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Abstract. Weakly n-dimensional spaces were first distinguished by Karl Menger. In this note we
shall discuss three topics concerning this class of spaces: universal spaces, products, and the sum
theorem. We prove that there is a universal space for the class of all weakly n-dimensional spaces,
present a simpler proof of Tomaszewski’s result about the dimension of a product of weakly n-
dimensional spaces, and show that there is an n-dimensional space which admits a pairwise disjoint
countable closed cover by weakly n-dimensional subspaces but is not weakly n-dimensional itself.
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1. Introduction

We shall consider separable metrizable spaces only. Our terminology follows
Kuratowski [3]. We assume that the reader is familiar with the basic notions and
results in dimension theory. For details, see [3] and [1].

Given a space X, we shall denote by X, the set of all points in X that have
arbitrarily small neighborhoods with at most (n — 1)-dimensional boundaries, [3,
§25, II]. If 1 < dim X < oo, then the set

A(X) = X\X(n_l), n—= dimX, (1)
is called the dimensional kernel of X. Menger’s classical theorem asserts that
dimA(X) € {dimX,dimX — 1}, (2)

cf. [9].

A space X is weakly n-dimensional, n = 1,if dimX = nand dimA(X) =n — 1,
cf. [3, §27, VI], [1, p. 39]. The first example of a weakly one-dimensional space
was constructed by Sierpinski [12], before the notion of dimension was defined. For
n =2, the existence of weakly n-dimensional spaces was demonstrated by
Mazurkiewicz [6], thereby solving a problem of Menger. Simpler constructions are
due to Tomaszewski [13] and van Mill and Pol [10].

In this note we shall discuss three topics concerning weakly n-dimensional
spaces: universal spaces, products, and the sum theorem.
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In Section 2 we shall prove the following:

Theorem 1.1. For each n = 1 there exists a weakly n-dimensional space E such
that any weakly n-dimensional space embeds in E.

Menger [8] asked whether there exists a weakly one-dimensional space X such
that dim X" = n for every n. This problem was solved by Tomaszewski [13], who
proved the following interesting result:

Theorem 1.2. (Tomaszewski). If X is weakly n-dimensional and Y is weakly m-
dimensional then dim(X x Y) <n+m— 1.

Section 3 is devoted to a simpler proof of this result. The basic idea of the
proof follows [13], but our approach is more direct and elementary.

We do not know if for any weakly one-dimensional space X its cube X> must be
one-dimensional.

In the last section we prove, refining a reasoning from [10], the following:

Theorem 1.3. Let K be an (n + 1)-dimensional compact space, n = 1. Then K
contains an n-dimensional subspace X such that X\X o) is covered by the union of a
countable family pairwise disjoint (relatively) closed weakly (n — 1)-dimensional
subsets of X.

Let us comment on the assertion of Theorem 1.3, assuming n > 2. Let & be a
countable pairwise disjoint collection of closed weakly (n — 1)-dimensional
subspaces of X covering X\X(g), and let E denote its union. Since Xq) is zero-
dimensional, E(,,,z) - X(,,,l ) and so

AX) = X\X(u1) C E\E(y2) = A(E).
Since dimE = n — 1, E\E(,_,) is the dimensional kernel of E, and so we get
dimA(E) = dimAX) =n—1.
So this yields:

Corollary 1.4. For each m = 1 there is a space E which is not weakly m-
dimensional, whereas it admits a countable pairwise disjoint closed cover con-
sisting of weakly m-dimensional subspaces.

For dimension one, such an example was constructed by Mazurkiewicz [4] (in
response to a question of Sierpinski concerning ‘‘quasi-connectivity’’). We did not
find analogous examples for higher dimensions in the literature.

Mazurkiewicz [5] also constructed a space which is the union of two weakly
one-dimensional closed subspaces but is not weakly one-dimensional itself. It is
an obvious question whether our construction also yields such examples. This is
not true unfortunately, since one can check that for any n-dimensional space Y
with n > 2 the set Y\Y(g) cannot be covered by finitely many weakly (n — 1)-
dimensional closed subspaces (the proof of this assertion is implicit in our proof of
Theorem 1.3).

