

Topology and its Applications 129 (2003) 79-87

www.elsevier.com/locate/topol

ω -far points in large spaces

Alan Dow^{a,*}, Jan van Mill^b

^a Department of Mathematics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
^b Faculty of Sciences, Division of Mathematics and Computer Science, Vrije Universiteit, De Boelelaan 1081^a, 1081 HV, Amsterdam, The Netherlands

Received 25 June 2001; received in revised form 21 December 2001

To the memory of Murray Bell

Abstract

We prove that every normal non-compact space which is nowhere of cardinality at most c has an ω -far point. This provides a partial answer to a question of van Douwen. © 2002 Elsevier Science B.V. All rights reserved.

MSC: 54B15; 54D80; 03E55

Keywords: Weak P-point; Far point; Homogeneity

1. Introduction

All spaces under discussion are Tychonoff, and if X is a space then X^* denotes $\beta X \setminus X$. Let X be a crowded (i.e., no isolated points) space. A point $p \in X^*$ is called an ω -far point of X provided that $p \notin cl_{\beta X} D$ for any countable closed discrete set $D \subseteq X$. The concept of ω -far point was introduced by van Douwen [1], who proved that normal non-Lindelöf spaces and non-compact metrizable spaces have ω -far points. He used the concept of an ω -far point to present what he called "honest" proofs of the non-homogeneity of certain Čech–Stone remainders. The question raised in [1] of whether all non-pseudocompact crowded spaces have ω -far points is still open (although it has an affirmative answer under MA by [7]).

The concept of an ω -far point is strongly related to that of a remote point. A point $p \in X^*$ is called a *remote point* of X provided that $p \notin cl_{\beta X} D$ for any nowhere dense

* Corresponding author.

E-mail addresses: adow@uncc.edu (A. Dow), vanmill@cs.vu.nl (J. van Mill).

^{0166-8641/02/}\$ – see front matter © 2002 Elsevier Science B.V. All rights reserved. PII: S0166-8641(02)00139-6

 $D \subseteq X$. If X is crowded then a remote point is certainly ω -far, but the converse need not be true.

Let *X* be a space. An ω -filter on *X* is a closed filter \mathcal{F} on *X* such that for every countable subset *D* of *X* there exists an element $F \in \mathcal{F}$ with $F \cap D = \emptyset$. So, roughly speaking, an ω -filter is a closed filter "avoiding" all countable sets. Observe that an ω -filter consists of uncountable sets. If \mathcal{F} is an ω -filter on the normal space *X* then any point $x \in \bigcap_{F \in \mathcal{F}} \operatorname{cl}_{\beta X} F$ is ω -far. To see this, note that if $D \subseteq X$ is countable closed and discrete, then there exists $F \in \mathcal{F}$ such that $F \cap D$ is empty. Now it suffices to observe that *F* and *D* have disjoint closures in βX since *X* is normal.

Observe that no compact space has an ω -filter. For if \mathcal{F} is an ω -filter on a compact space *X* then $\bigcap \mathcal{F} \neq \emptyset$. Since \mathcal{F} consists of closed sets, and "avoids" all singleton subsets of $\bigcap \mathcal{F}$, this is a contradiction.

The known ZFC proofs of the existence of ω -far points in certain spaces either prove the stronger result that ω -filters exist or prove the stronger result that remote points exist. Let us demonstrate this by a simple example in presenting van Douwen's proof that every non-Lindelöf space has an ω -filter. Indeed, let X be non-Lindelöf, and let \mathcal{U} be an open cover of X having no countable subcover. The collection

$$\mathcal{F} = \left\{ X \setminus \bigcup \mathcal{V} \colon \mathcal{V} \in [\mathcal{U}]^{\leqslant \omega} \right\}$$

generates an ω -filter on X. Hence by the above, every normal non-Lindelöf space has an ω -far point.

