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Abstract

We prove that every normal non-compact space which is nowhere of cardinality at trasstin
w-far point. This provides a partial answer to a question of van Douwen.
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1. Introduction

All spaces under discussion are Tychopaiffd if X is a space thei* denotegs X \ X.
Let X be a crowded (i.e., no isolated points) space. A ppiatX* is called ano-far point
of X provided thatp ¢ clgx D for any countable closed discrete g8ic X. The concept
of w-far point was introduced by van Douwen [1], who proved that normal non-Lindel6f
spaces and non-compact metrizable spaces hédae points. He used the concept of an
w-far point to present what he called “honest” proofs of the non-homogeneity of certain
Cech-Stone remainders. The question raised in [1] of whether all non-pseudocompact
crowded spaces havefar points is still open (although it has an affirmative answer under
MA by [7]).

The concept of amv-far point is strongly related to that of a remote point. A point
p € X* is called aremote pointof X provided thatp ¢ clgx D for any nowhere dense
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D C X. If X is crowded then a remote point is certaiaifar, but the converse need not
be true.

Let X be a space. Amv-filter on X is a closed filter7 on X such that for every
countable subseb of X there exists an elemert € F with F N D = @#. So, roughly
speaking, am-filter is a closed filter “avoiding” all countable sets. Observe thabdifter
consists of uncountable sets. H is an w-filter on the normal spac& then any point
x €(perClpx F is w-far. To see this, note thatid C X is countable closed and discrete,
then there exist§ € F such thatF N D is empty. Now it suffices to observe thétand D
have disjoint closures if X sinceX is normal.

Observe that no compact space hasafilter. For if F is an w-filter on a compact
spaceX then(" F # @. SinceF consists of closed sets, and “avoids” all singleton subsets
of (N F, this is a contradiction.

The known ZFC proofs of the existence ®ffar points in certain spaces either prove
the stronger result that-filters exist or prove the stronger result that remote points exist.
Let us demonstrate this by a simple example in presenting van Douwen’s proof that every
non-Lindel6f space has an-filter. Indeed, letX be non-Lindel6f, and let/ be an open
cover of X having no countable subcover. The collection

F={x\Jv: verwn=|

generates am-filter on X. Hence by the above, every normal non-Lindel6f space has an
w-far point.

In this note we are interested in proving the existence-@dr points by constructing
w-filters. By what we just observed, we need to consider non-compact Lindel6f spaces
only. Hence all spaces we are interested in are normal. This simplifies things a bit. Our
main result is that every non-compact Lindel6f space which is nowhere of cardinality at
mostc has anw-filter (as usual, ifP is any topological property, we say that a space is
nowhereP provided that no non-empty open subsetXvthasP). This yields a partial
answer to van Douwen’s problem.

We finish this introduction by making some remarks on spaces with or without an
w-filter. It is clear that no countable space hasdaafilter. For uncountable spaces the
situation is unclear. LeL be the one-point Lindel6fication of an uncountable discrete
space, and lek be the produci x Q, hereQ denotes the space of rational numbers.
ThenX is a non-compact crowded Lindeldf space havingenblter. (But X has a non-
compact clopen subset of countable weight and therefore has a remote point and, since
is crowded, anw-far point.) It is even consistent to have examples of uncountable subsets
of the real lineR having now-filter. Let X € R be uncountable andoncentratecbn a
countable set (i.eX contains a countable dense subBetuch that each neighborhood of
D is co-countable irX). Such sets exist under CH, see [8] for more details. Nodoes
not have anw-filter since any closed sét which is disjoint fromD will be countable. The
question of which spaces do havedatfilter is open. It is even unknown which subsets of
R have anv-filter.

We are indebted to the referee for finding and correcting some inaccuracies in an earlier
version of this note.
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2. A tool for constructing w-filters

Let X be a space. We say that has property(x)g if it contains a point countable
uncountable family of closed sets. Every uncountable space has an uncountable family
consisting of singletons and as a consequence has prapgytyso this concept is not very
interesting. We say that has property(x)1 if it contains a point countable uncountable
family of closed sets, each of which has propdetyp. So this property simply says that
X contains a point countable uncountable family of uncountable closed sets. Not every
uncountable space has prope@y1, as the one point Lindel6fication of an uncountable
discrete space shows. We say tifahas property(x),+1 if it contains a point countable
uncountable family of closed sets, each of which has progeify One may note that if
“point-countable” is strengthened to “pairwise disjoint”, then a spad®s propertyx),

exactly when it contains a tree of closed sgfs. ¢ € wf"“}. That is, Fy = X, and for

eachs e wf’ fori <n, the F;,, for @ < w1, form a disjoint family of closed non-empty
subsets of;.

