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1. Introduction

The aim of this note is to present a survey of the main developments in infinite-
dimensional manifold theory that have occurred since we wrote Dijkstra and
van Mill [24]. Our focus is on topological vector spaces, function spaces, homo-
topy dense imbeddings, topological classification of semicontinuous functions and
hyperspaces.

Infinite-dimensional topology is the creation of R. D. Anderson (see Ander-
son [3] for some remarks on the early development of infinite-dimensional topol-
ogy). Several books were written on the subject, or deal with aspects of infinite-
dimensional topology. The highlights of infinite-dimensional topology are the the-
orems of Anderson [2] on the homeomorphy of `2 and s, of Chapman [20] on
the invariance of Whitehead torsion, of West [50] on the finiteness of homototopy
types of compact ANR’s and of Toruńczyk [48, 49] on the topological charac-
terization of manifolds modeled on the Hilbert cube and Hilbert space. A large
collection of open problems is West’s paper [51]. The subjects that are being
touched upon there range from absorbing sets and function spaces to ANR-theory.

2. Definitions and basic theory

We recall the basic ideas that play an important role in infinite-dimensional topol-
ogy.

A subset A of a space X is called homotopy dense in X if there is a homotopy
H: X × I → X such that H0 is the identity and H(X × (0, 1]) ⊂ A. A closed
subset F of a space X is called a Z-set if X \ F is homotopy dense in X. A
closed subset F of an ANR X is called a strong Z-set if for each open cover U of
X there is a continuous function f : X → X that is U-close to the identity such
that clX(f(X]))∩F = ∅. A countable union of (strong) Z-sets is called a (strong)
σZ-set . A space X that can be written X =

⋃∞
i=1 Xi, where each Xi is a (strong)

Z-set in X, is called a (strong) σZ-space. An imbedding f : X → Y is called a
Z-imbedding if f [X] is a Z-set in Y .

It is clear that a Z-set is nowhere dense. It is tempting to think that a ‘nice’
space, e.g., a vector space, which is meager in itself is in fact a σZ-space. If
this were true then some proofs in infinite-dimensional topology would be simpler.
However, it is not true, as was shown by Banakh [5]. His example is the linear
span in `2 of Erdős’ space in [35]. It is even absolutely Borel. See also Banakh,
Radul and Zarichnyi [7, Theorem 5.5.19] for details.

We will now recall the definition of an absorber after Bestvina and Mogilski
[10]. Let C be a topological class that is closed hereditary. In addition, assume
that C is additive: A ∈ C whenever A can be written as a union of two closed
subsets that are in C. Important examples of such classes are Mα and Aα, the
multiplicative respectively the additive Borel class of level α, α < ω1. Let Cσ

denote the class of spaces that have a countable closed covering consisting of
spaces from C. An AR X is called C-universal if for every A ∈ C there exists a
closed imbedding g: A → X. An AR X is called strongly C-universal if for every
A ∈ C and every map f : A → X that restricts to a Z-imbedding on a closed set
K ⊂ A there exists a Z-imbedding g: A → X that can be chosen arbitrarily close
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to f with the property g|K = f |K. The AR X is called a C-absorber if

1. X is a strong σZ-space,

2. X ∈ Cσ,

3. X is strongly C-universal.

Let us call a C-absorber X a standard C-absorber if X is a homotopy dense subspace
of Hilbert space.

Bestvina and Mogilski proved the Uniqueness Theorem for absorbers:

2.1. Theorem. If there exists a standard C-absorber and the spaces X and Y are
both C-absorbers then X and Y are homeomorphic.

If we combine this theorem with Theorem 5.2 of Banakh [4] then we get an
improved Uniqueness Theorem:

2.2. Theorem. If the spaces X and Y are both C-absorbers then X and Y are
homeomorphic.

Bestvina and Mogilski also show that there exists a standard absorber for
every Borel class. Let us denote by Ωα the standard Mα-absorber and by Λα the
standard Aα-absorber.