In this note we are interested in proving the existence of ω -far points by constructing ω -filters. By what we just observed, we need to consider non-compact Lindelöf spaces only. Hence all spaces we are interested in are normal. This simplifies things a bit. Our main result is that every non-compact Lindelöf space which is nowhere of cardinality at most c has an ω -filter (as usual, if \mathcal{P} is any topological property, we say that a space is *nowhere* \mathcal{P} provided that no non-empty open subset of X has \mathcal{P}). This yields a partial answer to van Douwen's problem.

We finish this introduction by making some remarks on spaces with or without an ω -filter. It is clear that no countable space has an ω -filter. For uncountable spaces the situation is unclear. Let L be the one-point Lindelöfication of an uncountable discrete space, and let X be the product $L \times \mathbb{Q}$, here \mathbb{Q} denotes the space of rational numbers. Then X is a non-compact crowded Lindelöf space having no ω -filter. (But X has a non-compact clopen subset of countable weight and therefore has a remote point and, since X is crowded, an ω -far point.) It is even consistent to have examples of uncountable subsets of the real line \mathbb{R} having no ω -filter. Let $X \subset \mathbb{R}$ be uncountable and *concentrated* on a countable set (i.e., X contains a countable dense subset D such that each neighborhood of D is co-countable in X). Such sets exist under CH, see [8] for more details. Now X does not have an ω -filter since any closed set F which is disjoint from D will be countable. The question of which spaces do have an ω -filter is open. It is even unknown which subsets of \mathbb{R} have an ω -filter.

We are indebted to the referee for finding and correcting some inaccuracies in an earlier version of this note.

2. A tool for constructing ω -filters

Let *X* be a space. We say that *X* has property $(*)_0$ if it contains a point countable uncountable family of closed sets. Every uncountable space has an uncountable family consisting of singletons and as a consequence has property $(*)_0$. So this concept is not very interesting. We say that *X* has property $(*)_1$ if it contains a point countable uncountable family of closed sets, each of which has property $(*)_0$. So this property simply says that *X* contains a point countable uncountable family of uncountable closed sets. Not every uncountable space has property $(*)_1$, as the one point Lindelöfication of an uncountable discrete space shows. We say that *X* has property $(*)_{n+1}$ if it contains a point countable uncountable family of closed sets, each of which has property $(*)_n$. One may note that if "point-countable" is strengthened to "pairwise disjoint", then a space *X* has property $(*)_n$ exactly when it contains a tree of closed sets $\{F_t: t \in \omega_1^{\leq n+1}\}$. That is, $F_{\emptyset} = X$, and for each $s \in \omega_1^{\leq i}$ for $i \leq n$, the $F_{s \frown \alpha}$, for $\alpha < \omega_1$, form a disjoint family of closed non-empty subsets of F_s .

We now present our main tool for constructing ω -filters in "large" spaces. The idea of the proof goes back to Kunen [6] and Dow and van Mill [5].

Theorem 2.1. Let X be the topological sum of the spaces X_n , $n < \omega$. If for every n, X_n has property $(*)_n$ then X has an ω -filter.

Proof. For each $n < \omega$ we fix a family of closed subsets of X_n indexed by $\leq n$ -sized subsets of ω_1 , denoted $\{B_n(F): F \subset \omega_1, |F| \leq n\}$. We set $B_n(\emptyset) = X_n$, and, for each finite subset $F \subseteq \omega_1$ with |F| < n, we select $B_n(F \cup \{\alpha\}) \subseteq B_n(F)$ for all max $F < \alpha < \omega_1$ to be a point-countable family of closed sets each with property $(*)_{n-|F|-1}$.

For each $\beta < \omega_1$ let $\{a(\beta, n): n < \omega\}$ be an increasing chain of finite subsets of β so that $\beta = \bigcup_{n < \omega} a(\beta, n)$. Define $G_\beta \subseteq X$ so that $G_\beta \cap X_n$ is the union of all $B_n(\{\alpha_1, \ldots, \alpha_k, \beta\})$ such that k < n and $\{\alpha_1, \ldots, \alpha_k\} \subseteq a(\beta, n)$. This is a finite union, so G_β is closed. We claim that the filter generated by $\mathcal{G} = \{G_\beta: \beta < \omega_1\}$ is as required.