We now present our main tool for constructinafilters in “large” spaces. The idea of
the proof goes back to Kunen [6] and Dow and van Mill [5].

Theorem 2.1. Let X be the topological sum of the spacks, n < w. If for everyn, X,
has property(x), thenX has anw-filter.

Proof. For eachn < w we fix a family of closed subsets df, indexed by< n-sized
subsets ofv1, denoted B, (F): F C w1, |F| < n}. We setB,(9) = X,,, and, for each finite
subsetF C w1 with |F| < n, we selectB, (F U {«a}) C B,(F) for all maxF <o < w1 to
be a point-countable family of closed sets each with prop@dty_|r—1.

Foreach8 < w1 let{a(B,n): n < w} be anincreasing chain of finite subsetgafo that
B=U,<,a(B,n). DefineGg C X so thatGg N X, is the union of allB, ({1, . . ., ok, B})
such thatk < n and{ay, ..., o} € a(B,n). This is a finite union, s@ is closed. We
claim that the filter generated 8y= {G: § < w1} Is as required.

Claim 1. G has the finite intersection property.

Take arbitraryp1 < 2 < --- < Br < w1 and fix n large enough so that for each
i <j<k, Bica(Bj,n). ltfollowsthatB,({B1,...,Bk}) S Gg N---NGg,.

Claim 2. For every countabl® C X there exist® < w1 such thailGg N D =¢.

For convenience of notation, |8, (F) = ¢ for eachF C w1 with n < | F|. Note that the
family {B, ({a}): n < w, a < w1} is point-countable, hence there igg@such thatB,, ({«})
is disjoint from D for eacha > Bp. Similarly, the family{B,({y} U {a}): n <w, y < Bo
anda < w1} is point-countable, hence there is8a > fo in w1 so thatB,({y} U {«})
is disjoint from D for eachn € w, ¥y < w1 and B1 < @ < w1 (note miny,«) > Bo is
handled becausB, ({y, «}) C B,({min(y, «)})). Proceeding by induction oh there is a
Br € w1 so that for eaclF C w1 with |F| < k, eachn € w anda > B, D is disjoint from
B, (F U {a}). Therefore, for eaclf > supfi: k € w}, Gg is disjointfromD. O
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3. w-filtersin second countable spaces

The aim of this section is to consider the second countable spaces which ha¥itten
Recall that a space which is concentrated on a countable set will not havéltar.

Lemma 3.1. Let X be a space of cardinality; which is not concentrated on a countable
set. ThenX has property(x)1.

Proof. It is clear thatX has property(x)p. Let X = {x,: @ < w1} and chooseF, any
uncountable closed set which is disjoint fromg: B < «}. It is clear that the family
{Fy: a < w1} is point-countable. O

Corollary 3.2. If X has cardinality w; and no uncountable closed subset Xfis
concentrated on a countable set, th€rhas property(x), forall n € w.

Theorem 3.3. Let X be a second countable space which hasudfilter. ThenX contains
a non-compact closed subspace which is nowhere concentrated on a countable set.

Proof. Let F be anw-filter on X, an fix an arbitraryF € F. LetU be the family of all
relatively open subsets @f which are concentrated on a countable set. There is a countable
U cU with JU' = JU. As a consequencé,JU{ is concentrated on a countable set,
say D. It also follows thatA = F \ | JU is nowhere concentrated on a countable set.
It is enough to show thatt is a member ofF and thatA is not compact. There exists

F' e Fwith F"nD=@. ThenF’ N |JU is countable. So there also exigt§ € F with
F'N(F'NnUU) =0, henceA containsF N F’ N F” amember ofF. Also, A is not compact
because otherwid€) F # ¢, which contradicts the fact thaf “avoids” all countable sets,

in particular, all singleton subsets & O

Question 1. If a second countable non-compact space has the property that no uncountable
closed set is concentrated on a countable set, does this space hafitten?

