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Abstract. Weakly n-dimensional spaces were ®rst distinguished by Karl Menger. In this note we
shall discuss three topics concerning this class of spaces: universal spaces, products, and the sum
theorem. We prove that there is a universal space for the class of all weakly n-dimensional spaces,
present a simpler proof of Tomaszewski's result about the dimension of a product of weakly n-
dimensional spaces, and show that there is an n-dimensional space which admits a pairwise disjoint
countable closed cover by weakly n-dimensional subspaces but is not weakly n-dimensional itself.
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1. Introduction

We shall consider separable metrizable spaces only. Our terminology follows
Kuratowski [3]. We assume that the reader is familiar with the basic notions and
results in dimension theory. For details, see [3] and [1].

Given a space X, we shall denote by X�n� the set of all points in X that have
arbitrarily small neighborhoods with at most �nÿ 1�-dimensional boundaries, [3,
§25, III]. If 14 dim X<1, then the set

��X� � XnX�nÿ1�; n � dim X; �1�
is called the dimensional kernel of X. Menger's classical theorem asserts that

dim ��X� 2 fdim X; dim X ÿ 1g; �2�
cf. [9].

A space X is weakly n-dimensional, n5 1, if dim X � n and dim ��X� � nÿ 1,
cf. [3, §27, VI], [1, p. 39]. The ®rst example of a weakly one-dimensional space
was constructed by Sierpi�nski [12], before the notion of dimension was de®ned. For
n5 2, the existence of weakly n-dimensional spaces was demonstrated by
Mazurkiewicz [6], thereby solving a problem of Menger. Simpler constructions are
due to Tomaszewski [13] and van Mill and Pol [10].

In this note we shall discuss three topics concerning weakly n-dimensional
spaces: universal spaces, products, and the sum theorem.
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would like to express his thanks for the hospitality.



In Section 2 we shall prove the following:

Theorem 1.1. For each n5 1 there exists a weakly n-dimensional space E such
that any weakly n-dimensional space embeds in E.

Menger [8] asked whether there exists a weakly one-dimensional space X such
that dim Xn � n for every n. This problem was solved by Tomaszewski [13], who
proved the following interesting result:

Theorem 1.2. (Tomaszewski). If X is weakly n-dimensional and Y is weakly m-
dimensional then dim�X � Y�4 n� mÿ 1.

Section 3 is devoted to a simpler proof of this result. The basic idea of the
proof follows [13], but our approach is more direct and elementary.

We do not know if for any weakly one-dimensional space X its cube X3 must be
one-dimensional.

In the last section we prove, re®ning a reasoning from [10], the following:

Theorem 1.3. Let K be an �n� 1�-dimensional compact space, n5 1. Then K
contains an n-dimensional subspace X such that XnX�0� is covered by the union of a
countable family pairwise disjoint (relatively) closed weakly �nÿ 1�-dimensional
subsets of X.

Let us comment on the assertion of Theorem 1.3, assuming n5 2. Let E be a
countable pairwise disjoint collection of closed weakly �nÿ 1�-dimensional
subspaces of X covering XnX�0�, and let E denote its union. Since X�0� is zero-
dimensional, E�nÿ2� � X�nÿ1�, and so

��X� � XnX�nÿ1� � EnE�nÿ2� � ��E�:
Since dim E � nÿ 1;EnE�nÿ2� is the dimensional kernel of E, and so we get

dim ��E�5 dim ��X�5 nÿ 1:

So this yields:

Corollary 1.4. For each m5 1 there is a space E which is not weakly m-
dimensional, whereas it admits a countable pairwise disjoint closed cover con-
sisting of weakly m-dimensional subspaces.

For dimension one, such an example was constructed by Mazurkiewicz [4] (in
response to a question of Sierpi�nski concerning `̀ quasi-connectivity''). We did not
®nd analogous examples for higher dimensions in the literature.

Mazurkiewicz [5] also constructed a space which is the union of two weakly
one-dimensional closed subspaces but is not weakly one-dimensional itself. It is
an obvious question whether our construction also yields such examples. This is
not true unfortunately, since one can check that for any n-dimensional space Y
with n5 2 the set YnY�0� cannot be covered by ®nitely many weakly �nÿ 1�-
dimensional closed subspaces (the proof of this assertion is implicit in our proof of
Theorem 1.3).