Claim 1. \mathcal{G} has the finite intersection property.

Take arbitrary $\beta_1 < \beta_2 < \cdots < \beta_k < \omega_1$ and fix *n* large enough so that for each $i < j \leq k, \beta_i \in a(\beta_j, n)$. It follows that $B_n(\{\beta_1, \dots, \beta_k\}) \subseteq G_{\beta_1} \cap \cdots \cap G_{\beta_k}$.

Claim 2. For every countable $D \subseteq X$ there exists $\beta < \omega_1$ such that $G_\beta \cap D = \emptyset$.

For convenience of notation, let $B_n(F) = \emptyset$ for each $F \subset \omega_1$ with n < |F|. Note that the family $\{B_n(\{\alpha\}): n < \omega, \alpha < \omega_1\}$ is point-countable, hence there is a β_0 such that $B_n(\{\alpha\})$ is disjoint from D for each $\alpha \ge \beta_0$. Similarly, the family $\{B_n(\{\gamma\} \cup \{\alpha\}): n < \omega, \gamma < \beta_0$ and $\alpha < \omega_1\}$ is point-countable, hence there is a $\beta_1 \ge \beta_0$ in ω_1 so that $B_n(\{\gamma\} \cup \{\alpha\})$ is disjoint from D for each $n \in \omega, \gamma < \omega_1$ and $\beta_1 \le \alpha < \omega_1$ (note $\min(\gamma, \alpha) \ge \beta_0$ is handled because $B_n(\{\gamma, \alpha\}) \subset B_n(\{\min(\gamma, \alpha)\})$). Proceeding by induction on k, there is a $\beta_k \in \omega_1$ so that for each $F \subset \omega_1$ with $|F| \le k$, each $n \in \omega$ and $\alpha \ge \beta_k$, D is disjoint from $B_n(F \cup \{\alpha\})$. Therefore, for each $\beta \ge \sup\{\beta_k: k \in \omega\}$, G_β is disjoint from D. \Box

3. ω -filters in second countable spaces

The aim of this section is to consider the second countable spaces which have an ω -filter. Recall that a space which is concentrated on a countable set will not have an ω -filter.

Lemma 3.1. Let X be a space of cardinality ω_1 which is not concentrated on a countable set. Then X has property $(*)_1$.

Proof. It is clear that *X* has property $(*)_0$. Let $X = \{x_\alpha : \alpha < \omega_1\}$ and choose F_α any uncountable closed set which is disjoint from $\{x_\beta : \beta < \alpha\}$. It is clear that the family $\{F_\alpha : \alpha < \omega_1\}$ is point-countable. \Box

Corollary 3.2. If X has cardinality ω_1 and no uncountable closed subset of X is concentrated on a countable set, then X has property $(*)_n$ for all $n \in \omega$.

Theorem 3.3. Let X be a second countable space which has an ω -filter. Then X contains a non-compact closed subspace which is nowhere concentrated on a countable set.

Proof. Let \mathcal{F} be an ω -filter on X, an fix an arbitrary $F \in \mathcal{F}$. Let \mathcal{U} be the family of all relatively open subsets of F which are concentrated on a countable set. There is a countable $\mathcal{U}' \subseteq \mathcal{U}$ with $\bigcup \mathcal{U}' = \bigcup \mathcal{U}$. As a consequence, $\bigcup \mathcal{U}$ is concentrated on a countable set, say D. It also follows that $A = F \setminus \bigcup \mathcal{U}$ is nowhere concentrated on a countable set. It is enough to show that A is a member of \mathcal{F} and that A is not compact. There exists $F' \in \mathcal{F}$ with $F' \cap D = \emptyset$. Then $F' \cap \bigcup \mathcal{U}$ is countable. So there also exists $F'' \in \mathcal{F}$ with $F'' \cap (F' \cap \bigcup \mathcal{U}) = \emptyset$, hence A contains $F \cap F' \cap F''$ a member of \mathcal{F} . Also, A is not compact because otherwise $\bigcap \mathcal{F} \neq \emptyset$, which contradicts the fact that \mathcal{F} "avoids" all countable sets, in particular, all singleton subsets of X. \Box