4. w-filtersin large spaces

We have already observed that a non-Lindel6f space hasfidter so the aim of this
section is to prove the following result.

Theorem 4.1. Let X be a non-compact, Lindel6f spaceXfis nowhere of cardinality< ¢
thenX has anw-filter (in particular, X has anw-far point).

We begin by making some reductions that will be useful in separating the proof into
cases. Sincg is Lindel6f but not compact, there is a discrete faniky,: n € w} of non-
empty regular closed subsets Xf SinceX is nowhere of cardinality< c, it follows that
eachX, is nowhere of cardinalit< c. We will assume thaX is equal to the union of
theseX,’s.
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Our proof will split into cases according to the weight of tkig's. The following two
cases are not exclusive but are easily seen to be inclusive.

In the first case we may assume that no relatively open subset of any &f, théas
weight at most. We will prove that such a space hasadfilter (not requiring thatX be
nowhere of cardinalit ¢). In the case that infinitely many of thg, has a nowhere ccc
open subset, it follows immediately from Theorem 2.1 that we have the stronger result,
namely that eaclX, has property*),. Therefore, in this case we may assume tkiat
is ccc.

In the second case, we may assume that égchas weight at most. In this case we
are able to prove a stronger result, namely that édchas the propertyx),, .

The following result is a consequence of the proof of van Mill [7, Theorem 7.2],
however in the interest of completeness we prove a pair of results that are improvements
of the corresponding ideas in [7].

Theorem 4.2. Let X be the topological sum of the spacés, n < w, where eacltX, is ccc
and nowhere of weight c. ThenX has has an-filter.

The main step is an improvement (basically a new proof) of the key construction in [7].

Theorem 4.3. Let X be a ccc space which is nowhere of weight less thanc™. Then
X contains an independent family of disjoi®ven completely separatecegular closed
sets.

Proof. Fix any chain{M,: « < «} of elementary submodels each of cardinalitand
each closed undes-sequences (i.eM? C M, for eacha < «). Also arrange it so that
M, € M1 for eacha € k. The reader can find basic details about elementary submodels
and chainsin [3] and [4].

Since the weight of a regular space is bounded by #seight raised to its cellularity
we have that no open subset ¥fhasx-weight less than. Let B denote the Boolean
algebraRO(X). Therefore for eaclr we can choose (using the notation of [7]) a regular
open set) £ U, € My 41 such that no non-empty member &, N B is contained inJ,,.

In addition, we can (obviously) choose afiy € B N M, 41 which is completely separated
from the complement o/, .

Now we use thab/,, is closed undew-sequences to note that each membeB dias a
projection intoM, N B. Indeed, for anyU € B, we define py(U) to be the meet irB of
those members dif, N B which containl. SinceB is a complete ccc Boolean algebra and
sinceM,, is closed undes-sequences, ptU) is actually a member a8 N M,,. For eachw,
let A, be the complement (iIRO(X)) of U,, and we will show tha{(A,, Cy): o € «}
contains ac-sized independent family.

For eachy, let A, be the projection in, of A, and letC,, be the projection i,
of C. We show thatd), N C,, is not empty. First of all,

AL, NCL D Ay NCLDCL\ Uy

This latter set is not empty sin€g, is a non-empty member @f, andU, does not contain
any such element.
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By the pressing down lemma there is a stationary suBset « and a pairA’, C’
in RO(X) such that for alle € S, A, = A’ and C,, = C’. We finish by checking that
{{Aq, Cy): a € S} has the appropriate finite intersection property.

Suppose that € w andfp < --- < B,—1 <k and f € 2". For eachg;, let Bg, denote
Ag; if f(i) =0 and denot€pg, otherwise.

Claim. By induction onj <n, A"N C'N();_; Bg, is notempty.