The Hilbert cube Q is the product space Iω, where I = [0, 1]. The pseudoin-
terior and pseudoboundary of Q are the subspaces s = (0, 1)ω and B = Q \ s,
respectively. According to Anderson [2] s is homeomorphic to the separable
Hilbert space `2. The space B is an important example of an A1-absorber and
Bω is an example of an M2-absorber. So B and Bω are homeomorphic to Λ1

respectively Ω2.
Absorbers are generalizations of so-called capsets, which were introduced inde-

pendently by to Anderson [1] and Bessaga and Pe lczyński [9]. The notion of
a capset was a fundamental tool in the early days of infinite-dimensional topology
for recognizing topological Hilbert spaces.

3. Topological vector spaces

Dugundji proved in [34] that every locally convex vector space is an AR. This
raised the question whether the local convexity assumption is essential in this
result. This was a formidable open problem for several decades. In [32] Do-
browolski and Toruńczyk proved that every separable, infinite-dimensional,
complete topological vector space that is an AR is homeomorphic to Hilbert space.
This result gave additional importance to finding an answer to the above question.
R. Cauty answered it in the negative:

3.1. Theorem (Cauty [15]). There is a separable, topologically complete vector
space that is not an AR.

Cauty’s construction proceeds as follows. The complete example is obtained
as a completion of a σ-compact and metrizable vector space E. As basis for the
construction of E Cauty considers an infinite-dimensional compact metric space
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X with the property that it is the cell-like image of a finite-dimensional poly-
hedron. The existence of such a space follows from Dranishnikov’s celebrated
construction [33] of an infinite-dimensional space with cohomological dimension
three. Algebraically, E is the free vector space over X. The canonical topology on
E is the strongest linear topology that induces on X the original topology. This
topology, however, is not metrizable. Cauty constructs a weaker topology τ for E
that is metrizable and linear and that has the property that it contains an open
set U that does not have the homotopy type of a CW-complex, thereby showing
that U is not an ANR and hence (E, τ) cannot be an AR.

An immediate corollary of Theorem 3.1 is:

3.2. Corollary. There exists a separable, topologically complete vector space
that is not homeomorphic to any convex subset of a locally convex vector space.

Bessaga and Dobrowolski proved the following positive result in this direction.

3.3. Theorem (Bessaga and Dobrowolski [8]). Every locally convex σ-
compact metric vector space is homeomorphic to a pre-Hilbert space.

This result suggested the possibility of simplifying the (difficult) classification
problem of incomplete locally convex vector spaces by considering only linear sub-
spaces of Hilbert space. Recall that by the Anderson-Kadeč-Toruńczyk Theorem
(see Toruńczyk [49]) complete locally convex metric spaces are characterized by
their weight. For incomplete spaces, however, Marciszewski found the following
obstructions.

3.4. Theorem (Marciszewski [44]). There exists a separable, normed vector
space that is not homeomorphic to any convex subset of Hilbert space.

3.5. Theorem (Marciszewski [44]). There exists a separable, locally convex
metric vector space that is not homeomorphic to any convex subset of a normed
vector space.

Marciszewski’s counterexamples are constructed by transfinite induction and
the method of “killing homeomorphisms” that was invented by Sierpiński [47].
It is unknown whether there are such examples that are absolute Borel sets.

Even the classification problem for σ-compact pre-Hilbert spaces appears dif-
ficult as the following result shows.

3.6. Theorem (Cauty [14]). There exist a continuum of σ-compact pre-Hilbert
spaces such that no two of them have a continuous injection between them.

Let X be an ANR. It is easy to prove that for every open cover U of X there
exists an open refinement V of U such that for every space Y , any two V-close
maps f, g: Y → X are U-homotopic. It is a natural problem whether this property
of ANR’s in fact characterizes the class of all ANR’s. This was also a difficult and
fundamental problem which remained unanswered for decades. Cauty’s example
in Theorem 3.1 also solves this problem in the negative. This is because in every
vector space close maps can be connected by small homotopies.