Problems concerning sum theorems for weakly n-dimensional spaces were
raised by Menger, cf. [7], [9].
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2. Proof of Theorem 1.1

We shall denote by [1*° and 2°° the Hilbert cube and the Cantor set, respectively;
let p: 2% x [* — 2% be the projection. As usual, N denotes the set of natural
numbers. We shall let 27" (1°°) denote the space of nonempty compact sets in [*
endowed with the Vietoris topology [3, §42].

For a fixed natural number n, let .# be the subspace of the product

H) 5 A () x (A1) x A (1<),
consisting of all elements of the form
(K,(L; : i € N),((C;,D;) : i € N}) (1)
satisfying the following conditions:
LiCL,C---CK, dmL<n—1 (ieN), (2)
K=CUD;, dim(C;ND;)<n—-2 (ieN). (3)

>

There is a subspace 7'in 2*° and a continuous mapping ¢ from 7 onto the set .Z. It
will be convenient to denote ¢ as follows:

t—(K (1), (Li(¢) - i € N), ((Ci(2), Di(t)) = i € N)). (4)
For any t € T, let
H(t) = {z € K(r)\U;2, Li(¢) : for any neighborhood U of z in [
there is an i € N with z € C;(r) C U
and z¢ D;(1)}. (5)

For t € T, put
E(1)=H(1)U UL,-(t). (6)

Finally, let E C 2*° x [* be the subspace of all points of the form (z,z), where
t€T and z € E(1).
We shall show that

E is weakly n-dimensional, (7)
and
any weakly n-dimensional space embeds in E. (8)
To this end let, us consider the sets

K*={(t,2):t€T,zeK(t)}, LF={(t,2):teT,zeL(t)},
CF={(t,z):1 €T,z C(1)}, Df={(t,z):1€T,ze D)}

Then for every i € N we have
dimL' <n-1,ECC/UD}, dim(C/nDf)<n-2. 9)

Indeed, observe that the projection p restricted to L or C;* N D is perfect since ¢
is continuous. So (9) is a consequence of (2) and (3).
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By (9), dim({J;Z, L) < n — 1. We claim that

[o.¢]
E\JLY CEu. (10)
i=1
This implies among other things that the set E\E(_;) is at most (n—1)-
dimensional. So if dim E > n, then we contradict Menger’s theorem (see (2) in §1).
This implies that dim £ < n and also by the same argument that E is weakly n-
dimensional provided that E is n-dimensional. The latter fact will follow once we
established (8). Simply observe that there are weakly n-dimensional spaces (cf. the
introduction) which embed into E by (8). Hence E is at least n-dimensional since it
contains n-dimensional subsets.

Let us consider any point @ = (¢,z) from the set on the left hand side of the
inclusion (10), i.e., z € H(t) by (6). Let W be a neighborhood of a in 2°° x [°°, and let
U={xel*:(t,x) e W}

Then U is a neighborhood of z; let i € N be an index given by (5). The projection
p[CF\W] is closed in Tand misses 7 since C;(t) C U. Let V be an open-and-closed
neighborhood of ¢ in 7, disjoint from p[C;\W]. Then C/Np~'[V] C W and
therefore C;* N D¥ Np~![V] is an (n — 2)-dimensional partition between the point
a and the set E\W, cf. (9).

