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ON SETS THAT MEET EVERY HYPERPLANE IN n-SPACE
IN AT MOST n POINTS

JAN J. DIJKSTRA anxDp JAN VAN MILL

ABSTRACT

A simple proof that no subset of the plane that meets every line in precisely two points is an F,-set in
the plane is presented. It was claimed that this result can be generalized for sets that meet every line in
either one point or two points. No proof of this assertion is known, however. The main results in this
paper form a partial answer to the question of whether the claim is valid. In fact, it is shown that a set
that meets every line in the plane in at least one but at most two points must be zero-dimensional, and
that if it is o-compact then it must be a nowhere dense G;-set in the plane. Generalizations for similar
sets in higher-dimensional Euclidean spaces are also presented.

Let n be a natural number greater than 1, and let V be an n-dimensional real vector
space. Let Z be a subset of V. A k-dimensional affine subspace of V is called a
k-plane in V, and a hyperplane is an (n—1)-plane in V. The set Z is called an n-point
set in V if every hyperplane intersects Z in precisely n points, a weak n-point set if
every hyperplane intersects Z in either n — 1 or n points, and a partial n-point set
if every hyperplane intersects Z in at most n points.

Mazurkiewicz [7] proved that IR? contains a two-point set. His construction can
easily be adapted to prove that R" contains an n-point set for every n > 2. The
question of whether a two-point set can be a Borel set is a long-standing and difficult
open problem; see Mauldin [6] for details. The descriptive complexity problem for
weak two-point sets was raised by Sierpinski [8, p. 447]. '

The following two statements were presented as theorems by Larman [5].

ConJeCTURE 1. No n-point set is an F,-set in R”.
ConyecTURE 2. No weak 2-point set is an F,-set in the plane.

Unfortunately, the proofs were incorrect, as was pointed out by Baston and
Bostock [1]. In addition, the latter paper gives a rather elaborate proof of Conjec-
ture 1 for the case n = 2. We first present a short, elegant proof for Conjecture 1 for
general n. We were not able to decide whether Conjecture 2 is valid. However, we ob-
tain some partial results that perhaps suggest that Conjecture 2 is true: weak n-point
sets are zero-dimensional and the only candidates for g-compact weak n-point sets
are nowhere dense Gs-sets. The first of these two results is a generalisation of, and
is grounded on, Kulesza’s theorem [3] that every two-point set is zero-dimensional.

Please note that the extension of Mazurkiewicz’s original two-point set concept
that we employ in this paper is different from the notion of a planar n-point set
found in, for example, [2] and [6].
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An arc is a homeomorphic image of the closed unit interval I = [0, 1]. It should
be noted that [5] does contain a proof of the following useful result.

LeMMA 1. No n-point set can contain arcs.

We shall use the standard dot product in IR* and the standard norm | x|| = /x - x.
If x = (x1,...,%X,) € R", then X = (xy,...,%n, 1) € R™! If a € R**!, then the function
h, :R" - R is given by hy(x) =a- X =a1x; + apx2 +... + ayXy + @y for x € R™.

Let IP" be the n-dimensional real projective space, whose topology is obtained by
regarding it as a quotient space of §” = {v € R*"! : ||[v| = 1} through identification
of antipodal points. Let IH" be the set of all hyperplanes in R”, and note that every
hyperplane equals {x € R" : hy(x) = 0} for some point in a € S". Observe that
if a,b € S", then the equations h,(x).= 0 and hy(x) = 0 are equivalent precisely if
a = +b. So every hyperplane corresponds in a canonical way to a point of IP". There
is one point in P*, namely +(0,...,0, 1), that does not correspond to a hyperplane
because it produces the equation 1 = 0. So we can topologize IH" by identifying it
with the punctured projective space P* \ {+(0,...,0,1)}.

A side of a hyperplane H € H" is a component of R"\ H. If A and B are subsets
of R", then an H € IH" is said to separate A and B if A and B are contained in
different sides of H.