To see this, let L be a topological vector space. In addition, let U be an open
cover of L. The function λ: L× L× I → L defined by

λ(x, y, t) = (1− t) · x + t · y,
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is defined in terms of the algebraic operations on L and is therefore continuous.
For every x ∈ L pick an element Ux ∈ U containing x. Since λ is continuous
and λ({x} × {x} × I) = {x}, by compactness of I there exists for every x ∈ X a
neighborhood Vx of x such that λ(Vx × Vx × I) ⊆ Ux. Put V = {Vx : x ∈ L}. We
claim that V is as required. To this end, let X be a space and let f, g: X → L
be continuous V-close functions. Define a homotopy H: X × I → L in the obvious
way by the formula

H(x, t) = (1− t) · f(x) + t · g(x).

Then clearly H0 = f and H1 = g. Fix an arbitrary x ∈ X. Since f and g
are V-close, there exists an element p ∈ L such that f(x), g(x) ∈ Vp. But then

{f(x)} × {g(x)} × I ⊆ Vp × Vp × I

from which it follows that H(x, t) = λ(f(x), g(x), t) ∈ Up for every t ∈ I. So this
indeed proves that f and g are U-homotopic.

The classical (Brouwer)-Schauder-Tychonoff Theorem states that every con-
vex compactum in a locally convex vector space has the fixed point property.
Schauder’s unsupported claim that this theorem is valid in any metric vector
space lead to the formulation of the Schauder Conjecture, which states that every
convex compactum in a topological vector space should have the fixed point prop-
erty. Theorem 3.1 shows that the Schauder Conjecture is a substantially stronger
statement than the Schauder-Tychonoff Theorem. Recently, however, Cauty also
proved the Schauder conjecture.

3.7. Theorem (Cauty [18]). Every compact, convex subset of a topological
vector space has the fixed point property.

Cauty’s proof is very interesting. For a compact space X, he first considers the
space P (X) of probability measures on X with finite support, and let Pn(X) be
the subspace of P (X) consisting of those measures whose support has at most n
elements. The spaces Pn(X) have a natural compact topology, and the topology
on P (X) is just the inductive limit topology induced by the sequence

P1(X) ⊂ P2(X) ⊂ · · · ⊂ Pn(X) ⊂ · · · ;

that is, U ⊂ P (X) is open if and only if U∩Pn(X) is open in Pn(X) for every n. It
is clear that we may identify P1(X) and X. Cauty proves the following surprising
result:

3.8. Theorem. Let X be a compact space. Every continuous function f : P (X) →
X has a fixed point, i.e., there is an element x ∈ X such that f(x) = x.

To see that this proves Theorem 3.7, consider a compact convex subset C of
some vector space L, and let f : C → C be continuous. It is clear that f can be
extended to a continuous function f̄ : P (C) → C. Hence by Theorem 3.8, f has
indeed a fixed point.

For a compact metrizable space X, let E(X) be the free topological vector space
over X, and let T(X) be the collection of all metrizable vector space topologies on
E(X) which are finer that the (nonmetrizable) free topology on E(X). Observe
that P (X) is homeomorphic to a closed convex subspace of E(X).
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If X and Y are compact and f : X → Y is continuous then f̂ : P (X) → P (Y ) is
the natural continuous extension of f .

Observe that no metrizability is assumed in Theorem 3.7. So Cauty first re-
duces Theorem 3.7 to the metrizable case. Then he proceeds to prove the following
result, which is the central element in his construction.

3.9. Theorem. Let X be a compact metrizable space. Then there are a compact
metrizable space Z and a continuous function ϕ: Z → X such that

(1) Z is countable dimensional,

(2) If τ ∈ T(X) and τ ′ ∈ T(Z) are such that

ϕ̂:
(
P (Z), τ ′

)
→

(
P (X), τ

)
is continuous, then for every τ -open cover U of P (X) and every countable
locally finite simplicial complex N and every continuous function ξ: N → X
there is a continuous function η: N →

(
P (Z), τ ′

)
such that ϕ̂ ◦ ξ is U-close

to ξ and η(N) ∪ P2(Z) is τ ′-compact.

