.5. Let T be a tree and let (Xs)s∈T be a system of subsets of a space
X such that Xt ⊂ Xs whenever s ≺ t. A subset A of X is called an anchor for
(Xs)s∈T in X if for every σ ∈ [T ] we have either Xσ�k ∩ A = ∅ for some k ∈ ω or
the sequence Xσ�0, Xσ�1, . . . converges to a point in X .

Thus the anchor A has the property that for every sequence that is generated by
an element of [T ], if it is attached to A, then it must converge and cannot be free
to drift out of the space. Note that if (Xs)s∈T is a Sierpiński stratification, then
the whole space is an anchor.

We now present our first internal characterization of E.

Definition 4.6. E is the class of all nonempty spaces E such that there exists a
topology T on E that witnesses the almost zero-dimensionality of E and there exist
a nonempty tree T over a countable set and subspaces Es of E that are closed with
respect to T for each s ∈ T such that:

(1) Eλ = E and Es =
⋃
{Et : t ∈ succ(s)} whenever s ∈ T ,

(2) each x ∈ E has a neighbourhood U that is an anchor for (Es)s∈T in (E,T),
(3) for each s ∈ T and t ∈ succ(s) we have that Et is nowhere dense in Es, and
(4) E is {Es : s ∈ T }-cohesive.

Theorem 4.7. E is the class of all spaces that are homeomorphic to E.
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We sketch the essence of the proof. Let E ∈ E and let T and (Es)s∈T be the
associated witness topology and stratification. It suffices to show that there is a
χ ∈ SL with E ≈ Gχ0 . Let Z denote the zero-dimensional space (E,T). We begin by
taking the stratification (Es)s∈T through a ‘refining’ process such that Z admits a
zero-dimensional extension X with the property that (Es)s∈T becomes a Sierpiński
stratification of X , that is, the whole space becomes an anchor. Consider now
the space Y that corresponds to the set X with the topology that is generated
by the union of the topologies of X and E. Then X is a witness to the almost
zero-dimensionality of Y and E is an open subspace of Y . With Theorem 3.1 we
can find a USC function ϕ the graph of which is homeomorphic to Y . By careful
construction we can arrange that ϕ : X → I and that Gϕ0 ≈ E. Condition (4) of
Definition 4.6 allows us to construct a USC function ψ : X → I such that Gϕ0 = Gϕψ
and ϕ�Es is a Lelek function with bias ψ�Es for each s ∈ T . We then remove the
bias by replacing the pair (ϕ, ψ) by (χ, 0) such that Gϕψ ≈ G

χ
0 and χ�Es is a Lelek

function for each s ∈ T . We now have that χ ∈ SL and can apply Theorem 4.2.

Remark 4.8. The anchor concept in Definition 4.6 is essential. This is because
condition (4) excludes the possibility that the whole E is an anchor for (Es)s∈T ,
that is, we cannot have a Sierpiński stratification.

Note that in our characterization theorems we need a particular witness topology
on the space. Of course this topology is not uniquely determined. So one might ask
why we do not use the ‘witness topology’ T that is generated by all clopen subsets
of E. The reason is that this topology is not metrizable for Erdős space. Specifi-
cally, whenever E is almost zero-dimensional and cohesive, then T has uncountable
character at every point.

Our final and most powerful characterization of Erdős space is captured by the
following definition.

Definition 4.9. E′ is the class of all nonempty spaces E such that there exists an
Fσδ-topology T on E that witnesses the almost zero-dimensionality of E and there
exist a nonempty tree T over a countable set and subspaces Es of E that are closed
with respect to T for each s ∈ T \ {λ} such that:

(1′) Eλ is dense in E and Es =
⋃
{Et : t ∈ succ(s)} whenever s ∈ T ,

(2′) each x ∈ E has a neighbourhood U that is an anchor for (Es)s∈T in (E,T),
(3′) for each s ∈ T \ {λ} and t ∈ succ(s) we have that Et is nowhere dense in

Es,
(4′) E is {Es : s ∈ T }-cohesive, and
(5′) E can be written as a countable union of nowhere dense subsets that are

closed with respect to T.

Theorem 4.10. E′ = E = {E : E ≈ E}.