LeMMA 2. If A and B are compacta in R", then {H € H" : H separates A and B}
is an open subset of H".

Proof. Let H € H" be given by {x € R" : hy(x) = 0}, where a € S". If H
separates the compacta A and B, then we may assume that there is some ¢ > 0
such that h,(4) < [¢,00) and hy(B) = (—o0,—¢]. If b € S*, then |hy(x) — ho(x)| =
|(b —a)-%| < ||b—aj|x]. Since AU B is bounded, it is obvious that there is a
neighbourhood U of a such that |hp(x) — h,(x)| < & for any b € U and x € AUB.
So every hyperplane that corresponds to a point in U also separates A from B. O

The cardinality of a set A is denoted by |A]. A subset A of R” with [A] <n+1is
called independent if every affine subspace of R” that contains 4 has dimension at
least |A| — 1.

LEMMA 3. If A < X < R" such that |A| < n+ 1 < |X|, and every hyperplane that
contains A intersects X in precisely n points, then A is independent.

Proof. Let B be such that A =« B = X and |B| = n+ 1. The set B cannot be
contained in a hyperplane. So B is independent, and so is A. O

If a polar coordinate system has been chosen for R?, then we have a parametriza-
tion of P! by identifying the space with the circle group R/nZ. Let  : H> — P!
be the continuous map that assigns to every line its angle of inclination. Let L(u,v)
stand for the line in the plane through u and v whenever u,v € R? and u # v.

The following result proves Conjecture 1 when combined with Lemma 1. After
this paper was submitted, we were informed by James Foran that it was known to
Frederick Bagemihl before 1970 that 2-point sets cannot be g-compact. In addition,
his proof used the same idea as we employ here.

LEMMA 4. Every n-point set that is an F,-set in R" contains arcs.



364 JAN J. DIJKSTRA AND JAN VAN MILL

and let U be the open subset of IH? that consists of all the lines that separate A
from B (see Lemma 2). Since U is obviously nonempty, we can find an ¢’ in U that
meets X. Select a u, = (c,d) € £’ N X. Since ¢’ separates o from both p; and ¢,
we see that ¢ intersects the lines L(p,0) and L(q, 0) between o and p;, and between
o and q, respectively. Put {p,} = ¢' N L(p,0) and {q2} = ¢' N L(g,0). Since X is a
partial two-point set, we have u, # p, and u; # q».

The set £\ {p2,q2} has three components: one bounded and two unbounded. We
shall show that u; lies in the bounded component. Assume that u. is in one of the
two unbounded components. Then the ray from u, towards p, is the same as the ray
from u, towards g5. Since p» and ¢ lie opposite to p and g with respect to o, we can
draw a line #” through u, that separates o from p and ¢, Then /' intersects a((0,r))
and a((r, 1)), and since ¢’ separates A from B we have u; ¢ A. So | X N¢"| > 3,
contradicting the properties of X. We have proved that u, lies between p; and g, on
¢". Consider the triangle A with vertices o, p;, and ¢;. Since £’ separates o from B,
we know that u, lies in the interior of A. S0 0 < d <& and —db < ¢ < —da. We may
conclude that lim,_,o 4, = o.

Consider now the arc «([0,7]). Let s € (0,r), and note that a(s) ¢ L(p, 0). If a(s) lies
on the same side of L(p,0) as g, then we can find a line ¢”, parallel to L(p, o), that
separates a(s) and g from L(p,0). Then ¢” intersects a((0, s)), a((s, 7)), and a((r, 1)),
contradicting the assumption that X is a partial two-point set. If a(s) and g lie on
opposite sides of L(p,0), then choose a u; that is closer to o than a(s) is to the
line L(p,0). Let £” be the line through u, that is parallel to L(p,0). Since u, and
a(s) lie on the same side of L(p,0), we know that /" separates a(s) from L(p,0). So
¢” meets X in a point in «((0,s)), a point in a((s,r)), and in u; ¢ A. The proof is
complete. O

LemMa 7. If X is a one-dimensional finite-point set in R" and L is a nontrivial
linear subspace, then the orthogonal projection of X into L is a one-dimensional finite-
point set in L.