To see that this result implies Theorem 3.8, striving for a contradiction, assume
that there are a compact metrizable space X and a continuous function f : P (X) →
X without fixed point. Let Z and ϕ be as in Theorem 3.9 for X. It is not difficult
to see that there are topologies τ ∈ T(X) and τ ′ ∈ T(Z) such that the functions

f :
(
P (X), τ

)
→ X and ϕ̂:

(
P (Z), τ ′

)
→

(
P (X), τ

)
are continuous. There is a τ -open cover U of P (X) such that

(1) U ∩ f(U) = ∅

for every U ∈ U. Let V be a τ -open cover of P (X) which is a star-refinement of
U. It is not difficult to see that

(
P (Z), τ ′

)
is countable dimensional, hence it is an

AR by a result of Gresham [40]. Since
(
P (Z), τ ′

)
is separable, there consequently

are a countable locally finite simplicial complex N and continuous functions

µ:
(
P (Z), τ ′

)
→ N, ξ: N →

(
P (Z), τ ′

)
such that

ξ ◦ µ:
(
P (Z), τ ′

)
→

(
P (Z), τ ′

)
is ϕ̂−1[V]-close to the identity on P (Z). The function f◦ϕ̂◦ξ: N → X is continuous.
By (ii) of Theorem 3.9 there is a continuous function η: N →

(
P (Z), τ ′

)
such that

ϕ̂ ◦ η and f ◦ ϕ̂ ◦ ξ are V-close, while moreover η(N) ∪ P2(Z) is τ ′-compact. Put
h = η ◦µ. Then h is a continuous function from

(
P (Z), τ ′

)
into itself, the range of

which has compact closure. Since
(
P (Z), τ ′

)
is an AR, the function h has a fixed

point, say x0. There is an element V1 of V containing the points

ϕ̂(x0) = ϕ̂ ◦ η ◦ µ(x0), f ◦ ϕ̂ ◦ ξ ◦ µ(x0).

There is also an element V2 of V containing the points

ϕ̂(x0), ϕ̂ ◦ ξ ◦ µ(x0).
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Since ϕ̂(x0) ∈ V1∩V2 there consequently is an element U0 of U which contains the
points

ϕ̂ ◦ ξ ◦ µ(x0), f ◦ ϕ̂ ◦ ξ ◦ µ(x0).

But this contradicts (1).
This most fundamental open problem in this area now seems to be the question

whether every compact convex subset of a metrizable vector space is an AR.

4. Function spaces

We first consider the function spaces Cp(X), that is the space of all real-valued
continuous function on a Tychonoff space X and equipped with the topology of
point-wise convergence. Since we are interested in metric spaces we will restrict
our attention to spaces X that are countable. The main problem in this field is the
topological classification of all such spaces Cp(X) that are Borel. There are many
examples of spaces X such that Cp(X) ∈ M2, for instance all metric spaces X
have this property. In [23] Dijkstra, Grilliot, Lutzer, and van Mill showed
that Cp(X) ∈ A2 implies that X is discrete. The following result was a major step
forward.

4.1. Theorem (Dobrowolski, Marciszewski, and Mogilski [29]). If X is a
non-discrete countable space with Cp(X) ∈ M2 then Cp(X) is an M2-absorber
and hence homeomorphic to Ω2.

This result prompted Dobrowolski et al. to conjecture that every Cp(X) that
is Borel should be the absorber of the exact Borel class to which it belongs, which
would imply by the Uniqueness Theorem that Cp(X) is topologically character-
ized by its Borel complexity. Further supporting evidence for this conjecture was
supplied by the following results.

4.2. Theorem (Cauty, Dobrowolski, and Marciszewski [19]). If Cp(X) is
Borel then it belongs to Mα \Aα for some α ≥ 2, provided that X is not discrete.

4.3. Theorem (Cauty, Dobrowolski, and Marciszewski [19]). For each
α ≥ 2 there exists a countable space Xα such that Cp(Xα) is an Mα-absorber and
hence homeomorphic to Ωα.

A major and surprising break through was Cauty’s proof that the conjecture
is false.

4.4. Theorem (Cauty [16]). For each α > 2 there exists a countable space Yα

such that Cp(Yα) ∈ Mα \Aα and yet Cp(Yα) is not an Mα-absorber.