Question 1. If a second countable non-compact space has the property that no uncountable closed set is concentrated on a countable set, does this space have an ω -filter?

4. ω -filters in large spaces

We have already observed that a non-Lindelöf space has an ω -filter so the aim of this section is to prove the following result.

Theorem 4.1. Let X be a non-compact, Lindelöf space. If X is nowhere of cardinality $\leq c$ then X has an ω -filter (in particular, X has an ω -far point).

We begin by making some reductions that will be useful in separating the proof into cases. Since X is Lindelöf but not compact, there is a discrete family $\{X_n: n \in \omega\}$ of non-empty regular closed subsets of X. Since X is nowhere of cardinality $\leq c$, it follows that each X_n is nowhere of cardinality $\leq c$. We will assume that X is equal to the union of these X_n 's.

82

Our proof will split into cases according to the weight of the X_n 's. The following two cases are not exclusive but are easily seen to be inclusive.

In the first case we may assume that no relatively open subset of any of the X_n 's has weight at most \mathfrak{c} . We will prove that such a space has an ω -filter (not requiring that X be nowhere of cardinality $\leq \mathfrak{c}$). In the case that infinitely many of the X_n has a nowhere ccc open subset, it follows immediately from Theorem 2.1 that we have the stronger result, namely that each X_n has property $(*)_n$. Therefore, in this case we may assume that X is ccc.

In the second case, we may assume that each X_n has weight at most c. In this case we are able to prove a stronger result, namely that each X_n has the property $(*)_n$.

The following result is a consequence of the proof of van Mill [7, Theorem 7.2], however in the interest of completeness we prove a pair of results that are improvements of the corresponding ideas in [7].

Theorem 4.2. Let X be the topological sum of the spaces X_n , $n < \omega$, where each X_n is ccc and nowhere of weight $\leq c$. Then X has has an ω -filter.

The main step is an improvement (basically a new proof) of the key construction in [7].

Theorem 4.3. Let X be a ccc space which is nowhere of weight less than $\kappa = c^+$. Then X contains an independent family of disjoint (even completely separated) regular closed sets.

Proof. Fix any chain $\{M_{\alpha}: \alpha < \kappa\}$ of elementary submodels each of cardinality \mathfrak{c} and each closed under ω -sequences (i.e., $M_{\alpha}^{\omega} \subset M_{\alpha}$ for each $\alpha < \kappa$). Also arrange it so that $M_{\alpha} \in M_{\alpha+1}$ for each $\alpha \in \kappa$. The reader can find basic details about elementary submodels and chains in [3] and [4].

Since the weight of a regular space is bounded by its π -weight raised to its cellularity we have that no open subset of *X* has π -weight less than κ . Let *B* denote the Boolean algebra RO(X). Therefore for each α we can choose (using the notation of [7]) a regular open set $\emptyset \neq U_{\alpha} \in M_{\alpha+1}$ such that no non-empty member of $M_{\alpha} \cap B$ is contained in U_{α} . In addition, we can (obviously) choose any $C_{\alpha} \in B \cap M_{\alpha+1}$ which is completely separated from the complement of U_{α} .

