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Abstract

We prove under CH that iB is a Boolean algebra of size at meghen there is a subalgebéa
of P(w) containing fin such thaf/fin is isomorphic toB and C contains no infinite completely
separated set. This is a generalization of a result of Do®001 Elsevier Science B.V. All rights
reserved.
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1. Introduction

Murray Bell has raised the following problem: if a compact zero-dimensional space
has a zero-set which maps o, must the space map onga? It will be convenient
to translate this problem into Boolean algebraic language.B_be a Boolean algebra.
A subsetA C B is completely separateid for eachC < A there exists/ € B such that
c<dforallceCandd na=0foralla e A\ C. If P(w) can be embedded iA then
obviously B contains an infinite completely separated subset. Simple examples show that
the converse need not be true. Observe that Bell's question in Boolean algebraic language
is the following one: if] is a countably generated ideal of a Boolean algabrand if
B/I containsP(w), mustB itself contain?(w)? Dow [1] proved that the answer to this
question is in the negative under CH. His example is quite complicated and the aim of this
note is to present a stronger theorem with a much simpler proof.

Dow [1] also considered the following natural generalization of Bell's question: if
is a countably generated ideal of a Boolean alggbrand if B/I containsP(w), must
B itself contain an infinite completely separated subset? He answered this question in
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the affirmative under OCA, and raised the question whether in this result it suffices to
just assume thaB/I has an infinite completely separated subset. We leave this question
unanswered.

2. The main result

All spaces under discussion are TychonoffXlis a space theix* denotess X \ X. If
X is normal andy is closed then we identifgY and the closure of in S X.

Theorem 2.1. (CH) There is a continuous surjectiofi: o* — w™* such that for every non-
empty clopen subsét < w*, f | C is not one-to-one.

Proof. Let X denotew x 2 and letwr : X — w be the projection. Since is perfect,
its Cech—Stone extensigfir mapsX* onto w*. Now let C be an arbitrary non-empty
clopen subset ok*. There is a clopen subsét € X such thatC’ N X* = C. There is
an infinite subseE C w such thatC’ N ({n} x 2*) # @ for everyn € E. Since 2 has no
isolated points, we may pick for evenye E distinct pointsx,, y, € C’' N ({n} x 2¢). Put
A={x,: ne E}andB = {y,: n € E}, respectively.

Now pick an arbitrary poinp € E* C w*. Sincen[A] = E andn[B] = E andfn is
closed, there exist poinise A* andv € B* with S (u) = Br(v) = p. SinceA and B
have disjoint closures if X and clearlyu, v € C this shows thagx | C is not one-to-one.

Now since by Parogenko’s Theorem [3K* andw* are homeomorphic under CH, we
are done. O

We now show that this result easily implies our main result.

Theorem 2.2.(CH) If X is a compact space of weight at mastthen there is a
compactificatiory w of w such that

(1) yw \ w is homeomorphic tX.

(2) ForeveryE € [w]® there exist disjoinE’, E” € [E]® such thatE’ N E” # @.

Proof. It is well known that there exists a continuous surjectfam™ — X under CH
(Parovtenko [3]). Letn:w* — X be the compositiors o f, where f is the map in
Theorem 2.1. The map defines a compactificatiopw of w for which the natural map
g:Bw — yw has the property thag [ o* = 5. (Formally, yw is the adjunction space
Bw U, X, see Dugundji [2, 6.6.1].) We will prove thatw is as required. To this end, pick
an arbitraryE € [w]®. Sincef | E* is not one-to-one, there exist distinct pointsy € E*
such thatf (x) = f(y). Pick disjoint setst’, E” € E with x € E’ andy € E”. Then in
yw, the pointy(x) = n(y) is in the closure of bottk” andE”. O

Now let X be a zero-dimensional compact space of wetgfithhien the compactification
yw we get from Theorem 2.2 is obviously zero-dimensional and its clopen algebra has
no infinite completely separated subset. For from such a subset one would get an infinite



J. van Mill / Topology and its Applications 111 (2001) 191-193 193

subsetE € w whose closure ig E and that is impossible by Theorem 2.2(2). So if we let
X bepw or Bw \ w, or any compact zero-dimensional F-space of weigtiten the clopen
algebra ofyw \ w has an infinite completely separated subset but the clopen algepsa of
does not have such a subset.

Let X = w*. The compactificatioryw from Theorem 2.2 withX as input has the
amusing property thatw \ w is homeomorphic te* yet for everyE € [w]® there exist
disjoint E’, E” € [E]® such thatE’ N E” # {.
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