For j =0, we just haved’ N C’ which we have proven is not empty. Now suppose
that H = A’N C" N (), ; Bg, and note that/ is a non-empty member d¥fg; which is
contained inA" N C’. It suffices to show thatl N Ag; and H N Cg; are both non-empty.
The proof forCg; also works forAg; by symmetry. By the definition of @jr(c,gj) =C/,
it follows that if H is disjoint fromCg; it must also be disjoint frond’, which, of course,
itisnot. O

Proof of Theorem 4.2. Let« = ¢*. We can easily deduce from Theorem 4.3 that each of
our spaces,, maps densely intdF. Indeed, Theorem 4.3 implies that each of ¥yemap

into I* by a mapping,f,,, which has the property that 2s contained in the closure of the
range. Since there is a mapping frdfto itself which sends‘2ontoI*, it follows that
there is a mapping fronX,, to a dense subset of.

Now I* has a remote filter (see [2]) and countable sets are nowhere dense. This implies
that every dense subset f has anw-filter (simply trace the remote filter on the dense
set; we do not run into problems here since every element of a remote filter has nonempty
interior and so intersects the dense set).

So we are done since if a spagean be mapped onto a spa@ewith an w-filter then
S has am-filter. O

We are able to prove, from CH, the stronger result that spaces such as in Theorem 4.3
have propertyx), for all n (see Theorem 4.8). However we have been unable to decide
this in ZFC, even fon = 2, which seems to be an interesting problem.

We next consider the second case of our main result.

Theorem 4.4. Let X be the topological sum of spac&s, each of them Lindel&f, weight
< ¢ and of cardinality greater tham. Then eaclX, satisfieqx),, and X has anw-filter.

Since a pairwise disjoint family is certainly point countable, this theorem follows easily
from Lemma 4.7 below and an application of Theorem 2.1.

Lemma 4.5. Let Y be a space withY| > ¢ and weight< ¢. In addition, letC be the set
of thosey € Y having a neighborhood of size at mesfThenB =Y \ C has size greater
thanc.

Proof. SinceC is open it can be covered by ¢ open sets each of cardinalityc. (Here
we use thal’ has weight ¢.) As a consequencg;| < ¢, hencegB|>c¢. O
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Lemma 4.6. Let Y be a normal space, and lgd be a countable collection closed
Gs-subsets of . ThenY \ | J D can be covered by ¢ closedGs-subsets of .

Proof. This is obvious since for ever{p € D, Y \ D is an F,-subset ofY, hence by
normality can be covered by countably many cloégdsubsets of. O

Lemma 4.7. Let Y be a normal space witflV'| > ¢ and weight< ¢. ThenY contains a
family D consisting otv1 pairwise disjoint closed; s-subsets, each of cardinality greater
thanc.

Proof. Let & = {Y} and letB be as in Lemma 4.5. Pick an arbitrapye B, and let&;
be a family of closed5s-subsets ofr, maximal with respect to the properties of being
pairwise disjoint, contained ifi \ { p} and of cardinality greater thanSinceB is infinite,
|€1] = 1. Assume for a moment th& is finite. ThenY \ | J &1 is a neighborhood op,
and contains a closed neighborhoddof p. Then|V| > ¢ and by Lemma 4.5 we may
pickg € V \ {p} and a closed neighborhodd of g with W C V \ {¢} such thaiW| > «.
Without loss of generalityW is a Gs-subset ofY. But this contradicts the maximality
of £1. We conclude thaf; is infinite. Now if £1 is uncountable, we are done and we may
stop. Suppose therefore th@t is countably infinite. Thery \ | J &1 is of cardinality< ¢
by Lemma 4.6.

Observe that everf € &1 is a closedss-subset oft and is of cardinality greater than
So we may repeat the same procedure in every £1, thus obtaining the famils.
Observe that®, consists ofGs-subsets ofY since aGj;-subset of aGs-subset is a
Gs-subset. Now if€> is uncountable, we are done. So suppose that this is not true. Then
&2 is countably infinite, and everf§ € &1 is being “split” at least infinitely often. In
addition, by the same reasoning as abdve, &3 < ¢.

If this process continues to a limiz, we let 7 be the family consisting of all
intersections of chains which have exactly one element from each &gth< «. There
are at most® = ¢ such intersections that are potentially non-empty, and each of those is a
Gs-subset off. Observe thaty \ | F| < ¢, and hence there has to be at least one element
in F which has cardinality greater thanLet &, consist of all those elements 6f which
have cardinality> c.