In fact, the construction is such that the space Cp(Yα) does not even con-
tain a closed copy of Λ2, the A2-absorber. The spaces Yα were actually con-
structed by Lutzer, van Mill, and Pol [42] to show that there exist spaces
Cp(X) of arbitrarily high Borel complexity. We let Tn be the set of functions from
{0, 1, . . . , n − 1} to {0, 1} and define the countable set T =

⋃∞
n=1 Tn. If x is an

element of the Cantor set 2ω then x|n ∈ Tn denotes the restriction of x to the
domain {0, 1, . . . , n − 1}. Let Aα ⊂ 2ω be an element of Mα \ Aα and consider
the filter Fα on T that is generated by the co-finite sets and all sets of the form
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⋃∞
n=1 Tn \ {x|n}, where x ∈ Aα. The space Yα is T ∩ {∞} where all points of

T are isolated and the neighbourhoods of ∞ are the sets F ∩ {∞} for F ∈ Fα.
According to Calbrix [12] Cp(Yα) is also in Mα \Aα.

Let us define

sα = {f ∈ RT : f |F = 0 for some F ∈ Fα.}

It is not hard to see that Cp(Yα) is homeomorphic to a closed subset of (sα)ω

so if Cp(Yα) is A2-universal then so is (sα)ω. But then, according to Banakh
and Cauty [6], the pair ((RT )ω, (sα)ω) is (M0,A2)-universal, that is for each
compactum K and subset C of K with C ∈ A2 there is an imbedding ϕ of K into
(RT )ω such that ϕ−1[(sα)ω] = C.

Let W (Q, s) be the subset of Qω consisting of all sequences chosen from Q
such that all but finitely many elements are in the pseudo-interior s. It is obvious
that W (Q, s) is in A2. The desired contradiction is obtained by Cauty via the
following lemma, the proof of which occupies essentially the entire paper [16] and
makes extensive use of Homology Theory.

4.5. Lemma. For each α there is no continuous function ϕ: Qω → (RT )ω such that
ϕ−1[(sα)ω] = W (Q, s).

We now turn beyond Borel to the classes of analytic and co-analytic spaces.
The following results also exclude a simple answer to the classification problem in
these classes.

4.6. Theorem (Marciszewski [43]). Under V = L there exist countable spaces
X and Y such that Cp(X) and Cp(Y ) are non-homeomorphic spaces that are both
analytic but not co-analytic.

4.7. Theorem (Marciszewski [43]). Under V = L there exist countable spaces
X and Y such that Cp(X) and Cp(Y ) are non-homeomorphic spaces that are both
co-analytic but not analytic.

We now consider the space C of continuous real-valued functions on the interval
I with the topology of uniform convergence. Let D and D∗ stand for the subspaces
of C consisting of all differentiable functions respectively all function that are
differentiable in at least one point.

4.8. Theorem (Cauty [13]). D and D∗ are absorbers for the co-analytic respec-
tively analytic classes.

5. Homotopy dense imbeddings

The basic theorem concerning dense imbeddings reads as follows.

5.1. Theorem (Bowers [11]). A separable metric space admits a dense imbed-
ding in Hilbert space if and only if it is nowhere locally compact.

A space X is said to have the strong discrete approximation property (SDAP) if
for every sequence of continuous maps f1, f2, . . . : Q → X and every open cover U

of X there exists another sequence of continuous maps g1, g2, . . . : Q → X such that
each gi is U-close to fi and the images of the gi’s form a discrete collection in X.
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This concept was introduced by Toruńczyk [49] for the purpose of characterizing
Hilbert space as the only separable complete metric AR with the SDAP. An
imbedding f : X → Y is called homotopy dense if f [X] is homotopy dense in Y .
The following theorem gives an internal characterization of the homotopy dense
subspaces of Hilbert space.

5.2. Theorem (Banakh [7, 4]). A separable metric space admits a homotopy
dense imbedding in Hilbert space if and only if it is an AR with the SDAP.

A short proof for this theorem can be found in Dobrowolski [28]. Since
Bestvina and Mogilski [10] have shown that every strong σZ-space has the
SDAP an interesting consequence of Theorem 5.2 is that every absorber is imbed-
dable as a standard absorber and hence Theorem 2.1 improves to Theorem 2.2.