Now we use that M_{α} is closed under ω -sequences to note that each member of *B* has a projection into $M_{\alpha} \cap B$. Indeed, for any $U \in B$, we define $\operatorname{pr}_{\alpha}(U)$ to be the meet in *B* of those members of $M_{\alpha} \cap B$ which contain *U*. Since *B* is a complete ccc Boolean algebra and since M_{α} is closed under ω -sequences, $\operatorname{pr}_{\alpha}(U)$ is actually a member of $B \cap M_{\alpha}$. For each α , let A_{α} be the complement (in RO(X)) of U_{α} , and we will show that $\{\langle A_{\alpha}, C_{\alpha} \rangle: \alpha \in \kappa\}$ contains a κ -sized independent family.

For each α , let A'_{α} be the projection in M_{α} of A_{α} and let C'_{α} be the projection in M_{α} of C_{α} . We show that $A'_{\alpha} \cap C'_{\alpha}$ is not empty. First of all,

 $A'_{\alpha} \cap C'_{\alpha} \supset A_{\alpha} \cap C'_{\alpha} \supset C'_{\alpha} \setminus U_{\alpha}.$

This latter set is not empty since C'_{α} is a non-empty member of M_{α} and U_{α} does not contain any such element.

By the pressing down lemma there is a stationary subset *S* of κ and a pair *A'*, *C'* in *RO*(*X*) such that for all $\alpha \in S$, $A'_{\alpha} = A'$ and $C'_{\alpha} = C'$. We finish by checking that $\{\langle A_{\alpha}, C_{\alpha} \rangle: \alpha \in S\}$ has the appropriate finite intersection property.

Suppose that $n \in \omega$ and $\beta_0 < \cdots < \beta_{n-1} < \kappa$ and $f \in 2^n$. For each β_i , let B_{β_i} denote A_{β_i} if f(i) = 0 and denote C_{β_i} otherwise.

Claim. By induction on $j \leq n$, $A' \cap C' \cap \bigcap_{i < j} B_{\beta_i}$ is not empty.

For j = 0, we just have $A' \cap C'$ which we have proven is not empty. Now suppose that $H = A' \cap C' \cap \bigcap_{i < j} B_{\beta_i}$ and note that H is a non-empty member of M_{β_j} which is contained in $A' \cap C'$. It suffices to show that $H \cap A_{\beta_j}$ and $H \cap C_{\beta_j}$ are both non-empty. The proof for C_{β_j} also works for A_{β_j} by symmetry. By the definition of $\operatorname{pr}_{\beta_j}(C_{\beta_j}) = C'$, it follows that if H is disjoint from C_{β_j} it must also be disjoint from C', which, of course, it is not. \Box

Proof of Theorem 4.2. Let $\kappa = c^+$. We can easily deduce from Theorem 4.3 that each of our spaces X_n maps densely into \mathbb{I}^{κ} . Indeed, Theorem 4.3 implies that each of the X_n map into \mathbb{I}^{κ} by a mapping, f_n , which has the property that 2^{κ} is contained in the closure of the range. Since there is a mapping from \mathbb{I}^{κ} to itself which sends 2^{κ} onto \mathbb{I}^{κ} , it follows that there is a mapping from X_n to a dense subset of \mathbb{I}^{κ} .

Now \mathbb{I}^{κ} has a remote filter (see [2]) and countable sets are nowhere dense. This implies that every dense subset of \mathbb{I}^{κ} has an ω -filter (simply trace the remote filter on the dense set; we do not run into problems here since every element of a remote filter has nonempty interior and so intersects the dense set).

So we are done since if a space S can be mapped onto a space T with an ω -filter then S has an ω -filter. \Box

We are able to prove, from CH, the stronger result that spaces such as in Theorem 4.3 have property $(*)_n$ for all n (see Theorem 4.8). However we have been unable to decide this in ZFC, even for n = 2, which seems to be an interesting problem.

We next consider the second case of our main result.

Theorem 4.4. Let X be the topological sum of spaces X_n , each of them Lindelöf, weight $\leq c$ and of cardinality greater than c. Then each X_n satisfies $(*)_n$ and X has an ω -filter.

Since a pairwise disjoint family is certainly point countable, this theorem follows easily from Lemma 4.7 below and an application of Theorem 2.1.