So the process can be continued,dot w1, for of course we can stop if any of tisg
are uncountable. It then follows that the uncountable family of closed|sg&;,: « < w1}
forms a tree when ordered hy. For eache < w1, Y \ |J &, has cardinality at most,
hence there is somee Y such that the chain consisting of thoBg € &£, which contain
y is uncountable.

For every ordinal < w;, recall that, ;1 is a member of an infinite pairwise disjoint
family of subsets ofE, hence we can pick a “successoF, of E, that is disjoint
from E, 1. ThenD ={F,. y < w1} is as required. O

Theorem 4.8 (CH). If X is Lindel6f and nowhere of weight at most then X has
property(x), for all n.
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Proof. We may assume tha is embedded int§0, 1]¢ for somex. We may also assume
that X is ccc. Fix an elementary submod#l closed undew-sequences, with cardinality
¢ and which includeX and its topology. We define, to be the projection mapping from
[0, 1] onto [0, 1]M"*. Two sets of interest arey, (X) andmy (X N M). If it happens that
7y (X) has cardinality greater thanthen we are done by applying Theorem 4.4p(X).
On the other hand, ify;(X) has cardinality = w1, and if Ty, (X) is not separable, then
similar to Corollary 3.2X has(x),, for all » (use only nowhere separable ccc regular closed
sets as in the proof of Corollary 3.2). Of coutsetself is nowhere separable because it is
nowhere of weight at most

We next observe that in a Lindeldf space, the closure of the union of each countable
family of closed sets of weight at moswill also have weight at most Indeed, a Lindel6f
space of weight at mosthas at most continuous real-valued functions. A countable union
of spaces, each of which has at mosontinuous real-valued functions will also have at
mostc continuous real-valued functions. Finally, a regular space with a dense set which has
at mostc continuous real-valued functions will again have at magintinuous real-valued
functions.

Now, we are assuming thaty (X) has cardinalityx and thatr,,(X) is separable. Fix
a countable subsdf,: n € w} € X so thatmy ({x,: n € w}) is dense inmy (X). By
elementarity and the fact thaf® c M we know thatr, (X N M) is nowhere separable.
Therefore we may assume that for eachmy (x,) ¢ 7y (X N M). We can choose a
sufficiently large countable set € M N « such that for each, if there is aGs in M
containingx,, such that the set has weight at mesthen[x, [ J1={x e X: x [ J =x, |
J} will have weight at most. Let A denote those such thafx, | /] has weight at most
As noted above, the closurelof{[x, | J1: n € A} has weight at most hence has nowhere
dense union irX. This family is in M, hence a witness to its non-denseness i¥in

Therefore, it follows that we have ane X, namely one of the,’s with n ¢ A, such
that thatry, (x) ¢ (X N M), and for eaclGs in M which containse, the weight of that
G is greater than.

Let k¥ be minimal such that there is a clos€q, K, in M which containsc but which
does not have property);+1. Setg to be thosess's which have propertyx);.

Claim. There is aGs K’ € K with x € K’ andK’ € M such thag N P(K’) has the finite
intersection property.

Otherwise inductively choosiK,,: « € w1}, working in M, all of which are inG and
such that for eack there is aJ, € K, which is inG and which is disjoint fromK1.
At limit stagesK, = ﬂ,ka Kpg; sincex € K, it follows that K, € G. Given K, and
GNP(Ky) not having the finite intersection property (i), thereisal, € GNP(Ky,) M
such thatx ¢ J,. SinceJ, is aGs which is in M, there is aK,+1 € M so thatx € K441
andK, 1 is disjoint fromJ,. The definition ofk gives a contradiction, because the family
{Jo: o € w1} witness thatk has property(s)g41.

By the Claim we have thaf N P(K) generates a filter. Also, by the minimality bf
x € K’ for eachK’ € M NG N P(K). It follows similarly thatG N M is countably
complete, hence, by elementarity, tidats countably complete. Sinck is Lindel6f and
G is countably complete, there will be a pointwhich is a member o& for all G € G.
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Sinceg is in M, there will be such a point in M. Clearly though, we will then have that
7wy (y) =y (x)—which contradicts that ) (x) € tyy (X N M). O
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