The inclusion E ⊂ E′ is a triviality. Let us consider an element E of E′ with as-
sociated topology T and stratification (Et)t∈T . Since T is an absolute Fσδ-topology
we can find a Sierpiński stratification (Zs)s∈S for (E,T). The proof now consists
in carefully ‘grafting’ the stratification (Et)t∈T onto (Zs)s∈S so that the combined
stratification satisfies Definition 4.6.

Remark 4.11. At first glance there does not appear to be much difference between
Definitions 4.6 and 4.9. This, however, is a false impression. To use Theorem 4.7
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we have to construct a stratification of the entire space, whereas condition (1′) of
Definition 4.9 requires only a stratification of a dense subset of E. Let us examine
the consequences if E is for instance a topological group. Then we need only three
things to satisfy Definition 4.9: an Fσδ witness topology, the first category property
(5′), and a suitable closed imbedding of Erdős space in E. Because if we have a
copy E of E in E of the right type, which means in particular that it is also a closed
imbedding on the level of the respective witness topologies, then we can obtain the
dense stratified set Eλ by simply multiplying E with a countable dense subset of the
group E. This is the method that we will use to classify homeomorphism groups.
In effect, Theorem 4.10 allows for a universality type argument similar to those
used in zero-dimensional (cf. Corollary 2.2) and infinite-dimensional topology.

5. Applications

The following result follows easily from Theorem 4.7.

Proposition 5.1. If A ⊂ E is either nonempty and open or the complement of a
σ-compactum, then A is homeomorphic to E.

The following lemma can be found in Dijkstra [10] and is a straightforward
generalization of Erdős [17]. Recall that if A0, A1, . . . is a sequence of subsets of a
space X , then lim supn→∞An =

⋂∞
n=0

⋃∞
k=nAk. Consider the space `p.

Lemma 5.2. Let E0, E1, E2, . . . be a sequence of subsets of R such that 0 is a
cluster point of lim supn→∞ En. If we define

E = {z ∈ `p : zn ∈ En for every n},
then every nonempty clopen subset of E is unbounded (and hence E is cohesive).

The following results show that there is great flexibility in the construction of E.

Proposition 5.3. Let E be a nonempty space as in Lemma 5.2 such that every En
is an Fσδ-space that is zero-dimensional. If infinitely many of the En’s are of the
first category in themselves, then E ∈ E. Thus E is homeomorphic to E.

Corollary 5.4. Ec ×Q∞ is homeomorphic to E.

A space X is called an Erdős space factor if there exists a space Y with X×Y ≈
E. The following characterization follows easily from Theorem 4.7.

Theorem 5.5. For a nonempty space E the following statements are equivalent:
(1) E × E is homeomorphic to E,
(2) E is an Erdős space factor,
(3) E admits a closed imbedding into E,
(4) E is homeomorphic to a Gδ-subset of E, and
(5) E is almost zero-dimensional as witnessed by an Fσδ-topology.

Corollary 5.6. E∞ is homeomorphic to E.

Our main applications are the ones on homeomorphism groups mentioned in §1.
The first step in satisfying Definition 4.9 is to find an Fσδ witness topology. If D
is a countable dense subset of a compact space X , then the topology of pointwise
convergence on D turns out to be precisely the right witness to the almost zero-
dimensionality of H(X,D). In view of Theorem 5.5 we now have:
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Theorem 5.7. If D is a countable dense subset of a locally compact space X, then
H(X,D) is an Erdős space factor.

We use Theorem 4.10 to prove our main application, as follows.

Theorem 5.8. Let D be a countable dense subset of a locally compact space X. If
X contains an open set that is a topological n-manifold with n ≥ 2, a Hilbert cube
manifold, or a manifold modelled on a universal Menger continuum, then H(X,D)
is homeomorphic to Erdős space.

To use the method outlined in Remark 4.11 we need suitable imbeddings of
Erdős space in H(X,D). Fortunately, when we arrived at this point, it turned
out that we already constructed the right imbeddings in Dijkstra and van Mill [12]
and Dijkstra [10] for the purpose of showing that the homeomorphism groups in
question are one-dimensional.
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