Problems concerning sum theorems for weakly n-dimensional spaces were
raised by Menger, cf. [7], [9].
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2. Proof of Theorem 1.1

We shall denote by I1 and 21 the Hilbert cube and the Cantor set, respectively;
let p : 21 � I1 ! 21 be the projection. As usual, N denotes the set of natural
numbers. We shall let K�I1� denote the space of nonempty compact sets in I1,
endowed with the Vietoris topology [3, §42].

For a ®xed natural number n, let M be the subspace of the product

K�I1� �K�I1�N � �K�I1� �K�I1��N;
consisting of all elements of the form

�K; hLi : i 2 Ni; h�Ci;Di� : i 2 Ni� �1�
satisfying the following conditions:

L1 � L2 � � � � � K; dim Li 4 nÿ 1 �i 2 N�; �2�
K � Ci [ Di; dim�Ci \ Di�4 nÿ 2 �i 2 N�: �3�

There is a subspace T in 21 and a continuous mapping ' from T onto the set M. It
will be convenient to denote ' as follows:

t 7!�K�t�; hLi�t� : i 2 Ni; h�Ci�t�;Di�t�� : i 2 Ni�: �4�
For any t 2 T, let

H�t� � fz 2 K�t�nS1i�1 Li�t� : for any neighborhood U of z in I1

there is an i 2 N with z 2 Ci�t� � U

and z =2Di�t�g: �5�
For t 2 T, put

E�t� � H�t� [
[1
i�1

Li�t�: �6�

Finally, let E � 21 � I1 be the subspace of all points of the form �t; z�, where
t 2 T and z 2 E�t�.

We shall show that

E is weakly n-dimensional; �7�
and

any weakly n-dimensional space embeds in E: �8�
To this end let, us consider the sets

K� � f�t; z� : t 2 T ; z 2 K�t�g;
C�i � f�t; z� : t 2 T ; z 2 Ci�t�g;

L�i � f�t; z� : t 2 T ; z 2 Li�t�g;
D�i � f�t; z� : t 2 T ; z 2 Di�t�g:

Then for every i 2 N we have

dim L�i 4 nÿ 1;E � C�i [ D�i ; dim�C�i \ D�i �4 nÿ 2: �9�
Indeed, observe that the projection p restricted to L�i or C�i \ D�i is perfect since '
is continuous. So (9) is a consequence of (2) and (3).
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By (9), dim�S1i�1 L�i �4 nÿ 1. We claim that

En
[1
i�1

L�i � E�nÿ1�: �10�

This implies among other things that the set EnE�nÿ1� is at most �nÿ 1�-
dimensional. So if dim E> n, then we contradict Menger's theorem (see (2) in §1).
This implies that dim E 4 n and also by the same argument that E is weakly n-
dimensional provided that E is n-dimensional. The latter fact will follow once we
established (8). Simply observe that there are weakly n-dimensional spaces (cf. the
introduction) which embed into E by (8). Hence E is at least n-dimensional since it
contains n-dimensional subsets.

Let us consider any point a � �t; z� from the set on the left hand side of the
inclusion (10), i.e., z 2 H�t� by (6). Let W be a neighborhood of a in 21 � I1, and let

U � fx 2 I1 : �t; x� 2 Wg:
Then U is a neighborhood of z; let i 2 N be an index given by (5). The projection
p�C�i nW � is closed in T and misses t since Ci�t� � U. Let V be an open-and-closed
neighborhood of t in T, disjoint from p�C�i nW �. Then C�i \ pÿ1�V � � W and
therefore C�i \ D�i \ pÿ1�V � is an �nÿ 2�-dimensional partition between the point
a and the set EnW , cf. (9).

Having justi®ed (10), let us consider now an arbitrary weakly n-dimensional
space X. We shall ®nd an element t 2 T such that X embeds in E�t�. The dimen-
sional kernel ��X� is an F�-set in X ([3, §27, VI]). Hence there exist closed sets
Z1 � Z2 � � � � in X such that dim Zi 4 nÿ 1 for every i and XnS1i�1 Zi � X�nÿ1�.