A different approach to homotopy dense imbeddings was taken by Chapman
and Siebenmann [21] who introduced the concept of a Z-compactification as the
natural infinite-dimensional extension of adding a boundary to a finite-dimensional
open manifold, which was the subject of Siebenmann’s famous thesis [46]. A
Z-compactification Y of a (locally compact) space X is a compact metric space
containing X such that Y \ X is a Z-set in Y . So a locally compact space is
Z-compactifiable if and only if it admits a homotopy dense imbedding into some
compact space. Model examples are for instance the case that X is the interior of
a topological manifold Y or that X is the complement of an endface in the Hilbert
cube.

In [21] Chapman and Siebenmann presented criteria for a Hilbert cube man-
ifold X to be Z-compactifiable. Formulated in geometric terms, their result is that
X admits a Z-compactification if and only if X is homeomorphic to the product of
an inverse mapping telescope with the Hilbert cube. Chapman and Siebenmann
were not able to decide whether their characterization can be extended beyond
Hilbert cube manifolds to all locally compact ANR’s. The existence of that ex-
tension depended on an answer to the following question, which was posed in the
paper: if X ×Q is Z-compactifiable is X itself Z-compactifiable?

Guilbault answered this question in the negative:

5.3. Theorem (Guilbault [41]). There exists a locally compact 2-dimensional
polyhedron X that is not Z-compactifiable but such that X × Q has a Z-
compactification.

Surprisingly, the construction of the example X is not complicated. X is the
infinite mapping telescope of a direct sequence S1 θ→ S1 θ→ S1 θ→ . . . where θ is a
degree 1 map which wraps the circle around itself twice counterclockwise, then once
back in the clockwise direction. The fact that X × Q is Z-compactifiable follows
easily from the characterization of Chapman and Siebenmann or by observing
that Chapman’s characterization of simple homotopy equivalence [20] implies that
X ×Q is homeomorphic to (S1 ×Q) × [0,∞). The proof that X does not admit
Z-compactifications, however, is very lengthy and involved.

Although Chapman and Siebenmann’s question about Z-compactifications has
its origin firmly in Hilbert cube manifold theory, Ferry showed recently that this
problem is finite-dimensional rather than infinite-dimensional in nature:
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5.4. Theorem (Ferry [36]). If an n-dimensional polyhedron X is such that
X ×Q is Z-compactifiable then X × I2n+5 is also Z-compactifiable.

6. Topological classification of semicontinuous functions

The primary focus of this research concerns the question whether certain semicon-
tinuous functions of analytic origin that are defined on Hilbert space are topolog-
ically indistinguishable. Interesting examples of such functions are the p-norm on
the topological Hilbert space s = RN:

|x|p =
{

p
√∑∞

n=1 |xn|p if p < ∞
sup{|xn| : n ∈ N} if p = ∞.

Because s carries the topology of point-wise convergence these functions are lower
semicontinuous but not continuous. In fact, according to van Mill and Pol [45]
these functions are in a sense universal for all lower semicontinuous functions and
they are not even countably continuous, that is their domain cannot be partitioned
into countably many sets such that the restrictions are continuous.

If X is a (real) topological vector space endowed with the continuous norms ‖·‖
and |·|, respectively, then there is a norm preserving homeomorphism f : (X, ‖·‖) →
(X, |·|) defined by f(0) = 0 and

f(x) =
‖x‖
|x|

x

if x 6= 0. Observe that such a homeomorphism is in general not linear. Consider
for example R2 endowed with the Euclidean norm ‖x‖ =

√
x2

1 + x2
2 and the max

norm |x| = max{x1, x2}. So a norm preserving homeomorphism sends the unit
ball {(x, y) ∈ R2 : x2 + y2 ≤ 1} onto the unit brick [−1, 1]2 and consequently
changes the shape of a geometric object considerably.