Having justified (10), let us consider now an arbitrary weakly n-dimensional
space X. We shall find an element ¢ € 7 such that X embeds in E(¢). The dimen-
sional kernel A(X) is an F,-set in X ([3, §27, VI]). Hence there exist closed sets
Zy CZ, C---in X such that dimZ; < n — 1 for every i and X\ U, Z; C Xn-1)-

Kuratowski’s theorem [2, Sect. 3], [3, §45, VII, Remark (ii)], provides an

embedding /7 :X — 1 such that dimh[Z]<n—1, for i=1,2,..., and
h(x) € (h[X])(,_y) for any x € X\ X, Z;. Let
K =h[X], Li=h|Z]. (11)
Then
h[x]\ULi C Kin1)- (12)
i=1

From (12), there exist pairs (C;, D;),i € N, of compact sets in K, with K = C; U D;
and dim(C; N D;) < n — 2, such that for any z € A[X]\ |2, L; and any neighbor-
hood U of z in [*, there is an i € N with z € C; C U and z¢ D;. The sets K and L;
in (11), together with the pairs (C;, D;) determine a point in the set ., cf. (1), (2)
and (3). So there exists ¢ € T such that

K:K(t), Li:L,‘(l), Ci:Ci(t)v Di:Di(t). (13)

Let us consider the section E(t) of the set E, cf. (6). According to formula (5),
WX\ L € H(),
i=1

and hence by (13), h[X]| C E(¢).
This completes the proof of (8) and ends the proof of the theorem.
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3. Proof of Tomaszewski’s Theorem 1.2

To begin with, we shall first prove that the product of two weakly-one dimen-
sional spaces X and Y is one-dimensional.

Pick an arbitrary point (x,y) € (X x Y)\(A(X) x A(Y)). We claim that X x ¥
is at most one-dimensional at (x,y). We first show that this suffices. Striving for a
contradiction, assume that X x Y is two-dimensional. Then by our claim,

A(X x ¥) € AX) x A(Y)

and since dim (A(X) x A(Y)) < 0 this contradicts Menger’s result (see (2) in §1)
that A(X x Y) has to be at least one-dimensional.

We assume without loss of generality that y¢ A(Y). If in addition x¢ A(X) then
X x Y is zero-dimensional at (x,y). So we assume further that x € A(X). Let U
and V be arbitrary open subsets of X and Y, respectively, such that x € U and
y € V. We will construct an open subset E C X x Y such that (x,y) e EC U x V
while moreover dim Fr E < 0. Indeed, since y¢ A(Y), we may assume without loss
of generality that V is open-and-closed. Let U’ be an open neighborhood of x such
that U’ C U and FrU’ C X\A(X). It is possible to pick U’ since A(X) is zero-
dimensional. If dimV <0 then Fr(U' x V) =FrU’' xV is at most zero-
dimensional and so we are done. Assume therefore that V is one-dimensional.
Then V is weakly one-dimensional, and so we may assume without loss of
generality that V =Y. Put A = Fr U’ and let U” be an open subset of X such that
ACU'" CU"CU.

We claim that for every n € N there exist pairwise disjoint open-and-closed
subsets Uy, Uy, . .. of X such that

(1) Uy, NA # () for every i,

(2) diam U;, < 1/n for every i,
BACUZ, Un CUZ, Uy C U,
@) Fr(UJ.2; Un) C AX).

Indeed, for every x € X\A(X) pick an open-and-closed neighborhood C, of
diameter at most 1/n such that either C,NA =0 or C;N(X\U")=10. A
countable subcollection of the C, cover X\ A(X), say %. Since the C, are open-and-
closed we may assume without loss of generality that % is pairwise disjoint. At
most countably many elements of % intersect A, say {Cy, : i € N}. An easy check
shows that the sets U;, = Cy,,i € N, are as required.

Now for every n € N let &, denote the collection of all open-and-closed
subsets of Y of diameter at most 1/n and put

B, =Y\ Jé.. (5)

Observe that if b € Y is such that for every n there exists an open-and-closed
subset C,, of Y containing b and of diameter at most 1/n then Yis zero-dimensional
at b. So if b € A(Y) then there exists n € N such that b € B,,.