Proof. 1t suffices to prove the result for the case where L has codimension one;
induction will do the rest. So let n > 2, and let L be an (n — 1)-dimensional linear
subspace. By a suitable choice of coordinates, we arrange that L = {0} x R*..
We shall identify L with R”~!. Assume that X is a one-dimensional finite-point set
in R”. Let £ : R" — L be the projection. If H is a hyperplane in L, then ¢~!(H) is
a hyperplane in IR". Consequently, ¢ ~}(H) N X is finite, and so is H N ¢(X). So ¢(X)
is a finite-point set, and hence ind é(X) < 1.

Assume now that £(X) is zero-dimensional. Let w = (wy,...,w,) be an arbitrary
point in X, and put v = £(w). Note that {~'(v) = R x {v} is a line in R", and
hence is contained in some hyperplane of R”. So ¢{~!(v) N X is finite. Consider an
arbitrary neighbourhood (a,b) of w; such that ([a,b] x {v}) N X = {w}. Note that
({a} x RN X and ({b} x R*!)N X are finite, so F = ¢(({a,b} x R* )N X)
is a finite set that does not contain v. Since £(X) is zero-dimensional, we can find
a closed neighbourhood U of v in L such that UNF = @ and the boundary U of U
is disjoint from &(X). Then V-= [q,b] x U is a neighbourhood of w whose boundary
({a,b} x U)U([a,b] x 0U) is disjoint from X. Since V' can be made arbitrarily small,
we may conclude that ind X <0. : . a

THEOREM 8. Every weak n-point set is zero-dimensional.
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Proof. Let X be an n-point set that is F, in IR”. Select n — 1 points in X
and an (n — 2)-plane P that contains these points. Choose a coordinate system
for R" such that P equals {(x1,...,X,) : x; = x, = 0}. We define the continuous
map « : R*\ P — P! by a(x,...,x,) = O(L((0,0),(x1, x2))). We have by Lemma 3
that |P N X| = n— 1 and hence for each hyperplane H that contains P, we have
|[HN X \ P| = 1. This means that o/ X \ P : X \ P — P! is a continuous bijection.
Write X \ P as a countable union of compacta Fy, F»,.... We have P! = Ufil o Fy),
and so by the Baire category theorem, some afF;) has nonempty interior in the
simple closed curve P!, and therefore «(F;) contains an arc. Since F; is compact, «|F;
is an embedding, and hence F; contains an arc as well. 0

Note that we have proved the slightly stronger statement that if X is an F,-set in
R"” consisting of at least n+ 1 points, and 4 = X is such that [4] =n—1 and every
hyperplane that contains A meets X in exactly n points, then X contains arcs.

A space is called rim-finite if there is a basis for the topology consisting of sets
with finite boundaries. Let ‘ind’ stand for the small inductive dimension. If X is a
subset of a finite-dimensional vector space V, then X is called a finite-point set in
V if every hyperplane in ¥ meets X in only finitely many points. It is obvious that
every finite-point set is rim-finite, and hence at most one-dimensional.

ExampLE 1. It is easy to construct a one-dimensional partial n-point set. Define
Z = {(t,t%...,t") : t € R}. If H is a hyperplane in R", then there exist a point
(a1, az,...,a,) € R" that is not the origin, and a value b € R such that H =
{x e R" : 37, a;x; = b}. Intersecting Z with H, we obtain 5 ;_, a;t' = b, which is a
nontrivial polynomial equation, and hence has at most n solutions. So the curve Z
is a partial n-point set.

Kulesza [3] proved that every two-point set is zero-dimensional by establishing
the following result.

THEOREM 5. Every one-dimensional partial 2-point set contains arcs.

Note that a weak two-point set is a partial two-point set that meets every line in
the plane. We define an ultra weak 2-point set X as a partial two-point set such that
{£ e H? : £ N X # 0} is dense in H2.