These considerations for continuous norms are not very interesting and the
question naturally arises whether something can be said in the case of discontin-
uous norms. All norms on finite-dimensional vector spaces are continuous, so the
question only makes sense within the framework of infinite-dimensional spaces. If
X is an infinite-dimensional vector space then it can be endowed with several dis-
continuous norms. This leads us to consideration of the well-known p-norms from
the Banach spaces `p in combination with the topology of point-wise convergence.

By means of the Bing Shrinking Criterion the authors proved that all the p-
norms are topologically indistinguishable:

6.1. Theorem (Dijkstra and van Mill [25]). For every p ∈ (0,∞) there exists
a homeomorphism h: s → s such that |h(x)|p = |x|∞ for every x ∈ s.

Sketch of Proof: For p, q ∈ (0,∞) it is easy to construct homeomorphisms
Hp

q : s → s that are norm preserving, that is |Hp
q (x)|p = |x|q for all x ∈ s. Let for

p ∈ (0,∞) and q ∈ (0,∞] the map Hp
q : s → s be defined by the property that for

each x, y ∈ s and n ∈ N with Hp
q (x) = y we have

yn = sgn(xn) p

√
|ξn(x)|pq − |ξn−1(x)|pq ,
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where ξn(x) = (x1, x2, . . . , xn, 0, 0, . . .) and sgn(xn) is the sign of the number. Note
that this definition also works in the case that q = ∞. However, Hp

∞ is never a
homeomorphism but it is a norm-preserving cell-like surjection. The idea of the
proof is to take a representative H1

∞ and to show that this map is shrinkable by
homeomorphisms of s that preserve the | · |∞ norm. Then, according to Bing, H1

∞
can be approximated by norm-preserving homeomorphisms.

The three figures show the shrinking process in (considerably) simplified form.
The first figure shows the unit sphere with respect to the sup norm in the first
octant of the first three dimensions with the fibres of the map H1

∞ indicated by
solid lines and a shaded region.

x1

x2

x3

Figure 1

Assuming that the fibres need to be shrunk to a constant size ε the transition from
Figure 1 to Figure 2 indicates how the projections of the fibres onto the x1x2-plane
are shrunk by a rotational move in the x1x2-plane that does not involve x3.

Figure 2
This operation is then followed by a similar move in the planes that contain the
x3-axis, as illustrated by the transition from Figure 2 to Figure 3. The result is
that the projections onto the first three dimensions of all fibres have been shrunk to
size ε. This process can be continued. If we would be working in the Hilbert cube
Q then the process could stop once the length of the n-th coordinate dips below ε.
It is not desirable to let the process run through infinitely many coordinates since
the norm is not continuous and so limits in general do not preserve norm.

We are, however, working in a highly noncompact space, Hilbert space. This
means that we have to work with ε-functions rather than constant ε’s. Most of
the effort in the paper [25] goes towards dealing with the tension between this
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requirement and the rigidity that is caused by the need to preserve the norms of
vectors. Also, the use of ε-functions means that the shrinking homeomorphisms
are obtained as limits of infinite sequences of homeomorphisms which are kept
norm-preserving by making sure that every individual vector is moved only a
finite number of times.

Figure 3

7. Hyperspaces of Peano continua

If X is a compact metric space, then 2X denotes the hyperspace consisting of
all non-empty closed subsets of X, endowed with the Hausdorff metric. C(X)
denotes the compact subspace of 2X consisting of all subcontinua of X. The
fundamental theorems are by Curtis and Schori [22]: 2X is homeomorphic to Q
if and only if X is a non-degenerate Peano continuum and C(X) is homeomorphic
to Q if and only if X is a non-degenerate Peano continuum without free arcs.
For k ∈ {0, 1, 2, . . .} we let Dim≥k(X) denote the subspace consisting of all ≥k-
dimensional elements of 2X and we put Dim∞(X) =

⋂∞
k=0 Dim≥k(X).

7.1. Theorem (Dijkstra, van Mill, and Mogilski, [26]). There exists a
homeomorphism α from 2Q onto Qω such that for every k ∈ {0, 1, 2, . . .},

α(Dim≥k(Q)) = B × . . .×B︸ ︷︷ ︸
k times

×Q×Q× · · ·

and hence Dim∞(Q) is an M2-aborber and homeomorphic to Bω and Ω2.