Lemma 4.5. Let Y be a space with |Y| > c and weight $\leq c$. In addition, let C be the set of those $y \in Y$ having a neighborhood of size at most c. Then $B = Y \setminus C$ has size greater than c.

Proof. Since *C* is open it can be covered by $\leq \mathfrak{c}$ open sets each of cardinality $\leq \mathfrak{c}$. (Here we use that *Y* has weight $\leq \mathfrak{c}$.) As a consequence, $|C| \leq \mathfrak{c}$, hence $|B| > \mathfrak{c}$. \Box

Lemma 4.6. Let Y be a normal space, and let \mathcal{D} be a countable collection closed G_{δ} -subsets of Y. Then $Y \setminus \bigcup \mathcal{D}$ can be covered by $\leq \mathfrak{c}$ closed G_{δ} -subsets of Y.

Proof. This is obvious since for every $D \in \mathcal{D}$, $Y \setminus D$ is an F_{σ} -subset of Y, hence by normality can be covered by countably many closed G_{δ} -subsets of Y. \Box

Lemma 4.7. Let Y be a normal space with $|Y| > \mathfrak{c}$ and weight $\leq \mathfrak{c}$. Then Y contains a family \mathcal{D} consisting of ω_1 pairwise disjoint closed G_{δ} -subsets, each of cardinality greater than \mathfrak{c} .

Proof. Let $\mathcal{E}_0 = \{Y\}$ and let *B* be as in Lemma 4.5. Pick an arbitrary $p \in B$, and let \mathcal{E}_1 be a family of closed G_{δ} -subsets of *Y*, maximal with respect to the properties of being pairwise disjoint, contained in $Y \setminus \{p\}$ and of cardinality greater than \mathfrak{c} . Since *B* is infinite, $|\mathcal{E}_1| \ge 1$. Assume for a moment that \mathcal{E}_1 is finite. Then $Y \setminus \bigcup \mathcal{E}_1$ is a neighborhood of *p*, and contains a closed neighborhood *V* of *p*. Then $|V| > \mathfrak{c}$ and by Lemma 4.5 we may pick $q \in V \setminus \{p\}$ and a closed neighborhood *W* of *q* with $W \subseteq V \setminus \{q\}$ such that $|W| > \mathfrak{c}$. Without loss of generality, *W* is a G_{δ} -subset of *Y*. But this contradicts the maximality of \mathcal{E}_1 . We conclude that \mathcal{E}_1 is infinite. Now if \mathcal{E}_1 is uncountable, we are done and we may stop. Suppose therefore that \mathcal{E}_1 is countably infinite. Then $Y \setminus \bigcup \mathcal{E}_1$ is of cardinality $\leq \mathfrak{c}$ by Lemma 4.6.

Observe that every $E \in \mathcal{E}_1$ is a closed G_{δ} -subset of Y and is of cardinality greater than \mathfrak{c} . So we may repeat the same procedure in every $E \in \mathcal{E}_1$, thus obtaining the family \mathcal{E}_2 . Observe that \mathcal{E}_2 consists of G_{δ} -subsets of Y since a G_{δ} -subset of a G_{δ} -subset is a G_{δ} -subset. Now if \mathcal{E}_2 is uncountable, we are done. So suppose that this is not true. Then \mathcal{E}_2 is countably infinite, and every $E \in \mathcal{E}_1$ is being "split" at least infinitely often. In addition, by the same reasoning as above, $|Y \setminus \mathcal{E}_2| \leq \mathfrak{c}$.

If this process continues to a limit α , we let \mathcal{F} be the family consisting of all intersections of chains which have exactly one element from each of the \mathcal{E}_{β} , $\beta < \alpha$. There are at most $\omega^{\omega} = \mathfrak{c}$ such intersections that are potentially non-empty, and each of those is a G_{δ} -subset of Y. Observe that $|Y \setminus \bigcup \mathcal{F}| \leq \mathfrak{c}$, and hence there has to be at least one element in \mathcal{F} which has cardinality greater than \mathfrak{c} . Let \mathcal{E}_{α} consist of all those elements of \mathcal{F} which have cardinality > \mathfrak{c} .