Kuratowski's theorem [2, Sect. 3], [3, §45, VII, Remark (ii)], provides an
embedding h : X ! I1 such that dim h�Zi�4 nÿ 1, for i � 1; 2; . . . , and

h�x� 2 �h�X���nÿ1� for any x 2 XnS1i�1 Zi. Let

K � h�X�; Li � h�Zi�: �11�
Then

h�X�n
[1
i�1

Li � K�nÿ1�: �12�

From (12), there exist pairs �Ci;Di�; i 2 N, of compact sets in K, with K � Ci [ Di

and dim�Ci \ Di�4 nÿ 2, such that for any z 2 h�X�nS1i�1 Li and any neighbor-
hood U of z in I1, there is an i 2 N with z 2 Ci � U and z =2Di. The sets K and Li

in (11), together with the pairs �Ci;Di� determine a point in the set M, cf. (1), (2)
and (3). So there exists t 2 T such that

K � K�t�; Li � Li�t�; Ci � Ci�t�; Di � Di�t�: �13�
Let us consider the section E�t� of the set E, cf. (6). According to formula (5),

h�X�n
[1
i�1

Li � H�t�;

and hence by (13), h�X� � E�t�.
This completes the proof of (8) and ends the proof of the theorem.
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3. Proof of Tomaszewski's Theorem 1.2

To begin with, we shall ®rst prove that the product of two weakly-one dimen-
sional spaces X and Y is one-dimensional.

Pick an arbitrary point �x; y� 2 �X � Y�n���X� � ��Y��. We claim that X � Y
is at most one-dimensional at �x; y�. We ®rst show that this suf®ces. Striving for a
contradiction, assume that X � Y is two-dimensional. Then by our claim,

��X � Y� � ��X� � ��Y�
and since dim ���X� � ��Y��4 0 this contradicts Menger's result (see (2) in §1)
that ��X � Y� has to be at least one-dimensional.

We assume without loss of generality that y =2��Y�. If in addition x =2��X� then
X � Y is zero-dimensional at �x; y�. So we assume further that x 2 ��X�. Let U
and V be arbitrary open subsets of X and Y, respectively, such that x 2 U and
y 2 V . We will construct an open subset E � X � Y such that �x; y� 2 E � U � V
while moreover dim Fr E 4 0. Indeed, since y =2��Y�, we may assume without loss
of generality that V is open-and-closed. Let U0 be an open neighborhood of x such
that U0 � U and Fr U0 � Xn��X�. It is possible to pick U0 since ��X� is zero-
dimensional. If dim V 4 0 then Fr�U0 � V� � Fr U 0 � V is at most zero-
dimensional and so we are done. Assume therefore that V is one-dimensional.
Then V is weakly one-dimensional, and so we may assume without loss of
generality that V � Y . Put A � Fr U0 and let U00 be an open subset of X such that
A � U00 � U00 � U.

We claim that for every n 2 N there exist pairwise disjoint open-and-closed
subsets U1n;U2n; . . . of X such that

(1) Uin \ A 6� ; for every i,
(2) diam Uin < 1=n for every i,

(3) A � S1i�1 Uin �
S1

i�1 Uin � U00,
(4) Fr�S1i�1 Uin� � ��X�.
Indeed, for every x 2 Xn��X� pick an open-and-closed neighborhood Cx of

diameter at most 1=n such that either Cx \ A � ; or Cx \ �XnU00� � ;. A
countable subcollection of the Cx cover Xn��X�, say C. Since the Cx are open-and-
closed we may assume without loss of generality that C is pairwise disjoint. At
most countably many elements of C intersect A, say fCxi

: i 2 Ng. An easy check
shows that the sets Uin � Cxi

; i 2 N, are as required.
Now for every n 2 N let En denote the collection of all open-and-closed

subsets of Y of diameter at most 1=n and put

Bn � Yn
[

En: �5�
Observe that if b 2 Y is such that for every n there exists an open-and-closed
subset Cn of Y containing b and of diameter at most 1=n then Y is zero-dimensional
at b. So if b 2 ��Y� then there exists n 2 N such that b 2 Bn.