The proof of this theorem is based on the technique of absorbing systems, which
was introduced in the papers [26, 27]. Subsequently, several authors generalized
Theorem 7.1 in different directions. Gladdines [37] proved that the theorem
remains valid when we consider the sequences Dim≥k(X) and Dim≥k+1(X)∩C(X)
for X an countable infinite product of Peano continua instead of Q. Dobrowolski
and Rubin [30] show that in Theorem 7.1 the covering dimension may be replaced
by cohomological dimension. In addition, Gladdines and van Mill [38] give
an example that shows that the theorem is not valid for all everywhere infinite
dimensional Peano continua. The final word on this subject was spoken by Cauty:

7.2. Theorem (Cauty [17]). A Peano continuum X has the property that every
nonempty open subset contains compacta of arbitrarily high finite dimension if
and only if here exists a homeomorphism α from 2X onto Qω such that for every

11



k ∈ {0, 1, 2, . . .},

α(Dim≥k(X)) = B × . . .×B︸ ︷︷ ︸
k times

×Q×Q× · · · .

This result remains valid if we consider C(X) instead of 2X and also if we
replace covering dimension by cohomological dimension.

Gladdines and van Mill have also considered the space L(X) ⊂ C(X) consisting
of all Peano continua in X:

7.3. Theorem (Gladdines and van Mill [39]). If n ≥ 3 then L(In) is an
M2-absorber and hence homeomorphic to Ω2.

Continuing in this direction Dobrowolski and Rubin found:

7.4. Theorem (Dobrowolski and Rubin [31]). If n ≥ 3 then both AR(In) and
ANR(In) are M3-absorbers and hence homeomorphic to Ω3.

12
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Polon. Acad. Sci. Sér. Math. Astronom. Phys. 47 (1999), 385–392.

[6] T. Banakh and R. Cauty, Interplay between strongly universal spaces and
pairs, Dissertationes Math., vol. 386, 2000.

[7] T. Banakh, T. Radul, and M. Zarichnyi, Absorbing sets in infinite-
dimensional manifolds, Mathematical Studies, vol. 1, VNTL Publishers, Lviv,
1996.

[8] C. Bessaga and T. Dobrowolski, Affine and homeomorphic embeddings into
l2, Proc. Amer. Math. Soc. 125 (1977), 259–268.
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[16] R. Cauty, La classe Borélienne ne détermine pas le type topologique de Cp(X),
Serdica Math. J. 24 (1998), 307–318.

[17] R. Cauty, Suites Fσ-absorbantes en théorie de la dimension, Fund. Math. 159
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J. van Mill, eds.), North-Holland Publishing Co., Amsterdam, 1992, pp. 145–
165.

[25] J. J. Dijkstra and J. van Mill, Topological equivalence of discontinuous norms,
2002, (to appear in Israel J. Math.).

[26] J. J. Dijkstra, J. van Mill, and J. Mogilski, The space of infinite-dimensional
compacta and other topological copies of (l2f )ω, Pacific J. Math. 152 (1992),
no. 2, 255–273.

[27] J. J. Dijkstra and J. Mogilski, The topological product structure of systems of
Lebesgue spaces, Math. Ann. 290 (1991), no. 3, 527–543.

[28] T. Dobrowolski, Enlarging ANR’s with SDAP to l2-manifolds revisited, Bull.
Polish Acad. Sci. Math. 45 (1997), no. 4, 345–348.

[29] T. Dobrowolski, W. Marciszewski, and J. Mogilski, On topological classifica-
tion of function spaces of low Borel complexity, Trans. Amer. Math. Soc. 328
(1991), 307–324.

14



[30] T. Dobrowolski and L. R. Rubin, The hyperspaces of infinite-dimensional com-
pacta for covering and cohomological dimension are homeomorphic, Pacific J.
Math. 164 (1994), no. 1, 15–39.

[31] T. Dobrowolski and L. R. Rubin, The space of ANRs in Rn, Fund. Math.
146 (1994), no. 1, 31–58.
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