So the process can be continued, for $\alpha < \omega_1$, for of course we can stop if any of the \mathcal{E}_{α} are uncountable. It then follows that the uncountable family of closed sets, $\bigcup \{\mathcal{E}_{\alpha} : \alpha < \omega_1\}$ forms a tree when ordered by \supset . For each $\alpha < \omega_1$, $Y \setminus \bigcup \mathcal{E}_{\alpha}$ has cardinality at most \mathfrak{c} , hence there is some $y \in Y$ such that the chain consisting of those $E_{\alpha} \in \mathcal{E}_{\alpha}$ which contain y is uncountable.

For every ordinal $\gamma < \omega_1$, recall that $E_{\gamma+1}$ is a member of an infinite pairwise disjoint family of subsets of E_{γ} hence we can pick a "successor" F_{γ} of E_{γ} that is disjoint from $E_{\gamma+1}$. Then $\mathcal{D} = \{F_{\gamma}: \gamma < \omega_1\}$ is as required. \Box

Theorem 4.8 (CH). If X is Lindelöf and nowhere of weight at most c, then X has property $(*)_n$ for all n.

Proof. We may assume that X is embedded into $[0, 1]^{\kappa}$ for some κ . We may also assume that X is ccc. Fix an elementary submodel M closed under ω -sequences, with cardinality \mathfrak{c} and which includes X and its topology. We define π_M to be the projection mapping from $[0, 1]^{\kappa}$ onto $[0, 1]^{M\cap\kappa}$. Two sets of interest are $\pi_M(X)$ and $\pi_M(X \cap M)$. If it happens that $\pi_M(X)$ has cardinality greater than \mathfrak{c} , then we are done by applying Theorem 4.4 to $\pi_M(X)$. On the other hand, if $\pi_M(X)$ has cardinality $\mathfrak{c} = \omega_1$, and if $\pi_M(X)$ is not separable, then similar to Corollary 3.2, X has $(*)_n$ for all n (use only nowhere separable ccc regular closed sets as in the proof of Corollary 3.2). Of course X itself is nowhere separable because it is nowhere of weight at most \mathfrak{c} .

We next observe that in a Lindelöf space, the closure of the union of each countable family of closed sets of weight at most c will also have weight at most c. Indeed, a Lindelöf space of weight at most c has at most c continuous real-valued functions. A countable union of spaces, each of which has at most c continuous real-valued functions will also have at most c continuous real-valued functions. Finally, a regular space with a dense set which has at most c continuous real-valued functions will again have at most c continuous real-valued functions.

Now, we are assuming that $\pi_M(X)$ has cardinality \mathfrak{c} and that $\pi_M(X)$ is separable. Fix a countable subset $\{x_n: n \in \omega\} \subseteq X$ so that $\pi_M(\{x_n: n \in \omega\})$ is dense in $\pi_M(X)$. By elementarity and the fact that $M^{\omega} \subset M$ we know that $\pi_M(X \cap M)$ is nowhere separable. Therefore we may assume that for each n, $\pi_M(x_n) \notin \pi_M(X \cap M)$. We can choose a sufficiently large countable set $J \subseteq M \cap \kappa$ such that for each n, if there is a G_{δ} in Mcontaining x_n such that the set has weight at most \mathfrak{c} , then $[x_n \upharpoonright J] = \{x \in X: x \upharpoonright J = x_n \upharpoonright$ $J\}$ will have weight at most \mathfrak{c} . Let A denote those n such that $[x_n \upharpoonright J]$ has weight at most \mathfrak{c} . As noted above, the closure of $\bigcup \{[x_n \upharpoonright J]: n \in A\}$ has weight at most \mathfrak{c} , hence has nowhere dense union in X. This family is in M, hence a witness to its non-denseness is in M.