We next claim that for every n there is a decreasing sequence V;,,i € N, of
open-and-closed subsets of Y such that ﬂf’il Vin = B,,. Indeed, pick a countable
subcollection %, C &, with |JZF, =J&,. We may assume without loss of
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generality that the collection %, is pairwise disjoint. Enumerate it as {F;, : i € N}
and put V;, = Y\ UJ’.:1 F;,. It is clear that the V;, are as required.
Now put

W= [CJ [CJ Uin X Vin' (6)

n=1i=1
We will show that
AxAY)CW. (7)

To this end, pick an arbitrary point (a,b) € A x A(Y). There exists n € N such
that b € B,,. Sincea € A C Ulﬁl Ui, there also exists i € N such that a € U;,,. We
conclude that (a,b) € U;, X B, C U;, X Vi CW.

We will next show that

FrW C (A(X) x A(Y)) U (4 x Y). (8)

To this end, let (a,b) € FrW and let (ay,by) € W,k € N, be a sequence con-
verging to (a,b). For every k € N pick iy, n; € N such that

(ak,bk) S Uiknk x V;

Let us first assume that the set {n; : kK € N} is infinite. Then by (1) and (2) it
follows that for infinitely many k€ N we have o(ax,A)<1/k, whence
(a,b) € A X Y.

Assume next that the set {n; : k € N} is finite. By passing to a subsequence if
necessary, we may even assume that it consists of a single element, say n. The set
K = {ix : k € N} is infinite since each of the open-and-closed sets U, X Vj,
contains finitely many (a, by) only.

We claim that b € B, C A(Y). Striving for a contradiction, assume that b¢ B,,,
and pick i € N such that b¢ V;,. Since V;, is open-and-closed and b, — b,k — oo,
all but finitely many b; do not belong to V;,. But this contradicts K being infinite.

Since the collection {U;, :i € N} consists of pairwise disjoint open-and-
closed subsets of X each of which contains finitely many a; only, it follows by (4)
that a € Fr(lJ;2, Uin) C A(X). So we conclude that (a,b) € A(X) x A(Y), as
required.

Now put

kM

E=WU (U xY). 9)

Then E is an open neighborhood of (x,y) and by (3) we find that E C U x Y. We
claim that Fr E is zero-dimensional. First observe that

FFECFWUF(U xY)=FrWU(A xY). (10)

Put By=FrEN(AxY) and By =FrE\By, respectively. Since by (7),
A X A(Y) C W and FrENW = (), it follows that

By C A x (V\A(Y),

which is zero-dimensional. We conclude that By is a zero-dimensional closed
subspace of Fr E. In addition, (10) and (4) imply that

By CErW\(A xY) C A(X) x A(Y),
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which is also zero-dimensional. We conclude that B; is zero-dimensional as well.
Since By is closed, the Countable Sum Theorem now easily gives us that
dimE < 0, as desired.

To prove the general theorem from the just derived special case, one can use
the straight-forward inductive argument in Tomaszewski [13] verbatim.

4. Proof of Theorem 1.3

We shall follow the main idea of the proof of Theorem 3.1 in [10]. The starting
point is a continuous map f : K — [, a Cantor set A C (0, 1), and a compact set
Z C K such that

dimf~'(t) =n for te A, (1)
and
flZl =4, anddimX =n forevery X CZ with fX]=A. (2)

As in [10], one can get such a map f using a construction in Rubin, Schori and
Walsh [11] (property (2) follows from Theorem 4.2 in [11]). Let

T={tcA:dim(Znf'(t) =1} (3)
Then, cf. [3, §45, IV], [10, Lemma 2.1],
T is o-compactand f'[A\T]NZ C Z). (4)

We shall find compact sets Z; C Z such that
Z; mZ(o) = (Z), dlmZ, <n-— 1, (5)
while moreover,