THEOREM 6. Every ultra weak 2-point set is zero-dimensional.

Proof. In view of Theorem 5, it suffices to show that such sets contain no arcs.
Let X be an ultra weak 2-point set, and let « : I — X be an embedding. Put
A =a([0,1]), p = 2(0), and g = a(1). Let £ be a line that intersects the arc 4, and is
parallel to L(p,q), with the maximum distance towards L(p,q). Let o € /N A4, and
let r € (0,1) be such that a(r) = o. Select an affine coordinate system for the plane
such that o is the origin, £ is the x-axis, and L(p,q) corresponds to the equation
y = —1. Note that A < (—o0,0] x R, and that we may assume that p = (a,—1) and
g =(b,—1) witha < b. :

Let ¢ > 0, and consider the points p; = (—ea,¢) and q; = (—¢b, &), which are
the points of intersection of L(p,0) and L(qg, o) respectively with the horizontal line
y = ¢ Let B be the line segment [—eb, —ea] x {e} that has g; and p; as endpoints,
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Note that if we substitute n = 2 into this proposition, we get Theorem 6 back.

LeMMA 10. Let X be an ultra weak two-point set such that for each u € R?,
{6(4) :uet e H and £ N X + O} is one-dimensional. If F; <« F < ... ¢ X
is a countable covering of X by compacta, then there is a countable closed covering
Gy € Gy < ... of the plane such that G;N X = F; for each i € N.

Proof. Let D denote the open subset {(4,v) : u,v € R? and u # v} of R*. The
continuous map o« : D — P! is given by the rule a(u, v) = 6(L(u,v)). If M is a metric
space, then 4" (M) denotes the space of compacta in M equipped with the Hausdorff
metric.

Let X be a o-compact ultra weak two-point set such that for each u € R?,
Om) ={0(/) :uec st e Hand /N X # B} is one-dimensional. Write X as the
union of an increasing sequence F; c F, < ... of compacta. Define, for each i € N,
the map B; : R*\ F; — A (P') by Bi(u) = «({u} x F;). Since the induced map
a : A (D) — A (P!) is also continuous, we find that every f; is continuous as well.

Define, for each i € N, the following subset of R? \ F;:

G; = {u € R?\ F; : B;(u) contains a continuum with diam > 1/i}.

Since B; is continuous, and the limit (in the Hausdorff metric) of a sequence of
continua with diameter at least ¢ is a continuum with diam > ¢, every G is closed
in R2\ F,.

Next, we show that G] is disjoint from X. Assume that u € X \ F;. Define the
continuous surjection ¢ : F; — f;(u) by ¢(v) = a(u,v). If v1,v; € F; and ¢(v1) = ¢(vy),
then L(u,v;) = L(u,v), and this line can intersect X in only two points, one of which
is u ¢ F;. So v; = vy, and we may conclude that ¢ is a bijection. Since F; is compact,
F; and Bi(u) are homeomorphic. So, using Theorem 6, we see that f;(u) is zero-
dimensional and cannot contain a nontrivial continuum. We may conclude that
ué¢G,

We now prove that |J2; G; = R?\ X. Let u € R?\ X. We obviously have
O(u) = U Bi(u). Since ind O(u) = 1 and O(u) is a subset of the circle P!, we know
that ®(u) contains an arc. So, according to the Baire category theorem, some B;(u)
contains an arc 4 as well. Let kK € N be such that k > i and diam(4) > 1/k. Then
A < Bi(u) < Pr(u), and hence u € G;.

If we define G; = GUF;, with i € N, then this sequence has the required properties.

0

THEOREM 11. Every weak n-point set that is an Fy-set is also a Gs-set in R,

Proof. If X is a g-compact weak two-point set, then Lemma 10 applies, yielding
a closed cover {G; : i € N} of the plane such that every G; N X is compact. Then
every G; \ X is a closed subset of the open subset R? \ (G; N X) of the plane. So
every G; \ X is o-compact, and since the union of these sets is the complement of
X, we find that X is a Gs-set.