Therefore, it follows that we have an $x \in X$, namely one of the x_n 's with $n \notin A$, such that that $\pi_M(x) \notin \pi_M(X \cap M)$, and for each G_{δ} in M which contains x, the weight of that G_{δ} is greater than \mathfrak{c} .

Let k be minimal such that there is a closed G_{δ} , K, in M which contains x but which does not have property $(*)_{k+1}$. Set \mathcal{G} to be those G_{δ} 's which have property $(*)_k$.

Claim. There is a G_{δ} $K' \subseteq K$ with $x \in K'$ and $K' \in M$ such that $\mathcal{G} \cap \mathcal{P}(K')$ has the finite intersection property.

Otherwise inductively choose $\{K_{\alpha}: \alpha \in \omega_1\}$, working in M, all of which are in \mathcal{G} and such that for each α there is a $J_{\alpha} \subseteq K_{\alpha}$ which is in \mathcal{G} and which is disjoint from $K_{\alpha+1}$. At limit stages $K_{\alpha} = \bigcap_{\beta < \alpha} K_{\beta}$; since $x \in K_{\alpha}$, it follows that $K_{\alpha} \in \mathcal{G}$. Given K_{α} and $\mathcal{G} \cap \mathcal{P}(K_{\alpha})$ not having the finite intersection property (in M), there is a $J_{\alpha} \in \mathcal{G} \cap \mathcal{P}(K_{\alpha}) \cap M$ such that $x \notin J_{\alpha}$. Since J_{α} is a G_{δ} which is in M, there is a $K_{\alpha+1} \in M$ so that $x \in K_{\alpha+1}$ and $K_{\alpha+1}$ is disjoint from J_{α} . The definition of k gives a contradiction, because the family $\{J_{\alpha}: \alpha \in \omega_1\}$ witness that K has property $(*)_{k+1}$.

By the Claim we have that $\mathcal{G} \cap \mathcal{P}(K)$ generates a filter. Also, by the minimality of k, $x \in K'$ for each $K' \in M \cap \mathcal{G} \cap \mathcal{P}(K)$. It follows similarly that $\mathcal{G} \cap M$ is countably complete, hence, by elementarity, that \mathcal{G} is countably complete. Since X is Lindelöf and \mathcal{G} is countably complete, there will be a point y which is a member of G for all $G \in \mathcal{G}$.

Since \mathcal{G} is in M, there will be such a point y in M. Clearly though, we will then have that $\pi_M(y) = \pi_M(x)$ —which contradicts that $\pi_M(x) \notin \pi_M(X \cap M)$. \Box

References

- [1] E.K. van Douwen, Why certain Čech-Stone remainders are not homogeneous, Coll. Math. 41 (1979) 45-52.
- [2] A. Dow, Remote points in large products, Topology Appl. 16 (1983) 11-17.
- [3] A. Dow, An introduction to applications of elementary submodels to topology, Topology Proc. 13 (1988) 17–72.
- [4] A. Dow, Set theory in topology, in: M. Hušek, J. van Mill (Eds.), Recent Progress in General Topology, North-Holland, Amsterdam, 1992, pp. 167–197.
- [5] A. Dow, J. van Mill, On nowhere dense ccc P-sets, Proc. Amer. Math. Soc. 80 (1980) 697-700.
- [6] K. Kunen, Weak P-points in N*, in: Topology, Vol. II, Proc. Fourth Colloq., Budapest, 1978, North-Holland, Amsterdam, 1980, pp. 741–749.
- [7] J. van Mill, Weak P-points in Čech-Stone compactifications, Trans. Amer. Math. Soc. 273 (1982) 657-678.
- [8] A.W. Miller, Special subsets of the real line, in: K. Kunen, J.E. Vaughan (Eds.), Handbook of Set Theoretic Topology, North-Holland, Amsterdam, 1984, pp. 201–233.