(a) thesets T;=f[Z] are pairwise disjoint,

> (6)
(b) A =T urlZo)
=1
Let G be a zero-dimensional Gs-set in Z\Z) such that Z\(Z U G) is at most
(n — 1)-dimensional, cf. [3, §27, II, Cor. 2d]. Since G is zero-dimensional, (3)
guarantees that for every 1 € T we have (Z\(Z) UG)) N f~'(t) # 0. We con-
clude that T = f[Z\(Z;) U G)].
Since Z(g) is a Gs-set, cf. [3, §26, II], Z\(Zo) U G) can be written as UZ, Lis
where L; C L, C --- are compact.
So by (4) we get,
A =L U f1Z). (7)
i=1
Since L = JZ, f[Li] is zero-dimensional and the collection {f[L;]:i € N} is
increasing, we can split L into pairwise disjoint compact sets {7; : i € N} such
that for every i there is an index n(i) with T; C f[L,;].
Fori e N, put Z; = f~![T;] N Ly(;)- Then by (7), conditions (5) and (6) are met.
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We shall now choose for every i a subset S; of Z such that,
SiCZ, fIS]=T, dim(S,»\(S,-)((») <n-2. (8)

Assume first that dimZ; = n — 1 and write Z;\ (Z;) (0) s C;UD;, where dim C; <
n—2anddimD; < 0. WeletS; = C; U (Zi)(o). The last part of (8) is clear, and so it
remains to show that for any re€T,S;Nf'(t)#0. Let Ni={teT;:
dim(f~'(r)NZ) = 1}, cf. 3). If 1¢N; then f~'(t) NZ; C (Z)( by the same
reasoning as the one above. In addition, if # € T;\N;, then f~'(t) N Z is not
contained in the zero-dimensional set D;, hence f~!(t) N S; # 0.

If dimZ; <n — 1 then we put S; = Z,.

Having defined the S;, let us consider S = J;°, S; and put

X=S UZ(()). (9)

The S; are pairwise disjoint, relatively closed sets in X by (5), (6), and (8).
Observe that by (2), (7), and (8),

dimX =n and X\X() CS. (10)
We claim that
J={ieN:dimS;=n—1} is infinite. (11)

Striving for a contradiction, assume that this is not true, and let us consider the
set A=J;c,Si. Then A is closed in S and dim(S\A) <n — 2. Observe that
Zp) € X(0)- This implies by (9) that

dim(X\A) < dim(S\A) + dimX) + 1 <n — 1. (12)

This shows among other things that the dimensional kernel A(X) is contained in A
since X is n-dimensional (see (10)) and A is closed. By (12) it also follows that
A) € X(u—1) (cf. [3, §27, 11, Cor. 1.d.]). So A(X) is a subset of A\A ) which is at
most (n — 2)-dimensional by (8). But this again contradicts Menger’s theorem, cf.
(2) in Section 1.

To complete the proof, let us list the elements of J as k(1) <k(2) < ---, and
let E; = U{S; : k(i — 1) <j < k(i)}, where k(0) = 0. Then the E; are pairwise
disjoint closed sets in X. Observe that they are all (n — 1)-dimensional by (11), and
weakly (n — 1)-dimensional by (8). Since X is n-dimensional, we are done.

Remark. The sets E; we have constructed have the additional property

Note added in Proof

In section 3 of the present paper we presented a proof of the fact that the product of two weakly
1-dimensional spaces is 1-dimensional. At the end of the section we state that for proving
Tomaszewski’s Theorem from the just derived special case, it suffices to follow the inductive
argument in the paper [13] verbatim. However, we recently discovered a flaw in that inductive
argument in [13]. It is unclear to us whether Tomaszewski’s Theorem that the product of a weakly
n-dimensional space and a weakly m-dimensional space is at most (n + m — 1)-dimensional, is true.
However, as was proved in [13] as well as in the present paper, it is certainly correct in the special
case n=m = 1. In section 1 of the present paper we state that we do not know whether X* is
1-dimensional if X is weakly 1-dimensional. We recently proved that the product of an arbitrary family
of weakly 1-dimensional spaces is 1-dimensional, which solves this problem.
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