Assume that n > 3, and that X is a o-compact weak n-point set in R". Precisely
as in the proof of Theorem 8, we can find a hyperplane H, a continuous map
g : R"\ H - R?, and a finite subset ® of P! such that Z = ¢(X \ H) is an ultra
weak two-point set, g|X \ H is one-to-one, and only lines that have their angle of
inclination in @ can miss Z.
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Proof. Let X be a one-dimensional weak n-point set in R” for n > 3. Select a
subset A of X consisting of n — 2 points. Let L be the (n — 3)-plane in R” with the
property LN X = A (Lemma 3), and select a coordinate system for R" such that
L corresponds to x; = x; = x3 = 0. Let ¢ : R" — R3 be the projection onto the
first three coordinates, and let 0 be the origin in R®. Put Y = ¢(X), and note that
according to Lemma 7, Y is a one-dimensional finite-point set in R>.

Consider the plane P = {0} x R? in R3, and note that P N'Y is finite. Let ©
stand for the finite set {8(#) : £ € H? and |({0} x £) N Y| > 2}. We define the radial
projection p : R?\ P — R2? by p(x1,x2,X3) = (x2/x1,x3/x1). Note that (1,p(x)) is
the point of intersection of the line through 0 and x and the plane {1} x R Put
H=¢P), q=pol/R"\ H,and Z = p(Y \ P) = g(X \ H).

Note that g|X \ H (and hence also p|Y \ P) is a one-to-one map. If we have two
distinct points u,v € X \ H that are mapped by g onto the the same point z € Z,
then &(u) and £(v) both belong to the line p~!(z) U {0} in R So ¢g7!(z)UL =
E1(p~1(z) U {0}) is an (n — 2)-plane that contains the n points AU {u,v} < X, in
violation of Lemma 3.

We claim that Z is one-dimensional. The proof is analogous to the proof of
Lemma 7. Note that since Y NP is finite, we have ind(Y\P) = 1. Let y = (y1, y2, 3) €
Y \ P, and assume that Z is zero-dimensional. Put z = p(y). Since p|Y \ P is one-
to-one, we have p~}(z) N Y = {y}. Consider an arbitrary neighbourhood (a,b) of
y1 such that 0 ¢ [a,b]. Note that ({a} x R?)NY and ({b} x R®)NY are finite, so
F = p(({a,b} x R) NY) is a finite set that does not contain z. Since Z is zero-
dimensional, we can find a closed neighbourhood U of z in R? such that UNF =
and the boundary of U is disjoint from Z. Then V = ([a,b] x R?) N p~}(U) is
a neighbourhood of y whose boundary is disjoint from Y. Since ¥ can be made
arbitrarily small, we may conclude that ind(Y \ P) = 0, a contradiction.

Next we prove that Z is a partial two-point set. Let £ € H? be such that /N Z
has at least three points. Consider the 2-plane Q in R? that contains 0 and the line
{1} x ¢. Note that since p~'(¢) = Q \ P, the sets Q \ P and Y meet in at least three
points. So the hyperplane £~!(Q) contains at least three points of X in addition to
the n—2 points of A. This contradicts the assumption that X is a partial n-point set.

We now prove that Z is an ultra weak two-point set. Let / be a line in the plane
such that 6(¢) ¢ ©. Since @ is finite, such lines form a dense subset of H2. Consider
the plane Q = IR? that contains 0 and the line {1} x /. Since the line P NQ is parallel
to {1} x/ and 0 € Y NP N Q, we see that P N Q contains no points of Y other
than 0. Since £~1(Q) is a hyperplane in IR", it intersects the weak n-point set X in
at least n — 1 points. Precisely n — 2 of these points lie in L = £71(0). So there is a
pointye YNQ\P. Then p(y) e/ NZ.