We next claim that for every n there is a decreasing sequence Vin; i 2 N, of
open-and-closed subsets of Y such that

T1
i�1 Vin � Bn. Indeed, pick a countable

subcollection Fn � En with
S
Fn �

S
En. We may assume without loss of
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generality that the collection Fn is pairwise disjoint. Enumerate it as fFin : i 2 Ng
and put Vin � YnSi

j�1 Fin. It is clear that the Vin are as required.
Now put

W �
[1
n�1

[1
i�1

Uin � Vin: �6�

We will show that

A� ��Y� � W : �7�
To this end, pick an arbitrary point �a; b� 2 A� ��Y�. There exists n 2 N such
that b 2 Bn. Since a 2 A � S1i�1 Uin there also exists i 2 N such that a 2 Uin. We
conclude that �a; b� 2 Uin � Bn � Uin � Vin � W .

We will next show that

Fr W � ���X� � ��Y�� [ �A� Y�: �8�
To this end, let �a; b� 2 Fr W and let �ak; bk� 2 W ; k 2 N, be a sequence con-
verging to �a; b�. For every k 2 N pick ik; nk 2 N such that

�ak; bk� 2 Uiknk
� Viknk

:

Let us ®rst assume that the set fnk : k 2 Ng is in®nite. Then by (1) and (2) it
follows that for in®nitely many k 2 N we have %�ak;A�< 1=k, whence
�a; b� 2 A� Y .

Assume next that the set fnk : k 2 Ng is ®nite. By passing to a subsequence if
necessary, we may even assume that it consists of a single element, say n. The set
K � fik : k 2 Ng is in®nite since each of the open-and-closed sets Uin � Vin

contains ®nitely many �ak; bk� only.
We claim that b 2 Bn � ��Y�. Striving for a contradiction, assume that b =2Bn,

and pick i 2 N such that b =2Vin. Since Vin is open-and-closed and bk ! b; k !1,
all but ®nitely many bk do not belong to Vin. But this contradicts K being in®nite.

Since the collection fUin : i 2 Ng consists of pairwise disjoint open-and-
closed subsets of X each of which contains ®nitely many ak only, it follows by (4)
that a 2 Fr�S1i�1 Uin� � ��X�. So we conclude that �a; b� 2 ��X� � ��Y�, as
required.

Now put

E � W [ �U0 � Y�: �9�
Then E is an open neighborhood of �x; y� and by (3) we ®nd that E � U � Y . We
claim that Fr E is zero-dimensional. First observe that

Fr E � Fr W [ Fr�U0 � Y� � Fr W [ �A� Y�: �10�
Put B0 � Fr E \ �A� Y� and B1 � Fr EnB0, respectively. Since by (7),
A� ��Y� � W and Fr E \W � ;, it follows that

B0 � A� �Yn��Y��;
which is zero-dimensional. We conclude that B0 is a zero-dimensional closed
subspace of Fr E. In addition, (10) and (4) imply that

B1 � Fr Wn�A� Y� � ��X� � ��Y�;

30 J. van Mill and R. Pol



which is also zero-dimensional. We conclude that B1 is zero-dimensional as well.
Since B0 is closed, the Countable Sum Theorem now easily gives us that
dim E 4 0, as desired.

To prove the general theorem from the just derived special case, one can use
the straight-forward inductive argument in Tomaszewski [13] verbatim.

4. Proof of Theorem 1.3

We shall follow the main idea of the proof of Theorem 3.1 in [10]. The starting
point is a continuous map f : K ! I, a Cantor set 4 � �0; 1�, and a compact set
Z � K such that

dim fÿ1�t� � n for t 2 4; �1�
and

f �Z� � 4; and dim X � n for every X � Z with f �X� � 4: �2�
As in [10], one can get such a map f using a construction in Rubin, Schori and
Walsh [11] (property (2) follows from Theorem 4.2 in [11]). Let

T � ft 2 4 : dim �Z \ fÿ1�t��5 1g: �3�
Then, cf. [3, §45, IV], [10, Lemma 2.1],

T is �-compact and fÿ1�4nT � \ Z � Z�0�: �4�
We shall ®nd compact sets Zi � Z such that

Zi \ Z�0� � ;; dim Zi 4 nÿ 1; �5�
while moreover,

�a� the sets Ti � f �Zi� are pairwise disjoint;

�b� 4 �
[1
i�1

Ti [ f �Z�0��:
�6�

Let G be a zero-dimensional G�-set in ZnZ�0� such that Zn�Z�0� [ G� is at most
�nÿ 1�-dimensional, cf. [3, §27, II, Cor. 2d]. Since G is zero-dimensional, (3)
guarantees that for every t 2 T we have Zn�Z�0� [ G�ÿ � \ fÿ1�t� 6� ;. We con-
clude that T � f �Zn�Z�0� [ G��.