We found that Z is a one-dimensional ultra weak two-point set, in contradiction
to Theorem 6. m]

Inspection of this proof shows that we have actually proved the following
stronger—albeit less attractive—statement.

PROPOSITION 9. Let X be a finite-point set in R". Let A be a subset of X with
|A| = n — 2, such that for every H € H" with A = H, we have |[H N X| < n, and
H can be approximated by hyperplanes H' that satisfy the conditions A — H' and
|H'NX|>n— 1. Then X is zero-dimensional.
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Write X \ H as the union of an increasing sequence Fi,F»,... of compacta.
Lemma 10 applies to Z and ¢q(F;),q(F2),..., and we have a closed covering
G < G, < ... of the plane such that G;NZ = q(F;) for each i € N. So
{g71(G;) : i € N} is a closed covering of the open set R"\ H and ¢"'(G)NX = F;
for each i because q|X \ H is one-to-one. So {g7}(G;) \ F; : i € N} is a collection
of g-compact subsets of R” \ (X U H) that covers the set. Consequently, X \ H is a
Gs-set, and since X N H is finite, we also see that X is Gs in R". O

Again, in Theorem 11 we may replace the assumption that the set X is a weak
n-point set by the weaker condition that X is a set in IR” that contains a subset A
with precisely n — 2 points such that every hyperplane that contains 4 meets X in n
or n— 1 points.

ExaMPLE 2. There exist countable ultra weak two-point sets that are dense in R2.
According to the Baire category theorem, these sets are not Gs-sets, so Theorem 11
is not valid for ultra weak two-point sets. We use Mazurkiewicz’s [7] inductive
method to construct a counterexample X.

Let {¢; : i € N} and {4; : i € N} be countable dense subsets of H? and R?,
respectively. We shall construct a monotone sequence X; < X, — ..., consisting of
finite partial two-point sets. Put X; = @, and assume that X; has been constructed
for some i € N. Let & be the collection of all lines that meet X; in two points. Since
% is a finite collection of nowhere dense sets, | J & is nowhere dense, and we can
find a v; € R?*\ |J.& such that ||u; —v;|| < 1/i. Put F = X; U {v;}, and consider the
collection #’ of all lines that meet F in two points. If £; € &', then put X;i; = F.
If £; ¢ &', then £;N|J &’ is finite, and hence we can find a point w € £;\ |J £’ and
define X;1 = F U {w}. This completes the induction.

If we define X = J2, X, then X is obviously a countable partial two-point set
that meets every /;, and that contains the dense set {v; : i € N}.

Let X and Y be separable metric spaces. If A « X x Y and x € X, then we let
A(x) stand for the trace {y € Y : (x,y) € A}. The Kuratowski-Ulam theorem [4]
states that if A is a first category subset of X x Y, then there is a first category set
C in X such that for each x € X \ C, the set A(x) is first category in Y.

PROPOSITION 12. Any finite-point set that is a Gg-set in R" is nowhere dense in IR".

Proof. Let Z be a finite-point set that is Gs in R”. Let U « R and V < R*!
be arbitrary nonempty open sets. We put A = (U x V) \ Z, and we note that for
each x € R the set Z(x) is finite. Consequently, A(x) is open and dense, and hence
second category in ¥ for each x € U. So, by the Kuratowski-Ulam theorem, 4 is
second category in U x V. Since A is an F, set, it has nonempty interior, according
to Baire. We may conclude that the closure of Z cannot contain U X V, and hence
that Z is nowhere dense in IR". O

It is an open problem as to whether there exist (weak) n-point sets that are
Gs-subsets of R”".

Theorem 8 generalizes Kulesza’s result that every 2-point set is zero-dimensional.
We do not know, however, whether Theorem 5 generalizes to partial n-point sets.
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Let us take a stand, as follows.
CoNJECTURE 3.  Every one-dimensional partial n-point set contains arcs.
CONJECTURE 4. No weak n-point set is F, in R”.

CoNJECTURE 5. No weak n-point set is G5 in R".
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