Since Z�0� is a G�-set, cf. [3, §26, II], Zn�Z�0� [ G� can be written as
S1

i�1 Li,
where L1 � L2 � � � � are compact.

So by (4) we get,

4 �
[1
i�1

f �Li� [ f �Z�0��: �7�

Since L � S1i�1 f �Li� is zero-dimensional and the collection f f �Li� : i 2 Ng is
increasing, we can split L into pairwise disjoint compact sets fTi : i 2 Ng such
that for every i there is an index n�i� with Ti � f �Ln�i��.

For i 2 N, put Zi � fÿ1�Ti� \ Ln�i�. Then by (7), conditions (5) and (6) are met.
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We shall now choose for every i a subset Si of Z such that,

Si � Zi; f �Si� � Ti; dim�Sin�Si��0��4 nÿ 2: �8�
Assume ®rst that dim Zi � nÿ 1 and write Zin�Zi��0� as Ci [ Di, where dim Ci 4
nÿ 2 and dim Di 4 0. We let Si � Ci [ �Zi��0�. The last part of (8) is clear, and so it
remains to show that for any t 2 Ti; Si \ fÿ1�t� 6� ;. Let Ni � ft 2 Ti :
dim� fÿ1�t� \ Zi�5 1g, cf. (3). If t =2Ni then fÿ1�t� \ Zi � �Zi��0� by the same

reasoning as the one above. In addition, if t 2 TinNi, then fÿ1�t� \ Zi is not
contained in the zero-dimensional set Di, hence fÿ1�t� \ Si 6� ;.

If dim Zi < nÿ 1 then we put Si � Zi.
Having de®ned the Si, let us consider S � S1i�1 Si and put

X � S [ Z�0�: �9�
The Si are pairwise disjoint, relatively closed sets in X by (5), (6), and (8).

Observe that by (2), (7), and (8),

dim X � n and XnX�0� � S: �10�
We claim that

J � fi 2 N : dim Si � nÿ 1g is infinite: �11�
Striving for a contradiction, assume that this is not true, and let us consider the
set A � Si2 J Si. Then A is closed in S and dim�SnA�4 nÿ 2. Observe that
Z�0� � X�0�. This implies by (9) that

dim�XnA�4 dim�SnA� � dim X�0� � 14 nÿ 1: �12�
This shows among other things that the dimensional kernel ��X� is contained in A
since X is n-dimensional (see (10)) and A is closed. By (12) it also follows that
A�0� � X�nÿ1� (cf. [3, §27, II, Cor. 1.d.]). So ��X� is a subset of AnA�0� which is at
most �nÿ 2�-dimensional by (8). But this again contradicts Menger's theorem, cf.
(2) in Section 1.

To complete the proof, let us list the elements of J as k�1�< k�2�< � � �, and
let Ei � [fSj : k�iÿ 1�< j4 k�i�g, where k�0� � 0. Then the Ei are pairwise
disjoint closed sets in X. Observe that they are all �nÿ 1�-dimensional by (11), and
weakly �nÿ 1�-dimensional by (8). Since X is n-dimensional, we are done.

Remark. The sets Ei we have constructed have the additional property
dim�Ein�Ei��0��4 nÿ 2.

Note added in Proof

In section 3 of the present paper we presented a proof of the fact that the product of two weakly
1-dimensional spaces is 1-dimensional. At the end of the section we state that for proving
Tomaszewski's Theorem from the just derived special case, it suf®ces to follow the inductive
argument in the paper [13] verbatim. However, we recently discovered a ¯aw in that inductive
argument in [13]. It is unclear to us whether Tomaszewski's Theorem that the product of a weakly
n-dimensional space and a weakly m-dimensional space is at most �n� mÿ 1�-dimensional, is true.
However, as was proved in [13] as well as in the present paper, it is certainly correct in the special
case n � m � 1. In section 1 of the present paper we state that we do not know whether X3 is
1-dimensional if X is weakly 1-dimensional. We recently proved that the product of an arbitrary family
of weakly 1-dimensional spaces is 1-dimensional, which solves this problem.
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